
Brief Announcement: Serial-Parallel Reciprocity in
Dynamic Multithreaded Languages

Kunal Agrawal
Washington University in St.

Louis
kunal@cse.wustl.edu

I-Ting Angelina Lee
MIT Computer Science and

Artificial Intelligence
Laboratory

angelee@mit.edu

Jim Sukha
MIT Computer Science and

Artificial Intelligence
Laboratory

sukhaj@mit.edu

ABSTRACT

In dynamically multithreaded platforms that employ work stealing,

there appears to be a fundamental tradeoff between providing prov-

ably good time and space bounds and supporting SP-reciprocity,

the property of allowing arbitrary calling between parallel and se-

rial code, including legacy serial binaries. Many known dynami-

cally multithreaded platforms either fail to support SP-reciprocity

or sacrifice on the provable time and space bounds that an efficient

work-stealing scheduler could otherwise guarantee.

We describe PR-Cilk, a design of a runtime system that supports

SP-reciprocity in Cilk and provides provable bounds on time and

space. In order to maintain the space bound, PR-Cilk uses subtree-

restricted work stealing. We show that with subtree-restricted work

stealing, PR-Cilk provides the same guarantee on stack space usage

as ordinary Cilk. The completion time guaranteed by PR-Cilk is

slightly worse than ordinary Cilk. Nevertheless, if the number of

times a C function calls a Cilk function is small, or if each Cilk

function called by a C function is sufficiently parallel, PR-Cilk still

guarantees linear speedup.

Categories and Subject Descriptors: D.1.3 [Programming Tech-

niques]: Concurrent Programming

General Terms: Algorithms, Design, Languages, Performance,

Theory

Keywords: Cilk, dynamic multithreading, Intel Threading Build-

ing Blocks, scheduling, work stealing, serial-parallel reciprocity

1. INTRODUCTION
Work stealing [3, 5, 6, 4, 7, 9, 10, 11, 14, 19, 23] is fast be-

coming a standard way to load-balance dynamically multithreaded

computations on multicore hardware. Concurrency platforms that

support work stealing include Cilk-1 [4], Cilk-5 [10], Cilk++ [18],

Fortress [2], Hood [6], Java Fork/Join Framework [15], Task Par-

allel Library (TPL) [17], Threading Building Blocks (TBB) [20],

and X10 [8]. Work stealing admits an efficient implementation that

guarantees bounds on both completion time and stack space us-

age [5, 10], but many existing implementations that achieve these

bounds — including Cilk-1, Cilk-5, and Cilk++ — do not exhibit

series-parallel reciprocity, or SP-reciprocity[16] for short, i.e., the

property of allowing arbitrary calling between parallel and serial

code, including legacy (and third-party) serial binaries. Without

SP-reciprocity, it can be difficult to integrate a parallel library into

an existing legacy code base.

Unfortunately, supporting SP-reciprocity in a concurrency plat-

Copyright is held by the author/owner(s).
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
ACM 978-1-4503-0079-7/10/06.

form that employs work stealing often weakens the bounds on pro-

gram completion time or stack space consumption that the plat-

form could otherwise guarantee.1 For instance, TBB supports SP-

reciprocity by employing a heuristic referred to as “depth-restricted

work stealing” [22] to limit stack space usage, but it does not guar-

antee a provably good time bound. In [16], the authors propose a

modification to the Cilk-5 runtime that provides provable time and

space bounds and supports SP-reciprocity, but their system requires

additional operating system support. In addition, the space bound

of [16] is slightly weaker than Cilk-5.

In this work, we present another point in the design space for

work-stealing concurrency platforms, referred to as PR-Cilk, which

employs the heuristic of “subtree-restricted work stealing”. PR-

Cilk supports SP-reciprocity, preserves the same space bound as

Cilk-5, and provides a provable but slightly weaker time bound as

compared to Cilk-5. To be more precise, let T1 be the work of a

deterministic computation (its serial running time), and let T∞ be

the span of the computation (its theoretical running time on an in-

finite number of processors). Let V be the number of Cilk function

instances which are called from some C function, and let eT∞ be the

“aggregate span” of the computation, where eT∞ is bounded by the

sum over all the spans for each of the V Cilk function instances.

We prove that PR-Cilk executes the computation on P processors

in expected time E [T ] = O(T1/P+ eT∞ +V lgP). We do not present

the proof due to space constraints, but to summarize, this bound

achieves linear speedup when V is small, or when each of the V

Cilk function instances has sufficient parallelism. As for space,

PR-Cilk achieves the same space bound as Cilk; if S1 is the stack

space usage of the serial execution, then the stack space SP con-

sumed during a P-processor execution satisfies SP ≤ PS1.

2. DIFFICULTIES OF SP-RECIPROCITY
This section outlines some of the challenges in supporting SP-

reciprocity in a language such as Cilk [10]. In particular, the de-

sign of Cilk’s work-stealing scheduler and its support of the “cac-

tus stack” abstraction prevent Cilk from efficiently supporting SP-

reciprocity. We also outline some of the difficulties associated with

other approaches for supporting SP-reciprocity.

Cilk’s work-stealing scheduler

In Cilk, the programmer specifies the logical parallelism of a pro-

gram using the keywords spawn and sync. When a function A

spawns a function B (by preceding the invocation of B with the

keyword spawn), the parent function A invokes the child function

1Although Fortress, Java Fork/Join Framework, TPL, and X10 em-
ploy work stealing, they do not suffer from the same problems,
because they are byte-code interpreted by a virtual-machine envi-
ronment.



B without suspending the parent, thereby exposing potential paral-

lelism. The keyword sync acts as a local barrier, indicating that the

control cannot pass the sync statement until all previously spawned

functions have returned.

Cilk’s work-stealing scheduler load-balances parallel execution

across the available worker threads while respecting the program’s

logical parallelism. Cilk follows the “lazy task creation” strategy

described in [14], where the worker suspends the parent function

when a child function is spawned and begins working on the child.

Operationally, when a worker encounters a spawn, it invokes the

child function and suspends the parent, just as with an ordinary

subroutine call, but it also places the parent frame on the bottom

of its deque (double-ended queue). When the child returns, the

worker tries to pops the parent frame off the bottom of its deque

and resume the parent frame. Pushing and popping frames from

the bottom of the deque is the common case, and mirrors precisely

the behavior of C or other Algol-like languages in their use of a

stack.

A worker exhibits behavior that differs from ordinary serial stack

execution if it runs out of work. This condition can happen due

to two cases. First, the worker may stall at a sync in a function

because some of the function’s spawned children have not yet re-

turned. Second, the worker may return from a spawn and find that

its deque is empty (i.e., all its ancestor frames have been stolen).2

When the worker has no work, the worker becomes a thief , and

attempts to steal the topmost frame from a randomly chosen victim

worker. If a frame exists, the steal is successful and the worker re-

sumes the stolen frame; otherwise, the worker continues trying to

work-steal.

Cilk’s support for the cactus-stack abstraction

An execution of a serial Algol-like language, such as C [13] or C++

[21], can be viewed as a “walk” of an invocation tree, which dy-

namically unfolds during execution and relates function instances

by the “calls” relation: if function instance A calls function instance

B, then A is a parent of the child B in the invocation tree. Such se-

rial languages use a linear-stack representation: the stack pointer

is advanced as a function is invoked and restored as the function

returns. With a linear stack, frames for caller and callee are allo-

cated in contiguous space. This representation is space-efficient,

because all the children of a given function can use and reuse the

same region of the stack.

The notion of the invocation tree can be extended to include

spawns, as well as calls, but unlike the serial walk of an invoca-

tion tree, a parallel execution unfolds the tree more haphazardly

and in parallel. Since multiple children of a function may be ex-

tant simultaneously due to spawns, a linear-stack data structure no

longer suffices for storing activation frames. Instead, the tree of

extant activation frames forms a cactus stack [12].

Cilk supports the cactus stack abstraction by allocating frames

for Cilk functions in noncontiguous space, where each frame is

linked to its parent frame. These frames in the noncontiguous mem-

ory are referred as shadow frames to differentiate from the activa-

tion frames in the linear stacks. As a result, the call / return linkage

for a Cilk function (henceforth referred to as the Cilk linkage) dif-

fers from the ordinary C linkage: a Cilk function passes parameters

and returns value via its shadow frame. That means, if a parent

passes a pointer of its local variable to its child, the pointer refers

to the location in the shadow frame. Thus, when a worker’s deque

is empty, its corresponding linear stack can be emptied as well; the

2In this second case, the worker first checks whether the parent is
stalled on a sync statement and whether this child is the last child
to return. If so, it resumes the parent function after the sync.

worker can freely pop off the suspended activation frames in its

linear stack. Since a worker only steals when its deque is empty,

each worker uses no more stack space than the space used by the

serial execution of the program. Moreover, with this strategy, mul-

tiple extant children can share a single view of their parent frame,

as required by the cactus stack abstraction.

This implementation allows Cilk to provide a provable space

bound, but does not allow for SP-reciprocity because it uses the

Cilk linkage to spawn, which is incompatible with the ordinary C

linkage. A sharp delineation exists between C and Cilk: while a

Cilk function may call a C function, a C function may not call back

to a Cilk function, unless the C function is also recompiled to use

the special Cilk linkage.

Other alternatives

Alternatively, one may conceivably implement the memory abstrac-

tion of a cactus stack using ordinary linear stacks, and thus elimi-

nate the special linkage to allow SP-reciprocity. For example, if a

Cilk function A executing on worker p has multiple extant children,

other workers executing these extant children may share a single

view of A’s frame sitting in p’s stack space. This strategy compro-

mises either the completion time or stack space bound, however. A

key obstacle is the fact that once a frame has been allocated, its lo-

cation in virtual memory cannot be changed, because there may be

a pointer to a variable in the frame elsewhere in the system. Thus,

if A’s frame is shared among workers, p cannot pop A off its stack

until all A’s extant children return. If p runs out of work before A

can be resumed, in general p has two options. First, p can block

and wait for A’s children to complete. This option causes workers

to block and therefore invalidates Cilk’s completion time bound.

Second, p can go steal work from some other worker. In this case,

p has no choice but to push the stolen work, say B, onto its stack

below A.3 If A is already deep in the stack, and B is close to the top

of the invocation tree, p’s stack can grow twice as deep as what it

would be in a serial execution. Furthermore, even when A is done

executing and can return, the stack space where A resides cannot be

reused until B also returns. This scenario could occur recursively,

consuming impractically large stack space.

A combination of the two options is also possible. TBB oper-

ates on linear stacks with ordinary linkage and thus provides SP-

reciprocity. TBB allows work-stealing as in the second option, but

to limit space consumption, TBB employs depth-restricted work

stealing, where a worker is restricted to steal only tasks which are

deeper than the worker’s deepest blocked task. The fact that a thief

can steal from arbitrary part of the invocation tree (provided the

depth restriction is not violated) makes it difficult to prove a non-

trivial upper bound on the completion time, however. For a lower

bound, [22] describes a computation for which TBB with depth-

restricted work stealing runs asymptotically serially, but for which

Cilk can achieve linear speedup.

3. PR-Cilk DESIGN
PR-Cilk supports SP-reciprocity and guarantees provable time

and space bounds by using a strategy called subtree-restricted work

stealing. In addition, PR-Cilk uses shadow frames of Cilk func-

tions and the ordinary activation frames for C functions. Some

modifications to the runtime system and the compiler are required

in order to support transitioning between two different types of

frames and linkages. Due to space limit, however, we focus our

attention on how PR-Cilk supports subtree-restricted work stealing

using “parallel regions”, a mechanism adapted from HELPER [1].

3We assume the stack grows downward.



To remind ourselves of the problem, suppose a worker p exe-

cutes a C function foo which calls a Cilk function A. Since foo

uses the activation frame, the stack space associated with foo can

not be removed from p’s stack until all the descendants of A in the

invocation tree are completed. If p runs out of the work before all

children of A finish, as we mentioned earlier, p must either block

and wait for A’s extant children to complete (thus sacrificing the

time bound) or steal (and potentially consume excessive space).

PR-Cilk addresses this problem by using subtree-restricted work

stealing, which forces p to steal from only within A’s subtree in the

invocation tree. Notice that, in any serial execution, the stack depth

of any frame within A’s subtree is greater than the stack depth of A,

where p is stalled. Therefore, no processor can use more stack

space than the serial execution, and we maintain the Cilk stack

space bound. Furthermore, any work p steals is work that must be

completed in order for A to return, and p is (in some sense) helping

to complete its own work. At a glance, it may seem that PR-Cilk’s

subtree-restricted work stealing is similar to TBB’s depth-restricted

work-stealing; in fact, subtree-restricted work stealing is more re-

strictive than depth-restricted work-stealing. In this case, however,

the stronger restriction implies a better provable completion time

bound, because a stronger restriction eliminates certain undesirable

schedules that the weaker restriction allows.

By default in Cilk, a worker is only allowed to steal from the top

of a deque; Cilk has no mechanism for limiting work stealing to

some subtree of the invocation tree. To support subtree-restricted

work stealing, PR-Cilk augments the Cilk-5 runtime system with

parallel regions. A parallel region construct for Cilk was originally

described in HELPER [1] as a way of supporting nested parallelism

in locked critical sections. Here, we use the term parallel region to

refer to a subcomputation with nested parallelism whose root rep-

resents a Cilk function called by a C function, but the mechanism

for supporting parallel regions is almost identical.

Conceptually, each parallel region RA is an instance of a Cilk

function that uses its own deque pool — a set of deques — for

self-contained scheduling. When a worker p starts a parallel re-

gion RA, the runtime system creates a new deque pool for RA,

denoted by dqpool(RA). The runtime system allocates a deque

q ∈ dqpool(RA) to a worker p when p is assigned to RA. In order

to support nested parallel regions, each worker p maintains a chain

of deques, each for a different region, with the bottom deque in the

chain being p’s active deque. Whenever a worker p tries to steal, it

only steals from deques in the same pool as p’s active deque.

We can directly use the design of parallel regions to support

subtree-restricted work stealing in PR-Cilk. When worker p calls

a Cilk function A from a C function foo, it implicitly invokes a

function called start_region. The start_region call causes p

to start a new region, which involves p creating a new deque pooldqpool(RA) and creating a new deque q for itself in dqpool(RA).
After creating the region, p continues to execute A, which may

spawn more functions under region RA, and the frames associated

with these functions are added to q. Other workers may later be

assigned to this region by randomly stealing into the region. Any

additional work created by these workers within RA is added to

some deque in dqpool(RA) as well. If p later stalls on a sync in

A, it can now steal work from any deque in the pool dqpool(RA),
since such work belongs to the subtree rooted at A.

Since PR-Cilk uses the same policy for workers entering and

leaving parallel regions as described in [1], the completion time

and stack space bounds in [1] can be simplified and applied di-

rectly to PR-Cilk. PR-Cilk computations have more structure than

HELPER, however. Specifically in PR-Cilk, regions are not asso-

ciated with locks, so a worker is assigned to a region only by either

starting the region or stealing into the region, whereas in HELPER,

a worker can also be assigned to a region via acquiring a lock as-

sociated with the region. Given this property, we believe that one

can potentially improve the time bound. As future work, we hope

to improve the time bound and explore the implications of having

different entering and leaving policies for parallel regions, as the

completion time may be affected depending on the policy used.

Acknowledgments

We like to thanks Matteo Frigo of Axis Semiconductor, and mem-

bers of the Supertech Research Group at MIT CSAIL for helpful

discussions. This research was supported in part by NSF Grant

CNS-0615215.

4. REFERENCES
[1] K. Agrawal, C. E. Leiserson, and J. Sukha. Helper locks for fork-join

parallel programming. In PPoPP ’10, Jan. 2010.
[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,

G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress Language Specification

Version 1.0. Sun Microsystems, Inc., Mar. 2008.

[3] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for

multiprogrammed multiprocessors. In SPAA ’98, pages 119–129, June
1998.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime system.

Journal of Parallel and Distributed Computing, 37(1):55–69, August
1996.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded

computations by work stealing. Journal of the ACM, 46(5):720–748,
Sept. 1999.

[6] R. D. Blumofe and D. Papadopoulos. Hood: A user-level threads library
for multiprogrammed multiprocessors. Technical Report, University of

Texas at Austin, 1999.
[7] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual

tree of processors. In FPCA ’81, pages 187–194, Oct. 1981.
[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,

K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented

approach to non-uniform cluster computing. In OOPSLA ’05, pages
519–538. ACM, 2005.

[9] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. Distributed
Filaments: Efficient fine-grain parallelism on a cluster of workstations. In

OSDI ’94, pages 201–213, Nov. 1994.
[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the

Cilk-5 multithreaded language. In PLDI ’98, pages 212–223, 1998.

[11] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. ACM TOPLAS, 7(4):501–538, Oct. 1985.

[12] E. A. Hauck and B. A. Dent. Burroughs’ B6500/B7500 stack mechanism.
Proceedings of the AFIPS Spring Joint Computer Conference, pages

245–251, 1968.
[13] B. W. Kernighan and D. M. Ritchie. The C Programming Language.

Prentice Hall, Inc., second edition, 1988.

[14] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: A
high-performance parallel Lisp. In PLDI ’89, pages 81–90, June 1989.

[15] D. Lea. A Java fork/join framework. In Java Grande Conference, pages
36–43, 2000.

[16] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leiserson. Using
thread-local memory mapping to support cactus stacks in work-stealing

runtime systems. Submitted for publication.

[17] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In OOPSLA ’09, pages 227–242, 2009.

[18] C. E. Leiserson. The Cilk++ concurrency platform. In 46th Design

Automation Conference. ACM, July 2009.

[19] R. S. Nikhil. Cid: A parallel, shared-memory C for distributed-memory
machines. In LCPC ’94, Aug. 1994.

[20] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for

Multi-core Processor Parallelism. O’Reilly Media, Inc., 2007.
[21] B. Stroustrup. The C++ Programming Language. Addison-Wesley,

Boston, MA, third edition, 2000.
[22] J. Sukha. Brief announcement: A lower bound for depth-restricted work

stealing. In SPAA ’09, Aug. 2009.
[23] M. T. Vandevoorde and E. S. Roberts. WorkCrews: An abstraction for

controlling parallelism. International Journal of Parallel Programming,

17(4):347–366, Aug. 1988.


