
Brief Announcement: A Lower Bound for Depth-Restricted
Work Stealing

Jim Sukha
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, USA
sukhaj@mit.edu

ABSTRACT
Work stealing is a common technique used in the runtime sched-
ulers of parallel languages such as Cilk and parallel libraries such
as Intel Threading Building Blocks (TBB).Depth-restricted work
stealing is a restriction of Cilk-like work stealing in which a pro-
cessor blocked on a task at depthd can only steal tasks from other
processors at depth greater thand. To support programs coded in
a blocking style, i.e., code without explicit continuations, TBB im-
poses a depth restriction on work stealing to limit the stackspace
used by a computation.

We present a lower bound on the completion time of a computa-
tion executed using a depth-restricted work-stealing scheduler. In
particular, we construct a computation which onP processors runs
a factor ofΩ(P) slower with depth-restricted work stealing as com-
pared to unrestricted work stealing. On this pessimal computation,
depth-restricted work stealing asymptotically serializes execution
while unrestricted work stealing achieves linear speedup.

Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms: Algorithms, Performance, Theory

Keywords: Cilk, dynamic multithreading, Intel Threading Build-
ing Blocks, scheduling, work stealing

1. INTRODUCTION
Work stealing is a common scheduling technique used in the

runtime systems of dynamically multithreaded languages and li-
braries. In a dynamically multithreaded system, programmers typi-
cally specify which tasks in a program have the potential to execute
concurrently. Then, when the program executes, a runtime system
dynamically schedules the tasks on some number of processors P.
With a work-stealing runtime scheduler, whenever a processor runs
out of work or waits for a task to complete at a synchronization
point, the processor attempts to steal work from another proces-
sor. Many dynamically multithreaded systems use a randomized
work-stealing algorithm modeled after the work-stealing scheduler
in Cilk [3], an efficient parallel programming language. Theeffi-
ciency of Cilk programs stems in part from Cilk’s provably efficient
work-stealing scheduler [1].

The efficiency of Cilk also depends, however, on the ability of
the Cilk compiler to generate function continuations. Continua-
tions allow a function to begin execution on one processor, but re-

This research was supported in part by NSF Grants CNS-0615215
and CNS-0540248.

Copyright is held by the author/owner(s).
SPAA’09,August 11–13, 2009, Calgary, Alberta, Canada.
ACM 978-1-60558-606-9/09/08.

1 class BTask: public task {
2 int* sum;
3 int x, y;
4 BTask(int* sum_) : sum(sum_)
5 task* execute() {
6 XTask& t_x; YTask& t_y;
7 t_x = *new(allocate_child()) XTask(&x);
8 t_y = *new(allocate_child()) YTask(&y);
9 spawn(t_y);
10 spawn_and_wait_for_all(t_x);
11 *sum = x + y;
12 }
13 }
Figure 1: A blocking-style computation using TBB pseudocode.
Code for reference counting tasks has been omitted.

sume execution on another processor (e.g., after a steal occurs).
Unfortunately, parallel libraries, such as Intel Threading Building
Blocks (TBB) [4], typically can utilize continuations onlywhen
they are explicitly provided by the programmer. Thus, such li-
braries usually support additional, more convenient interfaces which
do not require coding explicit continuations.

For example, TBB allows programmers to writeblocking-style
code, as shown in Figure 1. In this code,BTask is a task which
computes two values,x andy (using two parallel subtasks,XTask
andYTask), and then computes the sumx+ y. To understand the
behavior of blocking-style code, suppose processorp1 begins ex-
ecutingBTask. In line 9, p1 spawnsYTask for other processors
to potentially steal, and then starts working onXTask in line 10.
Suppose another processorp2 stealsYTask from p1, and thenp1
finishesXTask beforep2 completesYTask. Thenp1 stalls at line
10, andp1 begins trying to randomly steal work. IfBTask had a
continuation, thenp1 could clear the stack space used byBTask,
since p2 could resume the continuation ofBTask after p2 com-
pletesYTask. With blocking-style code, however,p1 cannot clear
this stack space, sincep1 must eventually resumeBTask at line 11.

To avoid a significant growth in stack space due to a processor
repeatedly blocking and stealing, TBB uses what we calldepth-
restricted work stealing, that is, TBB constrains a processor to only
steal tasks which are deeper than the processor’s deepest blocked
task. As the TBB documentation states, this restriction on Cilk-
like work-stealing may limit the available parallelism andimpact
performance [4]; however, no theoretical analysis is presented.

How restrictive can depth-restricted work stealing be, as com-
pared to unrestricted work stealing? We construct a computation
which, when executed using depth-restricted work-stealing on P
processors, runsΩ(P) times slower than when executed using un-
restricted work-stealing. Thus, there exists a computation which
could exhibit linear speedup when run onP processors, but which
is asymptotically serialized by depth-restricted work stealing.

� �x � �
z s� �x � � � �x � � 	
� � � � � � � � �� � � � � � � � � z � �� � � � � � � x � � ! � " # $ � �

y z p' � � � # ! � � z� � � " " � "# $ � (� " " � �� � � � �) � * + z ,
' � � � # ! � �y � � ! � "# $ � �

�
� � � .

� � �� � � / � � � � � d1 2 � � (d 3 � * + z , 5 6D e p t h T r a p (z)H (z) � � � BF (k , z)G (k , z) F (k G 1 , z)� / � � � � � � I 62 $ � 1 2 � �
' � � � # ! � � z� � ! � " # $ �

Figure 2: A series-parallel parse tree for F.

2. A PESSIMAL EXAMPLE
We present a parallel computation which exhibits linear speedup

onPprocessors when executed by a runtime with an ordinary, unre-
stricted work-stealing scheduler, but which achieves onlyconstant
speedup when the runtime performs depth-restricted work steal-
ing. First, we outline the general structure of our pessimalexam-
ple. Then, we analyze the runtime of this computation using both
depth-restricted and unrestricted work stealing.

Our pessimal example is generated by a methodF(k,z), which
conceptually chains togetherk instances ofF(1,z). Figure 2 shows
a series-parallel parse tree representation [2] ofF. A parallel traver-
sal of a series-parallel parse tree models an execution of a computa-
tion on multiple processors. The child subtrees of anS-node must
be traversed serially, from left to right, while the child subtrees
of a P-node can be traversed in any order. In this tree, aP-node
corresponds to a blockingspawn. When a processor reaches aP-
node, it begins work on the left child subtree. If the right subtree is
stolen, and the processor finishes the left subtree, then theproces-
sor is blocked on the (S-node) root of the right subtree. We measure
the depth of a task as the depth ofP-nodes (i.e., nesting depth of
spawns) in the tree.1

The subroutineF(1,z) forms the core of the example; when exe-
cuted onP processors using depth-restricted work stealing,F(1,z)
runs for at leastz time, but completes only about 2z work. Intu-
itively, F spawns two tasks; one taskG containsz potentially par-
allel work (subtaskzp), and the other taskDepthTrap containsz
serial work (subtaskzs). Ideally,P−1 processors should work on
G and one should work onDepthTrap; however,DepthTrap be-
gins with enough parallel work (P−2 tasks with serial workx) and
G begins with enough serial work (y) so thatP−1 processors steal

1Our example can be generalized to some other definitions of depth
or other work-stealing restrictions, as long as processorsare pre-
vented from stealing fromzp once they enterDepthTrap.

work from DepthTrap and only one works onG. OnceP−1 pro-
cessors steal fromDepthTrap, P−2 processors will block waiting
for one processor to completez serial work. Furthermore, since
DepthTrap traps theseP−2 processors at a depth greater than the
depth of any work inzp, the processors remain idle, even afterG
creates additional parallel work.

To form the complete example, we chaink repetitions ofF(1,z),
arranged so that repetitionj can begin only after thezp task of rep-
etition j −1 is complete.F is designed so that with depth-restricted
work stealing,DepthTrap finishes beforeG enables the next repe-
tition of F. Then, thek instances ofDepthTrap occur sequentially,
andF(k,z) requires at leastkz time to execute.

Theorem 1 and Corollary 2 state these properties ofF more for-
mally. InF, we set the values ofx andydepending on two functions,
X(ε) andY(ε,z). Intuitively, x must be larger than the time required
for P−1 processors to completeP−1 successful steals, andy > x
must be large enough to ensure thatH(z) does not complete before
DepthTrap(z). We defer the proof of Theorem 1 until Section 3.

DEFINITION 1. Let cs be the maximum time for any steal at-
tempt (successful or unsuccessful). Define X(ε) = csPln

` P
ε

´

(1+

ln(P)). Define Y(ε,z) = X(ε)+(P+cs) lg(z)+(P2 +cs).

THEOREM 1. For an execution ofF(1,z) using depth-restricted
work stealing, let TH and TD be the completion time ofH(z) and
DepthTrap(z), respectively. If x≥ X(ε) and y≥ Y(ε,z), then
TH −TD ≥ 0, i.e.,H(z) does not finish beforeDepthTrap.

COROLLARY 2. Let x= X(ε/k) and y= Y(ε/k). With prob-
ability at least(1− ε), a depth-restricted work-stealing scheduler
using P processors requires at leastΩ(kz) time to executeF(k,z).

PROOF. By Theorem 1, the execution ofF(1,z), H(z) will not
finish beforeDepthTrap(z) with probability at least(1− ε/k). At
leastz time is required to executeDepthTrap(z). Thus, using a
union bound overk repetitions ofF, we knowF(k,z) requires at
leastΩ(kz) time with probability at least(1− ε).

A runtime using unrestricted work stealing can completeF(k,z)
quickly, however, because it can complete eachzp quickly (i.e.,
in O(z/P) time), and overlap the executions of the serialzs tasks
from thek repetitions ofF. Lemma 3 states this result more for-
mally, and Theorem 4 compares depth-restricted work stealing and
unrestricted work stealing forF(k,z).

LEMMA 3. Let x= X(ε/k) and y= Y(ε/k). With probability
at least(1− ε), an unrestricted work-stealing scheduler using P
processors can executeF(k,z) in O(kz/P+z) time, assuming that
z= ω(kP2 lg(kP/ε)).

PROOF. The proof follows from the analysis of Cilk [1], which
has an unrestricted work-stealing scheduler; for a Cilk computation
with work T1 and spanT∞, the running time onP processors is
O(T1/P+T∞ + lg(P/ε)), with probability at least(1− ε).

The span ofF is T∞ ≤ k(y+ lg(z)) + z. From our choices of
x and y, we know x = O(P2 lg(kP/ε)), and y = x+ O(Plg(z) +
P2). If z = ω(kP2 lg(kP/ε)), then one can show thatky = o(z)
andk lg(z) = o(z). Thus,T∞ = O(z). Similarly, the work ofF is
T1 = k((P−2)x+y+2z)+Θ(k(lg(z)+P)). The 2kz term asymp-
totically dominates the other terms, soT1 = O(kz).

THEOREM 4. There exists a computation for which the ratio of
the runtime using a depth-restricted work stealing scheduler to the
runtime using an unrestricted work-stealing scheduler isΩ(P).

PROOF. Choosek = Ω(P) andz= ω(kP2 lg(kP/ε)). Then, the
computationF(k,z) satisfies Corollary 2 and Lemma 3, and we get
a competitive ratio ofΩ(P).

3. PROOF DETAILS
In this section, we present the proof of Theorem 1. For com-

pleteness, we also give TBB pseudocode (Figure 3) corresponding
to the tree in Figure 2.

Theorem 1 requires that we choose values forx andy large enough
to make the behavior of random work stealing predictable. The ap-
propriate values forx andy arise from the analysis in Lemma 5.

LEMMA 5. Consider the execution ofF(1,z) using a depth-
restricted work-stealing scheduler. If x≥ X(ε), and y≥ Y(ε,z),
then, with probability at least(1− ε), P−1 processors are stuck in
DepthTrap(z) for at least z time.

PROOF. For i ∈ {1,2, . . .P−1}, let ti be the time step when
some processor begins working on nodeSi in Figure 2. Similarly,
let td be the time when some processor begins work on nodeSd,
i.e., a processor has reached the bottom of the chain of length d =
lg(z)+ 1 in DepthTrap. Intuitively, we prove Lemma 5 by show-
ing thattP−1, the time that a processor starts workingzs, is likely
to satisfytP−1 ≤ X(ε)+csd. Then, sincey≥Y(ε,z) > X(ε)+csd,
H(z) does not generate any parallel work before timetP−1, and pro-
cessors must steal only fromDepthTrap. Furthermore, if we have
tP−1− td ≤ X(ε)≤ x, then, it is impossible for a processor to finish
a serial block of workx beforetP−1. Then, we know each of the
P−2 tasks withx serial work and taskzs must be executed by one
of P− 1 distinct processors. Finally, onceP− 1 processors have
stolen fromDepthTrap, they are trapped at a depth larger than the
depth of any parallel work generated byH, waiting onzs.

More precisely, to boundtP−1, we construct eventsAi which
capture the notion that theti ’s are meeting their “likely” dead-

lines. LetA1 be the event thattd ≤ csd + csP
“

ln(P/ε)
P−1

”

. For j ∈

{2,3, . . .P−1}, let A j be the eventt j ≤ csd+csP
“

P j
i=1

ln(P/ε)
P−i

”

.

We can show by induction that Pr(
T j

i=1Ai) ≥ (1− ε/P) j . Substi-
tuting j = P−1 and simplifying the sum gives ustP−1 ≤X(ε)+csd
with probability at least(1− ε).

In the base case for induction, we compute Pr(A1). Notice that
initially one processor begins work onG, andP−1 other processors
attempt to stealS1. Since processors steal randomly, the proba-
bility that S1 has not been stolen aftern steal attempts is at most
`

1− 1
P

´n
< e−n/P. Thus, withP− 1 processors stealing,S1 is

stolen before timecsP
“

ln(P/ε)
P−1

”

with probability at least(1−ε/P).

Once work begins at nodeS1, we know some processor must reach
Sd in at mostcsd = cs(lg(z)+1) time, (i.e.,td − t1 ≤ csd), since in
the worst case, steals happen for every rightS-node on the chain of
lengthd in DepthTrap. Thus, Pr(A1) ≥ (1− ε/P).

To bound Pr(A1∩A2), we first condition onA1 occurring. Once a
processor reachesSd, it then quickly spawnsS2 and begins working
on a block with serial workx. For timestd < t < t2, at leastP−2
processors must be idle and trying to stealS2. Thus, using the

same analysis as fort1, we know thatt2− td ≤ csP
“

ln(P/ε)
P−2

”

with

probability at least(1− ε/P). Thus, Pr(A2|A1) ≥ (1− ε/P), and
Pr(A1∩A2) = Pr(A2|A1)Pr(A1) ≥ (1− ε/P)2.

We complete the induction by repeating this analysis for there-
mainingA j . Conditioned on the event that

T j−1
i=1 Ai , we know for

timest such thatt j−1 < t < t j , at leastP− j processors trying to

stealSj . Thus,t j − t j−1 ≤ csP
“

ln(P/ε)
P− j

”

with probability at least

(1− ε/P). Thus, Pr
“

T j
i=1Ai

”

≥ (1− ε/P) j .

Finally, to showtP−1−td ≤X(ε) with probability at least(1−ε),
note that if we ignoreS1 and compute deadlines forti − td instead
of ti , the same inductive proof used to boundtP−1 applies.

void F(int k, int z) {
spawn(DepthTrap(lg(z), z));
spawn_and_wait_for_all(G(k, z));

}
void G(int k, int z) {
H(z); if (k > 1) { F(k-1, z); }

}
void H(int z) {
spawn(ParallelWork(z));
spawn_and_wait_for_all(SerialWork(y));

}
void DepthTrap(int d, int z) {
if (d == 0) { TrapProcessors(P-1, z); }
else {

spawn(DepthTrap(d-1, z));
spawn_and_wait_for_all(SerialWork(1));

}
}
void TrapProcessors(int i, int z) {
if (i <= 1) { SerialWork(z); }
else {

spawn(TrapProcessors(i-1, z));
spawn_and_wait_for_all(SerialWork(x));

}
}
void ParallelWork(int n) {
if (n <= 1) { doUnitWork(); }
else {

spawn(ParallelWork(n - n/2));
spawn_and_wait_for_all(ParallelWork(n/2));

}
}
void SerialWork(int n) {
for (int i = 0; i < n; i++) { doUnitWork(); }

}

Figure 3: TBB pseudocode for F(k,z).

By using Lemma 5, we can bound the completion time ofH and
DepthTrap(z) and prove Theorem 1.

PROOF OFTHEOREM 1. Using Lemma 5, sinceDepthTrap be-
gins executingzs at time tP−1, andDepthTrap requires at most
z+ P+ lg(z) additional time to finish, we haveTD ≤ tP−1 + z+
lg(z) + P. Also from Lemma 5, with probability at least(1− ε),
we knowDepthTrap keepsP−1 processors occupied andH(z) ex-
ecutes serially for at leasttP−1 + z time. SinceH has at leasty+ z
work, it cannot finish before timeTH ≥ tP−1 + z+ (y− tP−1)/P.
Then, we knowTH −TD ≥ (y− tP−1)/P− lg(z)−P. By substitut-
ing tP−1 ≤ X(ε)+cs(lg(z)+1), we get thatTH −TD ≥ 0.

4. REFERENCES
[1] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded

computations by work stealing.Journal of the ACM,
46(5):720–748, Sept. 1999.

[2] M. Feng and C. E. Leiserson. Efficient detection of
determinacy races in Cilk programs. InProceedings of the
Symposium on Parallel Algorithms and Architectures (SPAA),
pages 1–11, Newport, Rhode Island, June 1997.

[3] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 212–223, Montreal, Quebec, Canada, 1998.

[4] J. Reinders.Intel Threading Building Blocks: Outfitting C++
for Multi-core Processor Parallelism. O’Reilly, 2007.

