Brief Announcement: A Lower Bound for Depth-Restricted
Work Stealing

Jim Sukha
MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

sukhaj@mit.edu

1 class BTask: public task {
ABSTRACT 2 int* sum
Work stealing is a common technique used in the runtime sched 3 int x, v,
ulers of parallel languages such as Cilk and parallel libsasuch 4 BTask(int* sum) : sun{sum)
as Intel Threading Building Blocks (TBBepth-restricted work g ta%asﬁgetcu;'e()Y%'ask& -
stealing is a restriction of Cilk-like work stealing in whi@ pro- 7 t x = *nEwi al | ocat e cﬁiyf d()) XTask(&x):
cessor blocked on a task at depitiean only steal tasks from other 8 t"y = *new(al locate child()) YTask(&y)
processors at depth greater ttdhnTo support programs coded in 9 spawn(t_y);

a blocking style, i.e., code without explicit continuatp BB im-
poses a depth restriction on work stealing to limit the stgudce
used by a computation.

We present a lower bound on the completion time of a computa-

tion executed using a depth-restricted work-stealing calee. In
particular, we construct a computation whichPprocessors runs
a factor ofQ(P) slower with depth-restricted work stealing as com-
pared to unrestricted work stealing. On this pessimal cdatjaun,
depth-restricted work stealing asymptotically seriadizxecution
while unrestricted work stealing achieves linear speedup.

Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms: Algorithms, Performance, Theory

Keywords: Cilk, dynamic multithreading, Intel Threading Build-
ing Blocks, scheduling, work stealing

1. INTRODUCTION

Work stealing is a common scheduling technique used in the

runtime systems of dynamically multithreaded languages lan
braries. In a dynamically multithreaded system, progransriygi-
cally specify which tasks in a program have the potentiakazate
concurrently. Then, when the program executes, a runtirsesy
dynamically schedules the tasks on some number of pros8sor
With a work-stealing runtime scheduler, whenever a prarasms
out of work or waits for a task to complete at a synchronizatio
point, the processor attempts to steal work from anothecgso
sor. Many dynamically multithreaded systems use a randeuniz
work-stealing algorithm modeled after the work-stealingexuler
in Cilk [3], an efficient parallel programming language. Téfé-
ciency of Cilk programs stems in part from Cilk’s provabljigent
work-stealing scheduler [1].

The efficiency of Cilk also depends, however, on the ability o
the Cilk compiler to generate function continuations. Q-
tions allow a function to begin execution on one procesadatryd-

This research was supported in part by NSF Grants CNS-061521
and CNS-0540248.

Copyright is held by the author/owner(s).
SPAA'09 August 11-13, 2009, Calgary, Alberta, Canada.
ACM 978-1-60558-606-9/09/08.

10 spawn_and_wait_for_all(t_x);
11 *sum= x +y;

12 }

13}

Figurel: A blocking-stylecomputation using TBB pseudocode.
Code for reference counting tasks has been omitted.

sume execution on another processor (e.g., after a steat)cc
Unfortunately, parallel libraries, such as Intel ThregdBuilding
Blocks (TBB) [4], typically can utilize continuations onkyhen
they are explicitly provided by the programmer. Thus, sueh |
braries usually support additional, more convenient faters which
do not require coding explicit continuations.

For example, TBB allows programmers to wrikocking-style
code, as shown in Figure 1. In this coddask is a task which
computes two values; andy (using two parallel subtaskXTask
andYTask), and then computes the sumy. To understand the
behavior of blocking-style code, suppose procegsobegins ex-
ecutingBTask. In line 9, p; spawnsYTask for other processors
to potentially steal, and then starts working XFask in line 10.
Suppose another procesgmr stealsYTask from p;p, and thenpy
finishesXTask beforep, completesyTask. Thenp; stalls at line
10, andp; begins trying to randomly steal work. BTask had a
continuation, therp; could clear the stack space usedBask,
since py could resume the continuation 8fask after p, com-
pletesYTask. With blocking-style code, howevep; cannot clear
this stack space, singa must eventually resun&Task at line 11.

To avoid a significant growth in stack space due to a processor
repeatedly blocking and stealing, TBB uses what we dgth-
restricted work stealing, that is, TBB constrains a processor to only
steal tasks which are deeper than the processor’'s deepekedl|
task. As the TBB documentation states, this restriction dk-C
like work-stealing may limit the available parallelism aimipact
performance [4]; however, no theoretical analysis is presk

How restrictive can depth-restricted work stealing be, @s-c
pared to unrestricted work stealing? We construct a cortipata
which, when executed using depth-restricted work-stgatin P
processors, runQ(P) times slower than when executed using un-
restricted work-stealing. Thus, there exists a computatvbich
could exhibit linear speedup when run Brprocessors, but which
is asymptotically serialized by depth-restricted worlatitey.

Repeat d
times,
d=lg(z)+1

\
\ Repeat k-1
z \ more times

EE

Task with
y serial
work. [/,Z
Task with z
parallel
work, all at
depth < Ig(z)

Task with z
serial work

P-2 tasks at
depth > Ig(z).
Each has x serial work.

Figure2: A series-parallel parsetreefor F.

2. A PESSIMAL EXAMPLE

We present a parallel computation which exhibits lineaegpe
onP processors when executed by a runtime with an ordinary; unre
stricted work-stealing scheduler, but which achieves aolystant
speedup when the runtime performs depth-restricted wadl-st
ing. First, we outline the general structure of our pessiexalm-
ple. Then, we analyze the runtime of this computation usiotty b
depth-restricted and unrestricted work stealing.

Our pessimal example is generated by a meth@dz), which
conceptually chains togethkiinstances oF(1,z). Figure 2 shows
a series-parallel parse tree representation [E] éf parallel traver-
sal of a series-parallel parse tree models an executionamhauta-
tion on multiple processors. The child subtrees ofSarode must
be traversed serially, from left to right, while the childbstees
of a P-node can be traversed in any order. In this tree€?-aode
corresponds to a blockingpawn. When a processor reache®a
node, it begins work on the left child subtree. If the righbtsee is
stolen, and the processor finishes the left subtree, theprtoes-
sor is blocked on theXnode) root of the right subtree. We measure
the depth of a task as the depth®hodes (i.e., nesting depth of
spawns) in the tre&.

The subroutiné(1,z) forms the core of the example; when exe-
cuted onP processors using depth-restricted work stealfd, z)
runs for at least time, but completes only about 2vork. Intu-
itively, F spawns two tasks; one tagkcontainsz potentially par-
allel work (subtaskz p), and the other tasRept hTrap containsz
serial work (subtasks). Ideally, P — 1 processors should work on
G and one should work obept hTr ap; however,Dept hTrap be-
gins with enough parallel worl(— 2 tasks with serial work) and
Gbegins with enough serial worly)(so thatP — 1 processors steal

10our example can be generalized to some other definitionspofide
or other work-stealing restrictions, as long as procesaespre-
vented from stealing frormp once they entedept hTr ap.

work from Dept hTrap and only one works o OnceP — 1 pro-
cessors steal froept hTr ap, P— 2 processors will block waiting
for one processor to completeserial work. Furthermore, since
Dept hTr ap traps thes® — 2 processors at a depth greater than the
depth of any work irzp, the processors remain idle, even afger
creates additional parallel work.

To form the complete example, we ch&irepetitions of~(1,z),
arranged so that repetitigrcan begin only after they task of rep-
etition j — 1 is completeF is designed so that with depth-restricted
work stealing,Dept hTr ap finishes befores enables the next repe-
tition of F. Then, thek instances obept hTr ap occur sequentially,
andF(k, z) requires at leadtztime to execute.

Theorem 1 and Corollary 2 state these propertids ibre for-
mally. InF, we set the values afandy depending on two functions,
X(€) andY (g, z). Intuitively, x must be larger than the time required
for P—1 processors to compleRe— 1 successful steals, agd> x
must be large enough to ensure tH@t) does not complete before
Dept hTr ap(z). We defer the proof of Theorem 1 until Section 3.

DEFINITION 1. Let ¢ be the maximum time for any steal at-
tempt (successful or unsuccessful). Defirfe)%= csPIn (£) (1+

In(P)). Define Y(g,2) = X (&) + (P+¢s)19(2) + (P? +¢s).

THEOREM 1. For an execution o (1,z) using depth-restricted
work stealing, let i and Tp be the completion time d(z) and
Dept hTr ap(z), respectively. If x> X(g) and y> Y(g,2z), then
Ty —Tp > 0, i.e.,H(z) does not finish beforBept hTr ap.

COROLLARY 2. Let x= X(g/k) and y=Y(g/k). With prob-
ability at least(1— €), a depth-restricted work-stealing scheduler
using P processors requires at le&tkz) time to execut&(k, z).

PrRoOOF By Theorem 1, the execution 6{1,z), H(z) will not
finish beforeDept hTr ap(z) with probability at least1—/k). At
leastz time is required to executBept hTrap(z). Thus, using a
union bound ovek repetitions ofF, we knowF(k,z) requires at
leastQ(kz) time with probability at leasfl—¢). [

A runtime using unrestricted work stealing can compkgte 2)
quickly, however, because it can complete eaghyuickly (i.e.,
in O(z/P) time), and overlap the executions of the seriatasks
from the k repetitions ofF. Lemma 3 states this result more for-
mally, and Theorem 4 compares depth-restricted work sigalnd
unrestricted work stealing fdt(k, z).

LEMMA 3. Let x= X(g/k) and y=Y(g/k). With probability
at least(1—¢), an unrestricted work-stealing scheduler using P
processors can execukgk,z) in O (kz/P +z) time, assuming that
z=w(kP?Ig(kP/g)).

PROOF The proof follows from the analysis of Cilk [1], which
has an unrestricted work-stealing scheduler; for a Cilkfpatation
with work Ty and spanT., the running time orP processors is
O(T1/P+Tw +1g(P/g)), with probability at leastl —¢).

The span ofF is Te < k(y+19(2)) +z From our choices of
x andy, we knowx = O(P2Ig(kP/g)), andy = x+ O(Plg(z) +
P?). If z= w(kP?Ig(kP/¢)), then one can show th&ly = o(2)
andklg(z) = o(z). Thus,Tw = O(z). Similarly, the work ofF is
T =k((P—2)x+y+2z) + ©(k(Ig(z) + P)). The Xzterm asymp-
totically dominates the other terms, $p= O(kz). [

THEOREM 4. There exists a computation for which the ratio of
the runtime using a depth-restricted work stealing schexdid the
runtime using an unrestricted work-stealing schedule®{®).

PROOF. Choosek = Q(P) andz = w(kP?Ig(kP/¢)). Then, the
computatior(k,z) satisfies Corollary 2 and Lemma 3, and we get
a competitive ratio of2(P). O

3. PROOF DETAILS

In this section, we present the proof of Theorem 1. For com-

pleteness, we also give TBB pseudocode (Figure 3) correlémpn
to the tree in Figure 2.

Theorem 1 requires that we choose valuesfmdy large enough
to make the behavior of random work stealing predictable i
propriate values fox andy arise from the analysis in Lemma 5.

LEMMA 5. Consider the execution d¥(1,z) using a depth-
restricted work-stealing scheduler. 1 X(¢), and y> Y(g,2),
then, with probability at leastl — €), P— 1 processors are stuck in
Dept hTr ap(2) for at least z time.

PROOF Fori € {1,2,...P—1}, lett; be the time step when
some processor begins working on ndlén Figure 2. Similarly,
let ty be the time when some processor begins work on ride
i.e., a processor has reached the bottom of the chain offlehgt
I9(z) +1 in Dept hTrap. Intuitively, we prove Lemma 5 by show-
ing thattp_4, the time that a processor starts working is likely
to satisfytp_1 < X(g) +csd. Then, sincg > Y(g,2) > X(€) +c«d,
H(z) does not generate any parallel work before ttga, and pro-
cessors must steal only frobept hTrap. Furthermore, if we have
tp_1 —tg < X(€) <X, then, itis impossible for a processor to finish
a serial block of workx beforete_1. Then, we know each of the
P — 2 tasks withx serial work and tasks must be executed by one
of P—1 distinct processors. Finally, oné&— 1 processors have

stolen fromDept hTr ap, they are trapped at a depth larger than the

depth of any parallel work generated Bywaiting onzs.
More precisely, to bounds_;, we construct events; which
capture the notion that thig's are meeting their “likely” dead-

lines. LetA; be the event thay < csd—H:SP(%). Forj e
{2,3,...P—1}, letAj be the event; < csd+csP(ij:l%ﬁ/‘c‘—)).

I
We can show by induction that @/_; A/) > (1—¢/P)l. Substi-
tuting j = P—1 and simplifying the sum gives tis_1 < X(€)+csd
with probability at leas{1—¢).
In the base case for induction, we computéAry. Notice that
initially one processor begins work @&andP — 1 other processors

attempt to steal;. Since processors steal randomly, the proba-

bility that S; has not been stolen aftarsteal attempts is at most

(1—2)" < &P, Thus, withP — 1 processors stealingy is

stolen before timesP ("2E)) with probability at least1—¢/P).

Once work begins at nodﬁ_, we know some processor must reach
S in at mostesd = cs(Ig(2) + 1) time, (i.e. ty —t1 < csd), since in
the worst case, steals happen for every rigthbde on the chain of
lengthd in Dept hTrap. Thus, P(A;) > (1—¢/P).

To bound P(A1NA,), we first condition orA; occurring. Once a
processor reach&y, it then quickly spawn$, and begins working
on a block with serial work. For timesty <t < to, at leastP — 2
processors must be idle and trying to st&al Thus, using the

same analysis as for, we know thaty; —ty < csP (%) with
probability at leas{1—¢€/P). Thus, P(A2|A1) > (1-¢/P), and

PI’(AlﬂAz) PI’(Az‘Al) PI‘(Al) (l S/P)

We complete the induction by repeating thls analysis foréhe
mainingAj. Conditioned on the event thay_ Al we know for
timest such that; _; <t <tj, at leastP — j processors trying to

stealS;. Thus,tj —tj_1 < csP ('” P/e)) with probability at least
(1—¢/P). Thus, Pr(ﬂi:lAi) > (178/P)1‘.
Finally, to showtp_1 —tg < X(€) with probability at least1—¢),

note that if we ignore5; and compute deadlines fgr—tq4 instead
of t;, the same inductive proof used to boupd; applies. [

void F(int k, int z) {
spawn(DepthTrap(lg(z), z));
spawn_and_wait_for_all (Qk, 2z));

3/oid Gint k, int z)
Hz); if (k>1) {

}

void H(int z) {
spawn(Par al | el Wrk(z))
spawn_and_wait_for_all

{
F(k-1, z); }

(Serial Vork(y)):

}
voi d DepthTrap(int d, int z) {
if (d==0) { TrapProcessors(P-1,
el se {
spawn(DepthTrap(d-1, z));
spawn_and_wai t _for all(SenaIW)rk(1);

}

voi d TrapProcessors(int i, int z) {
if (i <= 1) { SerialWrk(z); }
el se {
spawn(TrapProcessors(i-1, z));
spawn_and_wait_for_all (Serial Wrk(x));

}

}
voi d Parall el Wrk(int n) {
if (n<=1) { doUnitWrk(); }
el se
spawn(Paral l el Work(n - n/2));
spawn_and_wait_for_all(Paral |l el Work(n/2));

7); }

void Serial Wrk(int n) {

for (int i =0; i <n; i++) { doUnitWork(); }

Figure 3: TBB pseudocode for F(k,z).

By using Lemma 5, we can bound the completion timélahd
Dept hTr ap(z) and prove Theorem 1.

PROOF OFTHEOREM1. Using Lemma5, sindgept hTr ap be-
gins executingzs at timetp_1, andDept hTr ap requires at most
z+ P+1g(z) additional time to finish, we havéy <tp_1+z+
Ig(z) + P. Also from Lemma 5, with probability at leagl — €),
we knowDept hTr ap keepsP — 1 processors occupied aH() ex-
ecutes serially for at leatt_; + ztime. SinceH has at leasy+z
work, it cannot finish before tim&y >tp_1+z+ (y—tp_1)/P.
Then, we knowTy — Tp > (y—tp_1)/P —1g(z) — P. By substitut-
ingtp_1 < X(g) +cs(lg(z) + 1), we get thally —Tp > 0. O

4. REFERENCES

[1] R. D. Blumofe and C. E. Leiserson. Scheduling multitilec
computations by work stealingournal of the ACM
46(5):720-748, Sept. 1999.

[2] M. Feng and C. E. Leiserson. Efficient detection of
determinacy races in Cilk programs.Pnoceedings of the
Symposium on Parallel Algorithms and Architectures (SPAA)
pages 1-11, Newport, Rhode Island, June 1997.

[3] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PL.DI)
pages 212—-223, Montreal, Quebec, Canada, 1998.

[4] J. ReindersIntel Threading Building Blocks: Outfitting C++
for Multi-core Processor ParallelismO’Reilly, 2007.

