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ABSTRACT
Open nesting provides a loophole in the strict model of atomic
transactions. Moss and Hosking suggested adapting open nesting
for transactional memory, and Moss and a group at Stanford have
proposed hardware schemes to support open nesting. Since these
researchers have described their schemes using only operational
definitions, however, the semantics of these systems have not been
specified in an implementation-independent way. This paper offers
a framework for defining and exploring the memory semantics of
open nesting in a transactional-memory setting.

Our framework allows us to define the traditional model of
serializability and two new transactional-memory models, race
freedom and prefix race freedom. The weakest of these memory
models, prefix race freedom, closely resembles the Stanford open-
nesting model. We prove that these three memory models are equiv-
alent for transactional-memory systems that support only closed
nesting, as long as aborted transactions are “ignored.” We prove
that for systems that support open nesting, however, the models of
serializability, race freedom, and prefix race freedom are distinct.
We show that the Stanford TM system implements a model at least
as strong as prefix race freedom and strictly weaker than race free-
dom. Thus, their model compromises serializability, the property
traditionally used to reason about the correctness of transactions.

1. INTRODUCTION
Atomic transactions represent a well-known and useful abstrac-
tion for programmers writing parallel code. Database systems have
utilized transactions for decades [9], and more recently, transac-
tional memory [12] has become an active area of research. Trans-
actional memory (TM) describes a collection of hardware and soft-
ware mechanisms that provide a transactional interface for access-
ing memory, as opposed to a database. A TM system guarantees
that any section of code that the programmer has specified as a
transaction either appears to execute atomically or appears not to
happen at all, even though other transactions may be running con-
currently. In the first case, we say the transaction has committed;
otherwise, we say the transaction has aborted.

A TM system enforces atomicity by tracking the memory lo-
cations that each transaction in the system accesses, finding trans-
action conflicts, and aborting and possibly retrying transactions to
resolve conflicts. Most TM implementations maintain a transaction
readset and writeset, i.e., a list of memory locations that a transac-
tion has read from or written to, respectively. Typically, the system
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FIGURE 1: A code example where transaction I is nested inside A. The
xbegin and xend delimiters mark the beginning and end of a transaction.

reports a conflict between two transactions A and B if both trans-
actions access the same memory location and at least one of those
accesses is a write. If A and B conflict, then TM aborts one of the
transactions, rolls back any changes the aborted transaction made
to global memory, and clears its readset and writeset.

Transactional memory systems may support nesting of transac-
tions. Nested transactions arise when an outer transaction A in its
body calls another transaction I . Figure 1 shows code for a trans-
action A within which another transaction I is nested.

The database community has produced an extensive literature
on nested transactions. Moss [17] credits Davies [4] with inventing
nested transactions, and he credits Reed [23] as providing the first
implementation of what we now call closed transactions. Gray [8]
describes what we now call open transactions. The terms “open”
and “closed” nesting” were coined by Traiger [25] in 1983.

The TM literature discusses three types of nesting: flat, closed,
and open. The semantics and performance implications of each
form of nesting can be understood through the example of Figure 1.
If I is flat-nested inside A, then conceptually, A executes as if the
code for I were inlined inside A. With flat-nesting, I’s reads and
writes are added directly to the readset and writeset of A. Thus, in
Figure 1, if a concurrent transaction B tries to modify variable i
while I is running, but before I has committed, then if I aborts, it
also causes A to abort (since i belongs to the readset of A as well).

If I is closed-nested inside A (see, for example, [18]), then
conceptually, the operations of I only become part of A when I
commits. In Figure 1, if B tries to modify i and causes I to abort,
then the system only needs to abort and roll back I , but B need not
abort A, because A has not accessed location i yet. Thus, closed
nesting can be more efficient than flat nesting in this example.
I’s readset and writeset are merged with A’s readset and writeset
if I commits, however. Thus, if B tries to modify i after I has
committed but before A commits, the system may still abort A.

Finally, if I is open-nested inside A (see [16, 19, 21, 26]), then
conceptually, the operations of I are not considered as part of A.
When I commits, I’s changes are made visible to any other transac-
tion B immediately, in the scheme of [16],1 independent of whether

1 Several alternative policies for manipulating readsets and writesets are
suggested in both [19,21], but since [19] suggests adopting the same scheme
as [16], we do not discuss the alternatives in this paper.



A later commits or aborts. Thus, in Figure 1, B never aborts A, and
B’s access to variable i is never added to A’s readset or writeset.

Transactional memory with either flat or closed nesting guaran-
tees that transactions are serializable [22]: they affect global mem-
ory as if they were executed one at a time in some order, even if
in reality, several executed concurrently. Closed nesting generally
allows for a more efficient implementation compared with flat nest-
ing, because closed nesting allows a nested transaction I to abort
without forcibly aborting its parent transaction A, as with flat nest-
ing.

Open nesting provides a loophole in the strict guarantee of trans-
action serializability by allowing an outer transaction to “ignore”
the operations of its open subtransactions. Moss [19] describes
open nesting as a high-level construct that operates at two levels of
abstraction. Thus, open nesting may require high-level constructs
for rollbacks of aborted transactions or for concurrency control be-
tween transactions. For example, when using open nesting, pro-
grammers may need to specify a “compensating” transaction that
undoes the effect of a committed open transaction if its parent trans-
action aborts, or the programmer may need to use “abstract” locks
in the code to prevent certain transaction interleavings [19].

Indeed, even TM without any nesting can be viewed at two
levels of abstraction. For example, the hardware may implement
rollback of memory state, but rely on the programmer or compiler
to retry transactions that abort, sometimes using backoff protocols
to ensure that a given transaction eventually commits. Thus, it is
helpful to distinguish the memory model for TM, as the essential
memory semantics that the hardware implements, from the pro-
gram model, as the semantics that the programmer sees.

Our focus will be on memory models for TM. We shall not con-
cern ourselves with retry mechanisms, compensating transactions,
and the like. A TM system should have well-specified behavior
even as a target for compilation, when all program-level support
for transactions and nesting are put aside. Low-level software may
build upon the memory model to provide a higher level of abstrac-
tion, e.g., for open nesting, but the semantics of open nesting must
be understood by the programmers of this low-level software.

Moreover, although one may ignore the semantics of aborted
transactions at the program-model level, at the level of the memory
model, even aborted transactions must have a reasonable semantics,
at least up to the point where they abort. Thus, we shall be inter-
ested in defining memory semantics even for aborted transactions.

In this paper, we describe a framework for defining transac-
tional memory models. Our framework, which is inspired by the
computation-centric framework proposed by Frigo [6, 7], allows
TM semantics to be specified in an implementation-independent
way. Within this framework, we define the traditional model of se-
rializability and two new transactional memory models, race free-
dom and prefix-race freedom. We prove that these three memory
models are equivalent for computations that contain only closed
transactions, as long as aborted transactions are “ignored.” For sys-
tems that support open nesting, however, the three models are dis-
tinct. We show that the Stanford system [16], perhaps the most
reasonable design for open-nesting of transactional memory pro-
posed to date, implements a model at least as strong as prefix-race
freedom and strictly weaker than race freedom. Thus, their model
compromises serializability, the property traditionally used to rea-
son about the correctness of transactions.

The remainder of this paper is organized as follows. Section 2
presents several examples that illustrate program behaviors that
open nesting can admit. Section 3 defines our framework for under-
standing transactional memory models. Section 4 formally defines
the memory models of serializability, race freedom, and prefix-race
freedom. In Section 5 we prove that all three memory models are
equivalent for computations with only committed transactions, but

FIGURE 2: Two concurrent transactions that do not share any memory loca-
tions except in their nested transactions. Divide transaction A into abstract
operations A1, I1, A2, I2, A3, and divide B into B1, J1, B2, J2, B3. The
I’s and J’s represent inserts to an abstract table data structure. Schedule 1
is a serial order, Schedule 2 is an interleaved order equivalent to Schedule
1, and Schedule 3 is an interleaved order which is not serializable.

are distinct when we model aborted transactions or have open trans-
actions. Section 6 describes an operational model for open nesting
that similar to the Stanford model [16] and shows that it imple-
ments prefix-race freedom. Section 7 offers some perspective on
open nesting and other loopholes in transactional memory.

2. SUBTLETIES WITH OPEN NESTING
This section motivates the need for a precise description of the
memory semantics using three examples to illustrate some sub-
tleties with open nesting. The first example shows that some de-
sirable schedules allowed by open nesting are not serializable. The
second example shows that the loss of serializability for open nest-
ing sanctions arguably bizarre program behaviors. The third exam-
ple shows that open nesting compromises composability.

Figure 2 describes a program with nested transactions where
the use of open nesting admits a desirable schedule which is not
serializable. Moreover, a system with only flat or closed nesting
prohibits the schedule. In Figure 2, transaction A reads from global
variable a, adds a key-value pair based on a to a global table, reads
from b and adds a corresponding pair to the table, and then stores
the sum a+ b into c. Transaction B performs analogous operations
on d, e, and f . The table data structure is implemented as a simple
direct-access table [3, Section 11.1] with a global size field to
count the number of elements in the table.

If the nested transactions (the I’s and J’s) are all flat-nested or
closed-nested, then TM guarantees that the transactions are serializ-
able: the program appears to executes as though either A happened
before B (Schedule 1) or B happened before A. The system might
actually perform the operations in a different, interleaved order (for
example, Schedule 2), but this schedule is equivalent to one of the
two valid serial schedules (in this case, Schedule 1). Schedule 3 is
not serializable, however, because J1 (and thus B) observes the in-
termediate value of A.size written by I1 (and thus written by A).
Consequently, Schedule 3 is prohibited with flat or closed nesting.

To improve concurrency, a programmer may wish to allow cer-
tain schedules that are not serializable, but which nevertheless are
consistent from the programmer’s point of view. A system that
can admit nonserializable schedules imposes fewer restrictions on
transactions, possibly allowing transactions to commit when they
would have otherwise aborted. For example, the programmer may



A

1 xbegin

2 read a

3 xbegin_open

4 read i

5 i i + 1

6 write i

7 xend_open

18 read b

19 c a + b

20 write c

21 xend

B

8 xbegin

9 read i

10 i i + 1

11 write i

12 xend

13 xbegin

14 read i

15 b i

16 write b

17 xend

C

A1

I1

A2

FIGURE 3: A program execution permitted by open nesting. Transaction A
does not appear to execute atomically, because it can read an “inconsistent”
value for b if B and C interleave between the execution of A1 and A2.

wish to admit Schedule3, even though the I’s and J ′s happen to
access the same size field. Conceptually, the programmer may not
care in which order the table inserts occur. For example, if I1, I2,
J1, and J2 are open transactions, then Schedule 3 is a valid execu-
tion.

Once a TM system with open nesting admits some desirable
nonserializable schedules, however, the proverbial cat is out of the
bag. As far as the memory semantics are concerned, it seems dif-
ficult to prohibit additional program behaviors that might arguably
be undesirable. Figure 3 shows a program execution allowed by the
open-nesting implementations of [16,21]. In this example, it is pos-
sible for all transactions A, I1, B, and C to commit, even though A
does not appear to execute atomically. Transaction A reads incon-
sistent data, since C writes to b between A’s reads of a and b. Thus,
the “snapshot” of the world seen by A when it begins is different
from its snapshot part way through its computation.

Our final example illustrates how open nesting can admit sub-
tle program behaviors that affect the composability of transactions.
Consider the program in Figure 4 which describes an implementa-
tion of a simple table library that (arguably) contains an subtle flaw.
The program includes a Contains(x) method to complement the
Insert(x,y) method used in Figure 2. Since the size field is the
primary source of transaction conflicts between table operations,
the Contains method “optimizes” its search method by checking
size within an open transaction.

Using TM with open nesting, in any sequence of Contains or
Insert operations, each individual operation still appears atomic.
Thus, in transaction A in Figure 4, we might expect that if the
Contains operation returns false, then the key can be safely in-
serted into the hash table without adding duplicates.

Unfortunately, one cannot correctly call both Contains and
Insert inside a transaction T and still have T appear to be atomic.
Indeed, the open-nesting implementation described in [16] allows
the entire transaction B to execute between Lines 2 and 7 of trans-
action A. Thus, this code shows that composability of transactions
is not preserved. When using open nesting, simply ensuring the
atomicity of individual transactions is not sufficient to guarantee
composability.

Admittedly, the examples in Figures 3 and 4 are somewhat
contrived. In particular, unlike in Figure 2, transactions in Figures
3 and 4 cannot be partitioned into clear abstraction levels, with
each level accessing disjoint memory locations, as Moss suggests
may be necessary [19]. These examples suggest, however, that for
open nesting, the distinction between the abstract program model
and the low-level memory model is much more significant than for
closed or flat nesting. Thus, these examples motivate the need to
understand memory models for open nesting so that at the very least

FIGURE 4: Flawed implementation of a table data structure with two meth-
ods, Contains(x) and Insert(x,y). Although each method individually
appears atomic, transactions A and B, which call those methods, may not
appear atomic. In particular, the ordering 〈1, 2, 3, 4, 5, 6, 7, 8〉 is allowed.

we can understand what properties should be enforced by higher-
level mechanisms.

3. MEMORY MODELS
This section defines our framework for modeling transactional
computations. Our model is inspired by Frigo’s computation-
centric modeling of a program execution as a computation dag
(directed acyclic graph) [6] with an “observer function” which es-
sentially tells what write operation is “seen” by a read. Our model
uses a “computation tree” to model both the computation dag and
the nesting structure of transactions. We first define computation
trees without transactions, then we show how transactions can be
specified, and finally, we define Lamport’s classical sequential-
consistency model [14].

Formal models for systems with nested transactions appear as
early as the work by Beeri, Bernstein, and Goodman [1]. Recent
papers providing operational semantics for open transactions in-
clude [15, 16, 21]. Although operational semantics of a TM can
provide an abstract basis for implementation, inferring emergent
properties of the system from these semantics can be quite diffi-
cult.

Our computation-centric model focuses on an a posteriori anal-
ysis of a program execution. After a program completes, we assume
the execution has generated a trace which is abstractly modeled as a
pair (C, Φ), where C is a “computation tree” describing the mem-
ory operations performed and transactions executed, and Φ is an
“observer function” describing the behavior of read and write op-
erations. We shall define C and Φ more precisely below. We define
U to be the set of all possible traces (C, Φ).

Within this framework, we define a memory model as follows:
DEFINITION 1. A memory model is a subset ∆ ⊆ U .
That is, ∆ represents all executions that “obey” the memory model.

Computation trees without transactions
The computation tree C summarizes the information about the
control structure of a program together with the structure of nested
transactions. We first describe how a computation tree models the
structure of a program execution in the special case where the
computation has no transactions.

Structurally, a computation tree C is an ordered tree with
two types of nodes: memory-operation nodes memOps(C) at the
leaves, and control nodes spNodes(C) as internal nodes. Let
nodes(C) = memOps(C) ∪ spNodes(C) denote the set of all
nodes of C.



We define M to be the set of all memory locations. Each leaf
node u ∈ memOps(C) represents a single memory operation on a
memory location ` ∈ M. We say that node u satisfies the read
predicate R(u, `) if u reads from location `. Similarly, u satisfies
the write predicate W (u, `) if u writes to `.

The internal nodes spNodes(C) of C represent the parallel
control structure of the computation. In the manner of [5], each
internal node X ∈ spNodes(C) is labeled as either an S-node or
P -node to capture fork/join parallelism. All the children of an S-
node are executed in series from left to right, while the children of
an P -node can be executed in parallel.

Several structural notations will help. Denote the root of a
computation tree C as root(C). For any internal node X ∈
spNodes(C), let children(X) denote the ordered set of X’s
children. For any tree node X ∈ nodes(C), let ances(X) denote
the set of all ancestors of X in C, and let desc(X) denote the set
of all X’s descendants. Denote the set of proper ancestors (and de-
scendants) of X by pAnces(X) (and pDesc(X)). Denote the least
common ancestor of two nodes X1, X2 ∈ C by LCA(X1, X2).

Since every subtree of a computation tree is also a computation
tree, we shall sometimes overload notation and use a subtree and
its root interchangeably. For example, if X = root(C), then
memOps(X) refers to all the leaf nodes in C, and children(C)
refers to the children of X .

Computation dags
A computation tree C defines a computation dag G(C) =
(V (C), E(C)) constructed as follows and illustrated in Figure 5.
For every internal node X ∈ spNodes(C), we create and place
two corresponding vertices, begin(X) and end(X) in V (C).
For every leaf node x ∈ memOps(C), we place the single node
x in V (C). For convenience, for all x ∈ memOps(C), we define
begin(x) = end(x) = x.

Formally, the vertices of the graph V (C) are defined as follows:

V (C) = memOps(C) ∪

0

@

[

X∈spNodes(C)

{begin(X), end(X)}

1

A .

For any computation tree rooted at node X , we define the edges
E(X) for the graph G(X) recursively:
Base case: If X ∈ memOps(C), then define E(X) = ∅.
Inductive case: If X ∈ spNodes(C), let children(X) =
{Y1, Y2, . . . , Yk}. If X is an S-node, then

E(X) = {(begin(X), begin(Y1)) , (end(Yk), end(X))}

∪

 

k−1
[

i=1

{(end(Yi), begin(Yi+1))}

!

∪

 

k
[

i=1

E(Yi)

!

.

If X is a P -node, then

E(X) =

 

k
[

i=1

E(Yi)

!

∪

 

k
[

i=1

{(begin(X), begin(Yi)) , (end(Yi), end(X))}

!

.

We shall find it convenient to overload the LCA function, and
define the least common ancestor of two graph vertices u, v ∈
V (C) as the LCA of the corresponding tree nodes.

The computation dag G(C) is a convenient way of representing
the flow of the program execution specified by C. Unfortunately,
our specification of computation dags via computation trees lim-
its the set of computation dags that can be described. In particu-
lar, computation trees can only specify “series-parallel” dags [5].
We might have founded our framework for transactional-memory
semantics on more-general computational dags, but the added gen-

FIGURE 5: A sample (a) computation tree C and (b) the corresponding
dag G(C) for a computation that has closed and open transactions. In this
example, T2 is open-nested inside T1 and T8 is open-nested inside T7.
The Xi’s are tree nodes that are not marked as transactions. We have not
specified whether each transaction is committed or aborted.

erality would not affect any of our theorems, and it would have
greatly complicated definitions and proofs.

We shall find it useful to define some graph notations. For a
graph G = (V, E) and vertices u, v ∈ V , we write u �G v if there
exists a path from u to v in G, and we write u ≺G v if u 6= v and
u �G v. For any dag G = (V, E), a topological sort S of G is an
ordering of all the vertices of V such that for all u, v ∈ V , we have
u ≺G v implies that u <S v (u comes before v in S). For a dag G,
we define topo(G) as the set of all topological sorts of G.

Transactional computation trees
We can specify transactions in a computation tree C by marking
internal tree nodes. Marking a node T ∈ spNodes(C) as a transac-
tion corresponds to defining a transaction T that contains the com-
putation subdag G(T ), where begin(T ) is the start of the transac-
tion and end(T ) is the end of the transaction.2 Formally, the com-
putation tree C specifies a set xactions(C) ⊆ spNodes(C) of in-
ternal nodes as transactions, and a set open(C) ⊆ xactions(C)
of open transactions. The set of closed transactions is closed(C) =
xactions(C) − open(C). In Figure 5, nodes T1 through T8 are
transactions, and X1 through X5 are ordinary nodes. Define a
transaction T ∈ xactions(C) as nested inside another trans-
action T ′ ∈ xactions(C) if T ′ ∈ ances(T ). Two transactions T
and T ′ are independent if neither is nested in the other.

The computation tree C also specifies a set committed(C) ⊆
xactions(C) of committed transactions. Similarly, transactions
belonging to aborted(X) = xactions(X) − committed(X)
are aborted transactions. For a transaction T ∈ xactions(C), the
content of T is the set of all operations that belong to T but not to

2 We assume that every leaf x ∈ memOps(C) is its own committed, closed
transaction, but we do not mark leaves as a transactions in our model.



any of T ’s open or aborted subtransactions. Formally, we define

content(T ) = V (T ) −
[

Z∈open(T )−{T}

V (Z) −
[

Z∈aborted(T )−{T}

V (Z) .

We always have content(T ) ⊆ V (T ), and equality holds when
T ’s subtree contains no open or aborted transactions.3 For exam-
ple, in Figure 5, memory operations u1 and u2 do not belong to
content(T1), because T2 is an open transaction nested within T1.
As another example from the figure, we have v2 ∈ content(T4)
if and only if T5 ∈ committed(C). We also define the holders of
a vertex v ∈ V (C) to be the set

h(v) = {T ∈ xactions(C) : u ∈ content(T )}

of all transactions that contain v.

Hidden vertices
Basic transactional semantics dictate that committed transactions
should not “see” values written by vertices belonging to the content
of an aborted transaction. One may argue whether one aborted
transaction should be able to see values written by a another aborted
transaction. In this paper, we take the position that up to the point
that a transaction aborts, it should be “well behaved” and act as
if it would commit. The well-behavedness of aborted transactions
is implicitly assumed by the various proposals for open nesting
[16, 19, 21]. Thus, one aborted transaction should not see values
written by other aborted transactions, although the values written
by a vertex within an aborted transaction may be seen by other
vertices within the same transaction.

The following definition describes which vertices are hidden
from which other vertices.
DEFINITION 2. For any two vertices u, v ∈ V (C), let X =
LCA(u, v). We say that u is hidden from v, denoted uHv, if

u ∈
[

Y ∈aborted(X)−{X}

content(Y ) .

In Figure 5, we have v2Hz2 if and only if at least one of T1, T4,
or T5 belongs to aborted(C). Since T2 is an open transaction,
however, we never have u1Hz2 if T2, T3 ∈ committed(C), even
if T1 ∈ aborted(C). If we have T1, T4 ∈ committed(C) and
T7 ∈ aborted(C), then we also have y1Hv1, but not v1Hy1, and
thus the hidden relation H is not symmetric.

Observer functions
Instead of specifying the value that a vertex v ∈ memOps(C)
reads from or writes to a memory location ` ∈ M, we follow
Frigo’s computation-centric framework [6,7] which abstracts away
the values entirely. An observer function4 Φ(v) : memOps(C) →
memOps(C) ∪ {begin(C)} tells us which vertex u ∈ memOps(C)
writes the value of ` that v sees. For a given computation tree C,
if v ∈ memOps(C) accesses location ` ∈ M, then a well-formed
observer function must satisfy ¬(v ≺G(C) Φ(v)) and W (Φ(v), `).
In other words, v can not observe a value from a vertex that comes

3 In this paper, we consider only global open nesting, meaning that if T ′

is open-nested in T , then it is open with respect to every transaction in
ances(T ). Alternatively, one might specify T ′ as open-nested with respect
to an ancestor transaction T . In this case, the operations of T ′ are excluded
from all transactions T ′′ on the path from T ′ up to and including T , but
included in transactions that are proper ancestors of T . Intuitively, if T ′ is
open-nested with respect to T , then T ′ commits its changes to T ’s context
rather than directly to memory. Global open-nesting is then the special case
when all open transactions are open with respect to root(C).
4 Our definition of Φ is similar to Frigo’s [6], but with a salient difference,
namely, Frigo’s observer function gives values for all memory locations,
not just for the location that a vertex accesses. Moreover, if W (v, `), Frigo
defines Φ(v) = v, whereas we define Φ(v) = u for some u 6= v.

after v in the computation dag, and v can only observe a vertex
if it actually writes to location `. To define Φ on all vertices that
access memory locations, we assume that the vertex begin(C)
writes initial values to all of memory.

Together, a computation tree C and an observer function Φ
defined on memOps(C) specify a trace.

Sequential consistency without transactions
We now turn to using our framework to define Lamport’s clas-
sic model of sequential consistency [14] in our transactional
model. We first mimic Frigo’s definition [6] to define a sequential-
consistency memory model for computations without transactions.
We then extend the definition to include transactions as well.

Definition 1 states that a memory model ∆ is a subset of U ,
the universe of all possible traces. Sometimes, we wish to restrict
our attention to computations with only closed and/or committed
transactions. Thus, we define the following subsets of U :

U0 = {(C, Φ) ∈ U : xactions(C) = ∅} ,

Uclo = {(C, Φ) ∈ U : open(C) = ∅} ,

Ucom = {(C, Φ) ∈ U : aborted(C) = ∅} ,

Uc&c = Uclo ∩ Ucom .

In other words, U0 contains traces (whose computations) include
no transactions, Uclo contains traces that include only closed trans-
actions, Ucom contains traces that include only committed transac-
tions, and Uc&c contains traces that include only committed and
closed transactions.

We now follow Frigo [6] in defining a “last-writer” observer
function.
DEFINITION 3. Consider a trace (C, Φ) ∈ U0 and a topological
sort S ∈ topo(G(C)). For all v ∈ memOps(C) such that R(v, `)∨
W (v, `), the last writer of v according to S , denoted LS(v), is
the unique u ∈ memOps(C) ∪ {begin(C)} that satisfies three
conditions:
1. W (u, `),
2. u <S v, and
3. ¬∃w s.t W (w, `) ∧ (u <S w <S v).

In other words, if vertex v accesses (reads or writes) location `, the
last writer of v is the last vertex u before v in the order S that writes
to location `.

We can use the last-writer function to define sequential consis-
tency for computations containing no transactions.
DEFINITION 4. Sequential consistency for computations without
transactions is the memory model

SC = {(C, Φ) ∈ U0 : ∃S ∈ topo(G(C)) s.t. Φ = LS} .

By this definition, a trace (C,Φ) ∈ U0 is sequentially consistent if
there exists a topological sort S of G(C) such that the observer
function Φ satisfies Φ(v) = LS(v) for all memory operations
v ∈ memOps(C). Definition 4 captures Lamport’s notion [14] of
sequential consistency: there exists a single order on all operations
that explains the execution of program. Figure 6 shows a sample
computation dag G(C) and two possible observer functions, Φ1

and Φ2. The trace (C,Φ1) is sequentially consistent, but (C, Φ2)
is not.

Transactional sequential consistency
We now extend the definition of sequential consistency to account
for transactions. Our definition does not attempt to model atomicity,
however — that is the topic of Section 4. It simply models that
a transaction outside an aborted transaction cannot “see” values
written by the aborted transaction. Moreover, our definition makes
the assumption that an aborted computation is consistent up to the
point that it aborts.



FIGURE 6: Examples of sequential consistency for a compu-
tation C with only committed transactions. Shown is the com-
putation dag G(C). For the observer function Φ1 given by
〈Φ1(1) = 0,Φ1(2) = 1, Φ1(3) = 0,Φ1(4) = 0, Φ1(5) = 2〉, the
trace (C, Φ1) is sequentially consistent, with the topological sort
S = 〈0, 1, 2, 3, 4, 5〉 of G(C). For the observer function Φ2 given by
〈Φ2(1) = 0,Φ2(2) = 1, Φ2(3) = 0,Φ2(4) = 0, Φ2(5) = 1〉, however,
the trace (C, Φ2) is not sequentially consistent, because there is no
topological sort consistent with the last-writer function.

We first redefine the last-writer function to take aborted trans-
actions into account. Intuitively, another transaction should not be
able to “see” the values of an aborted transaction.
DEFINITION 5. Consider a trace (C,Φ) ∈ U and a topological
sort S ∈ topo(G(C)). For all v ∈ memOps(C) such that R(v, `)∨
W (v, `), the transactional last writer of v according to S , denoted
XS(v), is the unique u ∈ memOps(C)∪ {begin(C)} that satisfies
four conditions:
1. W (u, `),
2. u <S v,
3. ¬(uHv), and
4. ∀w (W (w, `) ∧ (u <S w <S v))⇒ wHv.

The first two conditions for the transactional last-writer function
X are the same as for the last-writer function L. The third and
fourth conditions of Definition 5 parallel the third condition of
Definition 3, except that now v ignores vertices u or w that write to
` but which are hidden from v.

Sequential consistency can now be defined for computations
that include transactions. The definition is exactly like Definition 4,
except that the last-writer function LS is replaced by the transac-
tional last-writer function XS .
DEFINITION 6. Transactional sequential consistency is the mem-
ory model

TSC = {(C, Φ) ∈ U : ∃S ∈ topo(G(C)) s.t. Φ = XS} .

4. TRANSACTIONAL MEMORY MODELS
In this section, we use our framework to define three different trans-
actional memory models: serializability, race freedom, and prefix-
race freedom. The intuition behind all three memory models is to
find a single linear order S on all operations that both “explains” all
memory operations and provides guarantees about every transac-
tion. Serializability requires that all transactions appear as contigu-
ous in S . Race freedom weakens serializability by allowing trans-
actions that do not “conflict” to interleave their memory operations
in S . Finally, prefix-race freedom weakens race freedom by only
prohibiting conflicts with the prefix of a transaction.

Serializability
Serializability [22] is the standard correctness condition for trans-
actional systems.
DEFINITION 7. The serializability transactional memory model,
ST , is the set of all traces (C, Φ) ∈ U for which there exists a
topological sort S ∈ topo(G(C)) that satisfies two conditions:
1. Φ = XS , and

2. ∀T ∈ xactions(C) and ∀v ∈ V (C), we have begin(T ) ≤S

v ≤S end(T ) implies v ∈ V (T )).

Informally, an execution belongs to ST if there exists an ordering
on all operations S such that the observer function Φ is the trans-
actional last writer XS , and for every transaction T , the vertices in
V (T ) appear contiguous in S .

Race freedom
Our definition of race freedom is motivated by the observation that
actual TM implementations allow independent transactions to in-
terleave their executions provided that one transaction does not try
to write to a memory location accessed by the other transaction.
Normally, with only closed-nested transactions and ignoring oper-
ations from aborted transactions, we expect to be able to rearrange
any interleaved execution order allowed by race freedom into an
equivalent serializable order. As we shall see in Section 5, the two
models are indeed equivalent for computations having only closed
and committed transactions. With aborted and open transactions in
the model, however, we shall discover that the models are distinct.

To define race freedom, we first describe what it means to have
a transactional race between a memory operation and a transaction
with respect to a topological sort of the computation dag.
DEFINITION 8. Let C be a computation tree, and suppose that
S ∈ topo(G(C)) is a topological sort of G(C). A (transactional)
race with respect to S occurs between v ∈ V (C) and T ∈
xactions(C), denoted by the predicate RACES(v, T ), if v /∈
V (T ) and there exists a w ∈ content(T ) satisfying the following
conditions:
1. ¬ (vHw),
2. ∃` ∈ M s.t. (R(v, `) ∧ W (w, `)) ∨ (W (v, `) ∧ R(w, `)) ∨

(W (v, `) ∧W (w, `)), and
3. begin(T ) ≤S v ≤S end(T ) .

The notion of a race is easier to understand when all transactions
are committed, in which case no vertices are hidden from each
other. Intuitively, a race occurs between transaction T and a ver-
tex v /∈ V (T ) appearingbetween begin(T ) and end(T ) in S if
v “conflicts” with some vertex u ∈ content(T ), where by “con-
flicts,” we mean that v writes to a location that u reads or writes, or
vice versa.

We can now define race freedom.
DEFINITION 9. The race-free transactional memory model RFT

is the set of all traces (C, Φ) ∈ U for which there exists a topolog-
ical sort S ∈ topo(G(C)) satisfying two conditions:
1. Φ = XS , and
2. ∀v ∈ V (C) and ∀T ∈ xactions(C), ¬RACES(v, T ) .

The first condition of race freedom is the same as for serializability,
that the observer function is the transactional last writer. The sec-
ond condition allows an operation v to appear between begin(T )
and end(T ) in S , but only provided no race between v and T exists.

Prefix-race freedom
The notion of a prefix-race is motivated by the operational seman-
tics of TM systems. As two transactions T and T ′ execute, if T ′

discovers a memory-access conflict between a vertex v ∈ T ′ and
T , then the conflict must be with a vertex in T that has already exe-
cuted, that is, the prefix of T that executes before v. For prefix-race
freedom, no such conflicts may occur.
DEFINITION 10. Let C be a computation tree, and let S ∈
topo(G(C)) be a topological sort of G(C). A (transactional)
prefix-race with respect to S occurs between v ∈ V (C) and
T ∈ xactions(C), denoted by the predicate PRACES(v, T ), if
v /∈ V (T ) and there exists a w ∈ content(T ) satisfying the
following conditions:
1. ¬(vHw)



2. ∃` ∈ M s.t. (R(v, `) ∧ W (w, `)) ∨ (W (v, `) ∧ R(w, `)) ∨
(W (v, `) ∧W (w, `)).

3. begin(T ) ≤S w <S v ≤S end(T ) .

Thus, this definition is identical to Definition 8, except that the
potential conflicting vertex w must occur before v in S .

The notion of a prefix-race gives rise to an corresponding mem-
ory model in which prefix-races are absent.
DEFINITION 11. The prefix-race-free transactional memory mod-
el PRFT is the set of all traces (C,Φ) ∈ U for which there exists
a topological sort S ∈ topo(G(C)) satisfying two conditions:
1. Φ = XS , and
2. ∀v ∈ V (C) and ∀T ∈ xactions(C), ¬PRACES(v, T ) .

Thus, prefix-race freedom describes a weaker model than race
freedom, where a vertex v is only guaranteed to not to conflict
with the vertices of transaction T that appear before v in S . If a
“nontransactional” leaf node v ∈ memOps(C) runs in parallel with
a transaction T , all of Definitions 7, 9, and 11 check whether v
interleaves within T ’s execution. Thus, these models can be thought
of as guaranteeing “strong atomicity” in the parlance of Blundell,
Lewis, and Martin [2]. In Scott’s model [24], RACES(v, T ) and
PRACES(v, T ) can be viewed as particular “conflict functions.”

Relationships among the models
The following theorem shows that the memory models as presented
are progressively weaker.
THEOREM 1. ST ⊆ RFT ⊆ PRFT .

PROOF. Follows directly from Definitions 7, 9, and 11.

For computations with only closed and committed transactions,
prefix-race freedom and serializability are equivalent, as we shall
see in Section 5. When open and aborted transactions are consid-
ered, all three models are distinct.

5. DISTINCTNESS OF THE MODELS
In this section, we study the memory models of serializability,
prefix-race freedom, and race freedom. Specifically, we show that
for computations containing only committed and closed transac-
tions, all three models are equivalent. We also demonstrate that
when aborted and/or open transactions are allowed, all three mod-
els are distinct.

Dependency graphs
Before addressing the distinctness of the memory models directly,
we first present an alternative characterization of sequential con-
sistency for the special case of computations with only committed
transactions. The idea of a “dependency” graph is to add edges to
the computation dag to reflect the dependencies imposed by the
observer function.
DEFINITION 12. The set of dependency edges of a trace (C, Φ) ∈
Ucom is Ψd(C, Φ) = {(u, v) ∈ V (C)× V (C) : u = Φ(v)}, and
the set of antidependency edges is Ψa(C,Φ) = {(u, v) ∈ V (C)×
V (C) : (Φ(u) = Φ(v)) ∧ W (v, `)}. The dependency graph of
(C, Φ) is the graph DG(C, Φ) = (V, E), where V = V (C) and
E = E(C) ∪Ψd(C, Φ) ∪Ψa(C, Φ).
The sets Ψd and Ψa capture the usual notions of dependency
and antidependency edges from the study of compilers [13]. A
dependency edge (u, v) indicates that v observed the value written
by u. An antidependency edge (u, v) means that if both u and v
observe the same write to a location `, and if v performs a write,
then u must “come before” v.

The following lemma, presented without proof, shows that in
the universe of all traces with only committed transactions, a trace

FIGURE 7: Dependency graphs DG(C, Φ1) and DG(C, Φ2) for the traces
from Figure 6. Since (C, Φ1) ∈ SC , the graph DG(C, Φ1) is acyclic,
but since (G,Φ2) /∈ SC , the graph DG(C, Φ2) contains a cycle, namely
〈2, 3, 4, 5, 2〉.

(C, Φ) is sequentially consistent if and only if the dependency
graph DG(C, Φ) is acyclic.5

LEMMA 2. Suppose that (C, Φ) ∈ Ucom. Then, we have (C, Φ) ∈
SC if and only if the dependency graph DG(C, Φ) is acyclic.

Figure 7 shows the dependency graphs for the example traces
from Figure 6. Whereas the trace (C, Φ1) is sequentially consistent,
the trace (C, Φ2) is not. Equivalently by Lemma 2, the dependency
graph DG(C, Φ1) is acyclic, but the graph DG(C, Φ2) is not.

We can now prove the equivalence of serializability, race free-
dom, and prefix-race freedom when we consider only computations
with committed and closed transactions.
THEOREM 3. ST ∩ Uc&c = RFT ∩ Uc&c = PRFT ∩ Uc&c.

PROOF. Since Theorem 1 shows that ST ⊆ RFT ⊆ PRFT , it
suffices to prove that PRFT ∩ Uc&c ⊆ ST ∩ Uc&c.

We start by defining some terminology. For u, v ∈ V (C),
define the alternation count of u and v as

A(u, v) = |h(u)| + |h(v)| − 2 |h(LCA(u, v))| .

(The holders function h was defined in Section 3.) Thus, A(u, v)
counts the number of transactions T ∈ xactions(C) that contain
either u or v, but not both. For any topological sort S of G(C),
define the alternation count of S , denoted alt(S), as the sum of
all A(u, v) for consecutive u and v in S . Intuitively, alt(S) counts
the number of times we “switch” between transactions as we run
through S .

We prove by contradiction that for any trace (C, Φ) ∈ Uc&c,
we have (C, Φ) ∈ PRFT implies (C, Φ) ∈ SC . Suppose
that a trace (C, Φ) ∈ Uc&c exists that is prefix-race free but
not serializable. Consider any prefix-race-free topological sort
S ∈ topo(DG(C, Φ)) that has a minimum alternation count
alt(S) over all sorts in topo(DG(C, Φ)). By Lemma 2, S satisfies
the condition Φ = XS (the first condition for all three transactional
models).

Since (C, Φ) /∈ ST , some transaction T exists that is not
contiguous in S (and therefore violates the second condition in
Definition 7). Let T be such a transaction, and let v1 be the first
vertex such that v1 /∈ V (T ) and begin(T ) <S v <S end(T ).
Choose vertices t <S u1 ≤S u2 <S v1 ≤S v2 <S w1 <S w2,

5 One must extend the definition of an antidependency edge to prove
an analogous result when the computation C has aborted transactions.
Lemma 2 does not hold without the assumption that every write to a lo-
cation also performs a read.



FIGURE 8: Two topological sorts of a computation graph G(C) for a
hypothetical trace (C, Φ) which is prefix-race free, but not serializable.
Transaction T is not contiguous in the topological sort S in (a). One
can convert S into the topological sort S ′ in (b). Doing so reduces the
alternation count.

such that u1 = begin(T ) as shown in Figure 8(a). Define the sets
A1, A2, and A3 as follows:

A1 = {x ∈ V (T ) : u1 ≤S x ≤S u2} ,

A2 = {x ∈ V (C)− V (T ) : v1 ≤S x ≤S v2} , and

A3 = {x ∈ V (T ) : w1 ≤S x ≤S w2} .

Define two sets A1 = {x ∈ V (T ) : u1 ≤S x ≤S u2} and
A3 = {x ∈ V (T ) : w1 ≤S x ≤S w2} whose vertices all belong
to V (T ). Define A2 = {x ∈ V (C)− V (T ) : v1 ≤S x ≤S v2} as
the set interleaved between the contiguous fragments of T .

From S , we construct the new order S ′ shown in Figure 8(b) in
which the intervals A1 and A2 are interchanged. We shall show
that (1) S ′ ∈ topo(DG(C, Φ)) (and therefore Φ = XS′ ), (2)
S ′ is still a prefix-race-free topological sort of DG(C, Φ), and (3)
alt(S ′) < alt(S), thereby obtaining the contradiction that S is not
a prefix-race-free topological sort with minimum alternation count.

To prove these three facts, we shall use a “nonconflicting”
property: no pair of vertices y ∈ A1 and z ∈ A2 exist such that
y and z access the same memory location and one of them is a
write. Otherwise we have PRACES(z, T ) by definition because y ∈
content(T ), z 6∈ V (T ), and begin(T ) <S y <S z <S end(T ).
Thus, A1 and A2 do not perform “conflicting” accesses to memory.

To establish (1), that S ′ ∈ topo(DG(C, Φ)), we show that
for any y ∈ A1 and z ∈ A2, no edge (y, z) belongs to the
graph DG(C, Φ). If we have (y, z) ∈ Ψd(C, Φ) ∪ Ψa(C, Φ),
then y and z access the same memory location and one of those
accesses is a write, contradicting the nonconflicting property above.
Alternatively, if we have (y, z) ∈ E(C), then LCA(y, z) must be an
S-node with y to the left of z. Since z /∈ V (T ), we have LCA(T, z)
(= LCA(y, z)) is an S-node, and thus we have end(T ) ≺ z. Thus,
S was not a valid sort of DG(C,Φ), and (y, z) /∈ E(C).

To establish (2), that S ′ is prefix-race free, we show that swap-
ping A1 and A2 cannot introduce any prefix races that weren’t al-
ready there in S . Suppose that there is a prefix-race in S ′. Then,
there must exist a v ∈ V (C) and a transaction T1 ∈ xactions(C)
satisfying all three conditions of Definition 10 for S ′. Let w ∈
content(T1) be the candidate vertex that satisfies the three con-
ditions. In particular, the third condition gives us begin(T1) <S′

w <S′ v <S′ end(T1). We consider two cases, each of which
leads to a contradiction.

In the first case, suppose that v <S w. Since v and w swap
in the two orders, we must have v ∈ A1 and w ∈ A2. But, then
they conflict by the second condition of Definition 10, which cannot
occur because of the nonconflicting property above.

In the second case, suppose that w <S v. Since there is no
prefix-race in S , the only situation in which this can happen is
when v falls entirely outside transaction T1 in S , which is to say

that begin(T1) <S w <S end(T1) <S v. Since end(T1) and
v swapped, we must have end(T1) ∈ A1 and v ∈ A2. Since
A1 ⊆ content(T ), it follows that end(T1) ∈ content(T ), and
thus T1 must be nested within T . Consequently, we have w ∈ A1,
which cannot occur because of the nonconflicting property.

To establish (3), that alt(S ′) < alt(S), let us examine the
difference δ = alt(S) − alt(S ′) in the alternation counts of S
and S ′. The only terms that contribute to δ are at the boundaries of
A1 and A2. We have that

δ = A(t, u1) + A(u2, v1) + A(v2, w1)

−A(t, v1)−A(v2, u1)−A(u2, w1)

= 2 (|h(LCA(t, v1))|+ |h(LCA(v2, u1))|

+|h(LCA(u2, w1))| − |h(LCA(t, u1))|

−|h(LCA(u2, v1))| − |h(LCA(v2, w1))|) .

By construction, we know that {u1, u2, w1, w2} ⊆ V (T ),
whereas none of t, v1, and v2 have T as an ancestor. For any
y ∈ V (T ) and z /∈ V (T ), we have LCA(y, z) = LCA(T, z), which
yields

δ = 2 (|h(LCA(t, v1))| + |h(LCA(u2, w1))|

− |h(LCA(t, T ))| − |h(LCA(T, v1))|) .

Since LCA(u2, w1) ∈ desc(T ), we know h(LCA(u2, w1)) ⊇
h(T ) and |h(LCA(u2, w1))| ≥ |h(T )|. Since t, v1 /∈ V (T ), we
have h(LCA(T, t)) ⊂ h(T ) and h(LCA(T, v1)) ⊂ h(T ).6 Thus,

|h(LCA(u2, w1))| > max {|h(LCA(T, t))|, |h(LCA(T, v1))|} ,

and a similar algebra yields

|h(LCA(t, v1))| ≥ min {|h(LCA(T, t))|, |h(LCA(T, v1))|} .

Consequently, we conclude that δ = alt(S)− alt(S ′) > 0.

Aborted transactions
We now consider computations with aborted transactions. We are
unaware of any prior work on transactional semantics that explic-
itly models aborted transactions. The reason is simple: when com-
putations have only closed transactions, aborted transactions do not
affect a program’s output. Since TM systems do not allow commit-
ted transactions to observe data directly from aborted transactions,
in most cases, vertices from aborted transactions are free to observe
arbitrary values.7

In a system with open nesting, however, we must include
aborted transactions in the memory model if we wish to under-
stand what happens when an open transaction commits but its par-
ent aborts. We contend that a reasonable transactional consistency
model for open transactions must not only model aborted transac-
tions, but it should also guarantee that an aborted transaction T is
consistent up to the point it aborts. Otherwise, any open subtrans-
actions within T may obtain inconsistent values and still commit.

The next theorem shows that when aborted transactions are
modeled, the three transactional memory models are distinct.
THEOREM 4. ST ∩ Uclo ( RFT ∩ Uclo ( PRFT ∩ Uclo .

PROOF. Since Theorem 1 shows that ST ⊆ RFT ⊆ PRFT ,
we need only show that ST ∩ Uclo 6= RFT ∩ Uclo and that
RFT ∩ Uclo 6= PRFT ∩ Uclo.

We first exhibit a computation that is race free but not se-
rializable. Consider the computation dag G shown in Figure 9.
Let (C1, Φ1) be the trace that generates G, where transactions

6 In this case, we have a proper subset because LCA(T, t), LCA(T, v1) ∈
pAnces(T ) and we exclude T .
7 This intuition is not strictly true in a model that does not analyze an
execution a posteriori, since control flow can be affected by inconsistent
data and prevent a program from terminating.



FIGURE 9: An example distinguishing the memory models. The transac-
tions T2 and T3 are closed-nested inside of T1. If transaction T4 commits,
then this computation is not serializable, because T4 must interleave inside
of T1. If both transactions T2 and T3 abort, then the execution is race free.
If T2 aborts and T3 commits, then this execution is not race free, but it is
prefix-race free.

T2 and T3 abort but transaction T4 commits. We shall show that
(C1, Φ1) ∈ RFT , but (C1, Φ1) /∈ ST .

If transaction T4 commits, then for any topological sort S sat-
isfying XS = Φ, we must have 0 <S 3 <S 6 <S 9. Thus, T1

cannot be contiguous within S , implying that (C1, Φ1) /∈ ST .
We can show that (C1, Φ1) is race free, however. Let S be

〈0, 1, . . . , 12〉. One can verify that Φ1 is indeed the transactional
last-writer function according to S (since T4 commits, ¬(6H9),
and thus Φ1(9) = XS(9)). The only transactions that might violate
the second condition of Definition 9 are transactions that do not
appear contiguous in S , in this case, only T1. The only candidate
vertex v for RACES(v, T1) is v = 6. Since T2 is an aborted sub-
transaction of T1, however, neither 3 or 9 belong to content(T1).
Thus, picking S = 〈0, 1, . . . , 12〉 ensures that T1 causes no races.

We next exhibit a computation that is prefix-race free but not
race free. Consider (C2, Φ2) as the trace generating the same com-
putation dag G from Figure 9, but this time with T2 aborted and T3

and T4 committed. We shall show that (C2, Φ2) /∈ RFT , but that
(C2, Φ2) ∈ PRFT .

To show that (C2, Φ2) is not race free, observe that in any
topological sort S ∈ topo(G) for which Φ = XS , we must have
RACES(6, T1), since begin(T1) <S 6 <S end(T1), vertices 6
and 9 access the same memory location x, and vertex 6 is a write,
and ¬(6H9). The order S = 〈0, 1, . . . , 12〉 is prefix-race free,
however, since 9 ≮S 6. The only transactions that might violate
the second condition of prefix-race freedom are those that do not
appear contiguous in S , in this case, only T1. When we look at
the vertex v = 6 that falls between begin(T1) and end(T1), we
only look at the prefix of T1 before v (vertices 1 through 4) for a
prefix-race conflict, and there is none.

The proof holds whether T1 commits or aborts.

Open transactions
We now study computations with open transactions but where all
transactions commit. In this context, the three models ST , RFT ,
and PRFT are distinct.
THEOREM 5. ST ∩ Ucom ( RFT ∩ Ucom ( PRFT ∩ Ucom .

PROOF. Since Theorem 1 shows that ST ⊆ RFT ⊆ PRFT ,
we need only show that ST ∩ Ucom 6= RFT ∩ Ucom and that
RFT ∩ Ucom 6= PRFT ∩ Ucom. The trace in Figure 10 shows
a (C1, Φ1) /∈ ST , but (C1, Φ1) ∈ RFT . Figure 11 shows
(C2, Φ2) /∈ RFT , but (C2, Φ2) ∈ PRFT .

Trade-offs among the models
The three transactional memory models of serializability, race free-
dom, and prefix-race freedom exhibit different behaviors in TM
systems that have open transactions.

With serializability, for any trace (C, Φ) ∈ ST , we can
“change” the trace to convert any open transaction T ′ nested in-

FIGURE 10: When all transactions commit, this computation dag G(C1)
with observer edges Φ1 is not serializable, but is race free. This trace
represents Schedule 3 from the program in Figure 2.

FIGURE 11: When all transactions commit, this computation dag G(C2)
with observer edges Φ2 is prefix-race free, but not race free, because a race
exists between vertices 13 and 15.

side a committed transaction T from open to closed while still
keeping the same Φ, and still be serializable. Thus, in some sense,
with serializability, open nesting only differs from closed nesting if
an open transaction commits, but its parent aborts.

Race-freedom appears to be more difficult to implement than
either serializability or prefix race-freedom. For example, consider
the example from Figures 3 and 11. After an transaction I1 (open-
nested in A) commits, any number of other transactions (B and
C) can read values written by that open transaction and commit
their changes, all before the original outer transaction A completes.
To support race freedom, it seems we may need to maintain the
footprints of B and C even after they have committed to detect a
future conflict with A.

6. THE ON OPERATIONAL MODEL
This section presents an abstract operational model for open nest-
ing, called the ON model, which is a generalization of the Stanford
model [16]. We prove that the ON model implements at least prefix
race-freedom but is strictly weaker than race freedom.

We begin our description of the ON model by defining some
notation. For any set S ⊆ nodes(C) of tree nodes, let lowest(S)
be the node X ∈ S such that S ⊆ ances(X), if such a X exists.
Otherwise, define lowest(S) = null. Thus, if all nodes in S all
fall on one root-to-leaf path in C, then lowest(S) is the lowest
node on that path. Define highest(S) in a similar fashion. For any
T ∈ xactions(C), define xparent(T ) = lowest(ances(T ) ∩
xactions(C)), that is, xparent(T ) is the transactional parent
of T . For any X ∈ nodes(C), let xAnces(X) = ances(X) ∩
xactions(C) be the set of transactional ancestors of X .

Abstractly, we shall view the ON model for open nesting as
a nondeterministic state machine ON that constructs a sequence
of traces. The initial trace contains a computation tree consisting



of a single S-node root(C) ∈ spNodes(C) with associated sets
xactions(C) = {root(C)} and open(C) = committed(C) =
aborted(C) = ∅ and an empty observer function Φ. By assuming
that root(C) ∈ xactions(C), we simplify the description of the
model by treating the entire computation C as a global closed trans-
action in which other transactions are nested. The computation also
maintains an initially empty auxiliary set done(C) ⊆ nodes(C)
of nodes that have finished their execution. The computation tree
C and all these associated sets only grow during the execution.

At any time during the computation, a subset ready(C) of
S-nodes are designated as ready, meaning that they can issue a
program instruction, which include read, write, fork, join,
xbegin, xbegin open, and xend. The ON machine nondeter-
ministically chooses a ready S-node to issue an instruction, and
the machine processes the instruction which augments (C, Φ) by
adding nodes to the tree and to its associated sets. Unlike other
associated sets ready(C) may grow and shrink during execution.

We shall factor the description of the state machine ON by
describing the creation of the computation tree C and the observer
function Φ separately.

Creating the computation tree
How the computation tree C evolves depends on the instructions
that are issued nondeterministically. Let X be the S-node that
issues an instruction. The instructions are handled as follows:
• read from a location ` ∈ M: If the read causes a conflict

(more about conflicts when we describe the creation of the
observer function) with one or more transactions, abort8 the
deepest such transaction T by adding all transactions T ′ ∈
desc(T )∩xactions(T )−done(C) both to aborted(C) and
to done(C). Keep checking for and aborting conflicting trans-
actions T , deepest to shallowest, until no such conflicting trans-
actions exist. Then, create a new read node v ∈ memOps(C) as
the last child of the S-node X . Add v to done(C).

• write to a location ` ∈ M: Similar to read.
• fork: Create a new P -node Y ∈ nodes(C) as a child of X ,

and create two new S-nodes as children of Y . Add these two
children to ready(C), and remove X from ready(C).

• join: Test whether X’s sibling belongs to done(C). If yes,
then add X and then parent(X) to done(C). Remove X from
ready(C), and add parent(parent(X)) (the grandparent of
X which is an S-node) to ready(C). If no, then remove X
from ready(C), and add X to done(C).

• xbegin: Create a new S-node Y ∈ nodes(C) as the last child
of X . Add Y to xactions(C). Remove X from ready(C),
and add Y to ready(C).

• xbegin open: Similar to xbegin, but also add Y to open(C).
• xend: Test whether X ∈ xactions(C). If yes, remove X

from ready(C), and add parent(X) to ready(C). Add X
to done(C) and to committed(C). If no, error.

The ON machine maintains several invariants. All transactions are
S-nodes. Every P -node has an S-node as its parent and has exactly
two S-nodes as children. If an S-node is ready, none of its ancestors
are ready.

Creating the observer function
To create the observer function, the ON model maintains aux-
iliary state to keep track of how values are propagated among
transactions and global memory. Specifically, every transaction

8 The ON machine uses a “pessimistic” concurrency control mechanism
in that it immediately aborts a conflicting transaction T upon conflict.
Moreover, it always aborts T rather than its own transaction. One could
abort the transaction performing the read, but the model is simpler by
always aborting T and not providing a nondeterministic choice.

T ∈ xactions(C) maintains a readset R(T ) and a writeset
W(T ). The readset R(T ) is a set of pairs (`, v), where ` ∈ M
is a memory location and v ∈ memOps(C) is the memory oper-
ation that read from `, that is, we maintain the invariant R(v, `)
for all (`, v) ∈

S

T∈xactions(C) R(T ). The writeset W(T ) is sim-
ilarly defined. We initialize R(root(C)) = W(root(C)) =
{(`, begin(root(C))) : ` ∈M}.

The ON model maintains two invariants concerning readsets
and writesets. First, it maintains W(T ) ⊆ R(T ) for every transaction
T ∈ xactions(C), that is, a write to a location also counts as a
read to that location. Second, R(T ) and W(T ) each contain at most
one pair (`, v) for any location `. Because of this second invariant,
we employ the shorthand ` ∈ R(T ) to mean that there exists a node
u such that (`, u) ∈ R(T ), and similarly for W(T ). We also overload
the union operator to accommodate this assumption: if we write
R(T ) ← R(T ) ∪ {(`, u)}, then if there exists (`, u′) ∈ R(T ), we
mean to replace it with (`, u). Likewise, if u accesses a location `,
we employ the shorthand u ∈ R(T ) to mean that (`, u) ∈ R(T ),
and similarly for W(T ).

The state machine ON handles events as follows, where X is
the S-node that issues the instruction:
• read from location ` ∈M: If there exists a T ∈ xactions(C)
− done(C) − ances(X) such that ` ∈ W(T ), then a conflict
occurs. Let v be the read operation added as the last child of X .
Define S` = {T ∈ xactions(C) ∩ ances(v) : ` ∈ R(T )},
let T ′ = lowest(S`), and let (`, u) ∈ R(T ′). Add (`, u) to
R(T ), and set Φ(v) = u.

• write to a location ` ∈ M: Similar to read, but to check for
a conflict, test whether there exists a T ∈ xactions(C) −
done(C) − ances(X) such that ` ∈ R(T ). Find u in the
same way, and add (`, u) both to R(T ) and to W(T ), and set
Φ(v) = u.

• xbegin and xbegin open: Initialize R(Y ) = ∅ and W(Y ) = ∅.
• xend: If X ∈ closed(C), then add R(X) to R(xparent(X))

and add W(X) to W(xparent(X)). If X ∈ open(C), then
let Q = xAnces(T ). For any (`, u) ∈ W(T ), let α` =
{T ′ ∈ Q | ` ∈ R(T ′)}. For all such T ′ ∈ α`, R(T ′) ←
R(T ′) ∪ {(`, u)}. Similarly, let β` = {T ′ ∈ Q | ` ∈ W(T ′)}.
For all T ′ ∈ β`, W(T ′)← W(T ′) ∪ {(`, u)}.

• fork or join: No action.
The Stanford model [16] is similar to the ON model, except that

it only supports “linear” nesting (transactions can have no parallel
transactions within them) and the choice of which transaction to
abort is nondeterministic. Neither of these differences affects the
theorems that deal with the ON model, assuming they implement
their system with pessimistic concurrency control.

Prefix race-freedom of ON

We now prove that the ON model is prefix-race free with respect
to the natural topological sort S of G(C) created by the nonde-
terministic operation of the ON machine. Specifically, as the ON

model generates a trace (C, Φ), it creates tree nodes nodes(C) =
spNodes(C) ∪ memOps(C) and eventually marks these nodes as
“done” by placing them in done(C). We can view this process
as determining the topological sort S of G(C) as follows. When
a node X ∈ nodes is created, the vertex begin(X) ∈ V (C)
is appended to S . When a node is marked as done, the vertex
end(X) ∈ V (C) is appended to S . If the node X is a memory
operation, we have begin(X) = end(X) = X , and we view it as
being appended only once. It is straightforward to verify that S is
indeed a topological sort of G(C), and indeed of DG(C,Φ).

We begin with a definition of time in the ON model. If v ∈
V (C) is the tth element of S , we say that v occurs at time t,
and we write t = S(v). Thus, for all u, v ∈ V (C), we have



u ≤S v if and only if S(u) ≤ S(v). We can view the evolution
of (C, Φ) over time as a sequence (C(t), Φ(t)) for t = 0, 1, . . .,
where the operation that occurs at time t creates (C(t), Φ(t)) from
(C(t−1), Φ(t−1)). For convenience, however, we shall omit time
indices unless clarity demands it.

We define two time-sensitive sets. The set of active transactions
at any given time is active(C) = xactions(C) − done(C).
The spine of a memory location ` ∈ M at any given time is
spine(`) = {T ∈ active(C) : ` ∈ W(T )}.

We now state a structural lemma that describes invariants of the
computation tree C as it evolves.
LEMMA 6. The ON machine maintains the following invariants:
1. If T ∈ active(C), then we have xAnces(T ) ⊆ active(C).
2. If v ∈ W(T ), then v ∈ V (T ).
3. All transactions in spine(`) are on the same root to leaf path

in C, and hence the node lowest(spine(`)) exists.
4. If ` ∈ R(T ), where T ∈ active(C), then we have either

spine(`) ⊆ ances(T ) or T ∈ ances(lowest(spine(`))).
5. If (`, u) ∈ R(T ) for some T ∈ active(C), then (`, u) ∈

W(T ′), where T ′ = lowest(xAnces(T ) ∩ spine(`)).
6. Let (`, u) ∈ W(T1) and (`, v) ∈ W(T2), where T1, T2 ∈

spine(`). If T1 ∈ ances(T2), then u ≤S v.
7. Let (`, u) ∈ W(T ) and let u <S v such that W (v, `). Then, we

have v ∈ desc(T ).
PROOF. Induction on time.

The next three lemmas describe additional structure of the com-
putation tree.
LEMMA 7. For all T ∈ aborted(C) and T ′ ∈ active(C), if
v ∈ content(T ), then we have v /∈ W(T ′).

LEMMA 8. If v ∈ memOps(C) accesses ` ∈ M, then at timeS(v),
we have spine(`) ⊆ ances(v).

LEMMA 9. For all v ∈ V (C), T ∈ aborted(C), and w ∈
content(T ), if end(T ) <S v, then we have wHv.

The next lemma shows that a memory location written within
a transaction remains in the writeset of some active descendant of
the transaction.
LEMMA 10. Let w ∈ memOps(C) ∩ content(T ) be a memory
operation in a transaction T ∈ xactions(C), and suppose that
W (w, `) for some location ` ∈ M. Then, at all times t in the
range S(w) < t < S(end(T )), we have ` ∈ W(T ′) for some
T ′ ∈ desc(T ) ∩ active(T ).
PROOF. We proceed by induction on time. For the base case, at
timeS(w), location ` is added to W(xparent(w)), and xparent(w)
∈ desc(T )∩ active(T ). For the inductive step, let ` ∈ W(T ′) for
some T ′ ∈ desc(T ) ∩ active(T ). Once a location is added to a
transaction’s writeset, it is never removed until the transaction com-
mits or aborts. If T ′ = T , then we are done. Otherwise, we have
T ′ ∈ pDesc(T ) and by definition of content(T ), it follows that
T ′ /∈ open(C)∪ aborted(C). Therefore, at time S(end(T ′)), lo-
cation ` is added to W(xparent(T ′)), at which time xparent(T ′)
is an active descendant of T .

We can now prove that the ON model admits no prefix-races.
LEMMA 11. For all v ∈ memOps(C) and T ∈ xactions(C), we
have ¬PRACES(v, T ).
PROOF. Suppose for contradiction that PRACES(v, T ). Then, by
Definition 10, we have v /∈ V (T ) (or equivalently, T /∈ ances(v)),
and there exists a w ∈ content(T ) such that ¬(vHw) and
begin(T ) <S w <S v <S end(T ), where v and w access the
same location ` ∈ memOps(C) and one of those accesses is a write.

Consider the case when W (u, `). By Lemma 10, at time S(v)
we have ` ∈ W(T ′), where T ′ ∈ desc(T ). At time S(v), vertex v is

added to R(xparent(v)), and xparent(v) /∈ desc(T ′), because
otherwise v ∈ desc(T ′) ⊆ desc(T ). Therefore, at time S(v), we
have ` ∈ R(xparent(v)) and ` ∈ W(T ′), which violates Invariant 4
in Lemma 6.

The case when R(u, `) is analogous.

The next series of lemmas show that the observer function
created by the ON machine is the transactional last-writer function
according to S .

LEMMA 12. For all T ∈ xactions(C), T ′ ∈ active(C), and
u ∈ content(T ), if T /∈ committed(C) at time t and u ∈ W(T ′)
at time t, then T ′ ∈ desc(T ).

PROOF SKETCH. One can prove by induction that at any time t
such that S(u) ≤ t < S(end(T )), we have h(u) ⊆ xAnces(u) −
pAnces(T ) and h(u) ∩ (open(T )− {T}) = ∅.

LEMMA 13. For any v ∈ memOps(C), if Φ(v) = u, then
¬(uHv).

PROOF. Assume for contradiction that uHv holds. Then, there
exists T ∈ pDesc(LCA(u, v)) ∩ aborted(C) such that u ∈
content(T ). If the ON machine sets Φ(v) = u, then u ∈ R(T ′)
for some T ′ ∈ xAnces(v). By Invariant 5 in Lemma 6, it fol-
lows that u ∈ W(T ′′), where T ′′ ∈ ances(T ′), and hence T ∈
ances(T ′′) by Lemma 12. Therefore, we have T ∈ ances(v), and
LCA(u, v) = T ∈ pDesc(T ). Contradiction.

We say that a vertex v ∈ memOps(C) is alive, denoted alive(v),
if h(v) ∩ aborted(C) = ∅.
LEMMA 14. Let w ∈ V (C) be the last vertex in S such that
W (w, `) and alive(w). Then, there exists (T ) ∈ spine(`) such
that (`, w) ∈ W(T ′).
PROOF SKETCH. At time S(w), by Invariant 3 of Lemma 6, we
have (`,w) ∈ W(xparent(w)) and xparent(w) ∈ spine(`).
Assume for contradiction that w is not on the spine. Since w is
alive, w can only be removed from spine(`) by being overwritten
by some y such that W (y, `) holds, and w <S y (from Invariant 6
from Lemma 6). Since w is the last writer to ` which is alive, we
have ¬alive(y). One can show that ¬alive(w) in this case.

LEMMA 15. For u, v ∈ memOps(C) that both access a memory
location ` ∈ M, if Φ(v) = u, then for any w ∈ memOps(C) such
that u ≺S w ≺S v and W (w, `), we have wHv.

PROOF. Assume for the purpose of contradiction that there exists
a w ∈ memOps(C) such that u ≺S w ≺S v, W (w, `), and ¬wHv.
Consider the last such w.

If w ∈ content(T ) for some T ∈ aborted(C(S(v))), then by
Lemma 9 we have wHv.

If w is not in the contents of any aborted transaction at time
S(v), then by Lemma 14, we have w ∈ W(T ) for some trans-
action T ∈ spine(`) and T ∈ ances(v) by Lemma 8. Let
TR = lowest({T ∈ xAnces(v) : ` ∈ R(T )}), and let TW =
lowest({T ∈ xAnces(v) : ` ∈ W(T )}). If Φ(v) = u, then we
have u ∈ R(TR), since the ON machine always reads from the
lowest ancestor that has ` in its readset. By Invariant 5, we have
u ∈ W(TW ), but since u <S w, we have TW ∈ pAnces(T ) by
Invariant 6 in Lemma 6. Therefore, T is a lower ancestor of v than
TW , contradicting the fact that TW is the lowest ancestor of v with
` in its writeset.

We now can prove that the observer function for the ON model
is the transactional last-writer function.
LEMMA 16. If the ON model generates an execution (C, Φ), then
Φ = XS .
PROOF. Let Φ(v, `) = u. To be the transactional last writer
XS , the observer function Φ must satisfy four conditions. The first



two, W (u, `) and u ≺S v, hold by the ON machine’s operation.
Lemmas 13 and 15 provide the last two conditions.

THEOREM 17. The ON model implements prefix race-free free-
dom.

PROOF. Combine Lemmas 11 and 16.

7. CONCLUSION
Open nesting provides a loophole in the strict serializability re-
quirement for transactional programs, but at what cost to program
understandability? When we began our study, we believed that open
nesting could be modularized so that users of a subroutine would
not need to know whether the subroutine uses open nesting. Unfor-
tunately, as we saw in Section 2, Figure 4, implementing open nest-
ing using prefix-race freedom can lead to unexpected program be-
havior if the programmer is unaware of the existence of open trans-
actions in subroutines. Race-freedom admits similar anomalous be-
havior. At least at the level of memory semantics, it seems unlikely
that such anomalous behaviors can be completely and safely hid-
den.

Our study leaves open the possibility, however, that open nest-
ing can be modularized at the level of program semantics. Specifi-
cally, one may be able to devise a program semantics for open nest-
ing, as discussed in [20], and formally relate it to a memory model
in such a way that anomalies in the memory model do not propa-
gate to the program model. For example, the anomalous memory
semantics for open nesting provided by prefix-race freedom might
be able to be hidden from programmers at a higher level without
sacrificing the advantages of open nesting. Such a program seman-
tics for open nesting would allow a user to be oblivious to open
transactions in libraries. Unfortunately, our research has made us
doubtful that program semantics can offer an elegant answer to the
modularity question for open nesting.

Perhaps we should seek loopholes for TM other than open nest-
ing. For example, Herlihy et al. [11] have proposed an early-release
mechanism for dropping locations from a transaction’s readset or
writeset. Zilles and Baugh [27] have suggested a mechanism for
pausing and resuming a transaction to allow the execution of non-
transactional code. Harris [10] has proposed an external-action ab-
straction for performing I/O. We have not studied these models
enough to say whether like open nesting, they provide anomalous
or difficult semantics.

If ever a safe loophole can be punched in the steel armor of clas-
sical transaction memory, however, we believe that a precise un-
derstanding of the system’s memory semantics will be necessary.
We hope that our work will offer insight into how transactional-
memory loopholes, such as open nesting, might be safely intro-
duced.
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