To appear in SIGGRAPH 2004.

Deformation Transfer for Triangle Meshes

Robert W. Sumner

Jovan Popovié

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Reference

Source

Target

Figure 1: Deformation transfer copies the deformations exhibited by a source mesh onto a different target mesh. In this example, deformations
of the reference horse mesh are transfered to the reference camel, generating seven new camel poses. Both gross skeletal changes as well as

more subtle skin deformations are successfully reproduced.

Abstract

Deformation transfer applies the deformation exhibited by a source
triangle mesh onto a different target triangle mesh. Our approach
is general and does not require the source and target to share the
same number of vertices or triangles, or to have identical connec-
tivity. The user builds a correspondence map between the triangles
of the source and those of the target by specifying a small set of
vertex markers. Deformation transfer computes the set of trans-
formations induced by the deformation of the source mesh, maps
the transformations through the correspondence from the source to
the target, and solves an optimization problem to consistently ap-
ply the transformations to the target shape. The resulting system
of linear equations can be factored once, after which transferring a
new deformation to the target mesh requires only a backsubstitu-
tion step. Global properties such as foot placement can be achieved
by constraining vertex positions. We demonstrate our method by
retargeting full body key poses, applying scanned facial deforma-
tions onto a digital character, and remapping rigid and non-rigid
animation sequences from one mesh onto another.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Animation

Keywords: Deformations, Correspondence, Animation

Authors’ contact:

The Stata Center, 32 Vassar Street, Cambridge, MA 02139
sumner@csail.mit.edu

jovan@csail.mit.edu

1 Introduction

Mesh deformation plays a central role in computer modeling and
animation. Artists hand-sculpt facial expressions and stylized body
shapes. They assemble procedural deformations and may use com-
plex musculature simulations to deform a character’s skin. Despite
the tremendous amount of artistry, skill, and time dedicated to craft-
ing deformations, there are few techniques to help with reuse. In
order to reuse a deformation created for one shape to deform an-
other, the specific parameters that control the deformation must be
adapted to the new shape. In many cases, adapting these parameters
is just as time consuming as starting from scratch. Although spe-
cial purpose adaption methods exist, the problem is compounded
in the common case where many different deformation techniques
are used in tandem. An automatic adaption method designed for
one type of deformation may fail in the presence of others. Fur-
thermore, any hand-sculpted alterations will be lost. As a result,
the work spent designing a deformation typically cannot be reused
after its planned application.

Our research amends this problem by automatically copying de-
formations from one mesh onto another. This deformation transfer
technique is our central research contribution. We use a general
approach that requires no knowledge of the actual method used to
deform the original shape. Our technique is purely mesh-based and
does not require the two meshes to share the same number of ver-
tices or triangles, or to have identical connectivity. However, our
algorithm is designed for the case where there is a clear seman-
tic correspondence between the two meshes indicating which parts
of the source and target should deform similarly. Our system can
transfer hand-sculpted alterations as well as deformations resulting
from arbitrarily complex procedural or simulation based methods.
Figure 1 demonstrates our method used to transfer full body defor-
mations of a horse mesh onto a camel. The camel mesh was never
articulated and the resulting camel deformations are completely de-
rived from the source mesh using deformation transfer.

With the aid of a correspondence tool, the user supplies a map-
ping between the triangles of the source and those of the target. For
each triangle of the source mesh, our method computes an affine
transformation that takes the triangle from its original position to
its deformed position. These affine transformations, together with
the correspondence, specify the ideal change in orientation, scale,

To appear in SIGGRAPH 2004.

and skew of each triangle of the target shape. However, these ideal
transformations will not, in general, be consistent with respect to
one another: applied directly without modification, the transfor-
mations would not preserve the connectedness of the target mesh.
Therefore, to find the deformed target shape, deformation trans-
fer solves an optimization problem such that the ideal changes are
matched as closely as possible while maintaining consistency. The
retargeting process is numerically efficient, as the system of lin-
ear equations for a source/target pair can be factored and stored in
a precomputation step. Transferring a new deformation from the
source to the target requires only performing backsubstitution with
the stored factorization. Global properties such as foot placement
can be achieved using positional vertex constraints.

2 Background

Deformation transfer is a generalization of the concept introduced
by expression cloning, which transfers facial expressions from one
face mesh to another [Noh and Neumann 2001]. In this approach,
each expression is encoded with vertex displacements that define
the differences between the reference face and the expression face.
Expression cloning uses heuristics designed to adapt the direction
and scale of displacement vectors to account for faces of differing
shape and proportions. This representation and adaptation tech-
nique is specialized for the deformations that arise in facial expres-
sions. Our method transfers arbitrary nonlinear deformations by
computing an optimal global deformation of the target shape.

One way to represent such a global deformation is with a free-
form deformation [Sederberg and Parry 1986] in which a lattice of
control points induces a deformation on the enclosed space. With
this or a similar representation, any target mesh can be deformed
with ease by applying the global deformation to every mesh ver-
tex. The Inkwell 2D system uses precisely this strategy to animate
different 2D characters with the same set of hand-animated Coons
patches [Litwinowicz 1991]. However, this approach is harder to
generalize when the source deformation is not initially described
by a free-form deformation or a similar representation. In these
cases, the method must infer both the structure of the control lattice
and the position of its control points, or, less optimally, solve for
the control points of a specific lattice structure [Hsu et al. 1992].
A fixed lattice structure is not optimal, because a reasonably sized
lattice cannot express arbitrary nonlinear deformations of vertices
for every target mesh [Singh and Fiume 1998].

Deformation transfer resolves this problem by using locally
specified deformations [Barr 1984], which can define any global
nonlinear deformation of mesh vertices. This approach extends the
ideas from Alexa, Cohen-Or, and Levin’s [2000] shape interpola-
tion technique which maximizes the rigidity of a blended shape by
computing the optimal deformation of its interior. We show that
the interior of the target mesh need not be considered for transfer
of mesh deformation. Our boundary formulation has tremendous
practical advantages. It greatly simplifies the numerical complexity
of the transfer process and makes it easier to specify regions that
should move similarly.

The concept of deformation transfer can be posed as an anal-
ogy: given a pair of source meshes, S and S’, and a target mesh 7,
generate a new mesh 7’ such that the relationship between T and
T’ is analogous to the relationship between S and §’. This form of
reasoning was used to transfer drawing styles between two curves
[Hertzmann et al. 2002]. Deformation transfer applies in the spe-
cific case where the relationship between S and S’ is a continuous
global deformation of the space and not an arbitrary relationship.
This specialization enables optimal reproduction of the source de-
formation on the target mesh. Furthermore, deformation transfer
does not require a common parameterization of the source and tar-
get meshes. Instead, it employs source and target meshes with
matching reference poses much like facial animation uses a neu-
tral face or skeleton-based techniques use a mesh in the T-pose.

When the deformation of a triangle mesh is purely skeleton-
driven, transfer is more straightforward. A simple technique known

as single-weight enveloping or skeleton-subspace deformation de-
forms mesh vertices by blending deformations of nearby skeleton
bones. New target meshes can be swapped in by binding their ver-
tices to the appropriate bones and setting the desired vertex weights.
Furthermore, the motion of the skeleton can be parameterized by
joint angles to define a set of natural control parameters for direct
animation of the mesh with keyframing, or for retargeting motion
from a skeleton of a different size and proportion [Gleicher 1998].
Deformation transfer is the first step toward the development of
similar techniques for the animation of meshes with non-skeletal
deformations or without an obvious skeletal structure. It general-
izes the binding concept, which maps the motion of mesh vertices
to the motion of a skeleton, by mapping deformations of the target
mesh to deformations of the source.

Deformation transfer can have an immediate impact on example-
based techniques, which currently rely on the artist to specify exam-
ple shapes. Pose-space deformation, for example, corrects the “col-
lapsing elbow” and other problems associated with simple skeleton-
driven deformations by enabling the artist to sculpt corrective de-
formations [Lewis et al. 2000]. Once these corrections have been
sculpted, deformation transfer can reduce the effort required to
adapt them to new meshes. Bregler et al.’s cartoon-capture tech-
nique encodes a motion in the coefficients of a linear combination
of meshes, which describe the animated character in a selection of
key poses [2002]. Mapping these motions onto a different character
requires an artist to recreate the new character in every single pose.
Deformation transfer requires only one pose for the new charac-
ter and automates the reproduction of the remaining poses. If the
entire configuration space of the character is described in this man-
ner [Ngo et al. 2000; Sloan et al. 2001], deformation transfer could
lead to a technique for mapping the articulation from one character
to another.

3 Deformation Transfer

The goal of deformation transfer is to transfer the change in shape
exhibited by the source deformation onto the target. We represent
the source deformation as a collection of affine transformations tab-
ulated for each triangle of the source mesh. We use this represen-
tation because the non-translational portion of each affine transfor-
mation encodes the change in orientation, scale, and skew induced
by the deformation on the triangle. However, the three vertices of
a triangle before and after deformation do not fully determine the
affine transformation since they do not establish how the space per-
pendicular to the triangle deforms. To resolve this issue, we add a
fourth vertex in the direction perpendicular to the triangle. Let v;
and V;, i € 1...3, be the undeformed and deformed vertices of the
triangle, respectively. We compute a fourth undeformed vertex as

va=vi+(V2—v) x (v3=v1)/V/[(va=vi) x (vs=vi)| (1)

and perform an analogous computation for ¥4. We scale the cross-
product by the reciprocal of the square root of its length since
this causes the perpendicular direction to scale proportional to the
length of the triangle edges.

An affine transformation defined by the 3 x 3 matrix Q and dis-
placement vector d, which, for notational convenience, we write as
Q +d, transforms these four vertices as follows:

Qvi+d=vV;, iel...4 2)

If we subtract the first equation from the others to eliminate d and
rewrite them in matrix form treating the vectors as columns, we get

QV = V where

V=[va—Vi V3—V| V4—Vi]

B T 3
V:[V27V] V3 —V) V47V1] ()
A closed form expression for Q is given by
Q=Vvl)

To appear in SIGGRAPH 2004.

Reference

Source

Target

Figure 2: We encode a source deformation with an affine transformation for each source triangle and relate the transformations to the target
through a user supplied triangle correspondence. (A) Using only the non-translational component of the source transformations transfers the
change in orientation and scale to the target triangles but does not position them appropriately relative to their neighbors. (B) Using the source
displacements gives a disconnected shape since consistency requirements are not enforced. (C) Deformation transfer solves a constrained
optimization problem for a new set of target transformations that are as close as possible to the source transformations while enforcing the
consistency requirements: shared vertices must be transformed to the same place.

We use Equation 4 to compute the source transformations
Si,...,S)g that encode the change in shape induced by the defor-
mation, where S refers to the set of triangle indices for the source
mesh.

In order to relate the source deformation to the target mesh with
the set of triangle indices 7', the user supplies a mapping M between
the set indices for the source and target triangles:

M ={(s1,11),(s2:12) -, (S|m)styma)) }- ®)

A pair (s;,#;) indicates that the target triangle with index #; should
deform like the source triangle with index s;. This mapping allows
transferred deformations to originate from any region of the source
mesh. There are no restrictions on M. In most cases, it is a general
many-to-many mapping, but it can also be bijective (one-to-one and
onto), surjective (onto), or not-onto. This generality enables trans-
fer between meshes of different tessellations.

Our strategy is to transfer the source transformations via the cor-
respondence map to the target. The non-translational portion S of
a source affine transformation S + d encodes the change in triangle
shape induced by the source deformation. However, we cannot ap-
ply S directly to the corresponding target triangle since S encodes
only the change in orientation and size and not the positioning of
the triangle relative to its neighbors (Figure 2 A). Furthermore, we
cannot use the source displacement vectors to resolve this problem
since their lengths depend on the size and position of the source
shape. Doing so yields a discontinuous shape (Figure 2 B) and ex-
poses the fact that our deformation representation affords too many
degrees of freedom. It allows the triangles to be transformed arbi-
trarily even though neighboring triangles share vertices.

In order to ensure that the affine transformations, when applied
to the target mesh, are consistent with respect to one another, we
require that shared vertices be transformed to the same place (Fig-
ure 3). For the set of target affine transformations Ty +d; ... T)7| +

d|7) this requirement is
TjV,'-i-dj:TkVi-ﬁ-dk, Vi, Vj,k € p(vi), 6)

where p(v;) is the set of all triangles that share vertex v;.

In order to transfer the source deformation onto the target mesh
while maintaining these consistency requirements (Figure 2 C),
deformation transfer minimizes the difference between the non-
translational components of the source and target transformations
and enforces the consistency constraints in Equation 6 by solv-
ing the following constrained optimization problem for the target

v

Figure 3: In order to maintain consistency, the affine transforma-
tions for all triangles j,k € p(v) that share vertex v must transform
v to the same position.

affine transformations:

M|

2
Z HSS/_TU”F (7

min
T1+d1mT‘T‘+d‘T‘

subjectto Tjvi+d;j =Tyvi+dy, Vi, Vj, k€ p(v).

The matrix norm || - || is the Frobenius norm, or the square root of
the sum of the squared matrix elements.

A solution of this optimization problem defines a continuous de-
formation of the target mesh up to a global translation. The global
translation can be defined explicitly by setting the displacement d;
for any target triangle. In addition, other positional constraints such
as foot placement can also be added.

4 Vertex Formulation

Although the formulation of deformation transfer in Equation 7 can
be solved with quadratic programming techniques, a more efficient
method eliminates the constraints by reformulating the problem in
terms of vertex positions. The key idea is to define the unknown tar-
get transformations in terms of the triangles’ vertices. Then, rather
than solving for the entries of the affine transformations, we solve
directly for the deformed vertex positions. This method satisfies
all constraints because, by construction, any shared vertex will be
transformed to the same location.

For each target triangle, we add a fourth undeformed vertex
(Equation 1) and write the non-translational portion of the affine
transformation in terms of the undeformed and deformed vertices
T = VV~!. The elements of V~! depend on the known, unde-
formed vertices of the target shape. The elements of V are the co-
ordinates of the unknown deformed vertices. Thus, the elements of
T are linear combinations of the coordinates of the unknown de-
formed vertices.

To appear in SIGGRAPH 2004.

Given this definition, we rewrite the minimization problem as

.] 2
Jn Z] HSS/' -1y HF ®)
i=

Vi...Vy,

Since the target transformations are defined in terms of the un-
known deformed target vertices, the minimization is over the ver-
tices themselves and the continuity constraints are implicitly satis-
fied. Positional vertex constraints can be enforced by simply treat-
ing a vertex as a constant rather than as a free variable.

The solution to this optimization problem is the solution to a
system of linear equations. Rewriting the problem in matrix form
yields

min e~ A%/[3 ©)
V1.9,
where X is a vector of the unknown deformed vertex locations, c¢ is
a vector containing entries from the source transformations, and A
is a large, sparse matrix that relates X to c¢. Setting the gradient of
the objective function to zero gives the familiar normal equations:

ATAx=ATc (10)

The entries in A depend only on the target mesh’s undeformed ver-
tex locations. Furthermore, the system is separable in the spatial
dimension of the vertices. Thus, for each source/target pair, we
compute and store the LU factorization of ATA only once. Retar-
geting any source deformation onto the target mesh only requires
performing backsubstitution to solve separately for the x, y, and z
components of the deformed target vertices. For efficiency, we use
a sparse LU solver [Davis 2003]. Since the columns of A corre-
spond to the unknown deformed target vertices, and since we add
an extra vertex for each triangle, the number of columns of A (and
hence the number rows and columns of ATA) is equal to the number
of vertices plus the number of triangles of the target mesh. Table 1
lists the vertex and triangle counts for the meshes in this paper, and
Table 2 lists the factorization and average backsubstitution times.

5 Correspondence

The correspondence between the source and target triangles defines
how the deformation of the source mesh should be transferred to
the target. We aid the creation of this mapping with a tool that auto-
matically computes the triangle correspondence from a small set of
m user selected marker points. Our correspondence technique is an
iterated closest point algorithm with regularization, aided by user
selected marker points, that deforms the source mesh into the target
mesh. Then, it computes the triangle correspondence by search-
ing for pairs of source and target triangles whose centroids are in
close proximity. Figure 4 illustrates this process. Our correspon-
dence system is similar to the template fitting procedure described
by Allen, Curless, and Popovi¢ [2003] but developed in the context
of our numerical framework.

The correspondence system solves a minimization problem sim-
ilar to the one we use for deformation transfer, but the objective
function is designed to deform one mesh into the other, rather than
deforming it like the other deforms. The user controls the deforma-
tion by supplying a set of marker points specified as pairs of source
and target vertex indices. Each pair indicates that the source ver-
tex, after deformation, should match the location of the target ver-
tex. These markers are enforced as constraints in the minimization.
The objective function contains a term that enforces deformation
smoothness, one that prevents over smoothing, and one that moves
the source vertices to the target mesh.

Deformation smoothness, Eg, indicates that the transformations
for adjacent triangles should be equal. For a mesh with n vertices,
we let T be the set of triangle indices and T} +d; ... Ty +d;7| be

the affine transformations that define the deformation. Then,
|T|

Es(vi..va)=Y Y [ITi—Tj|[7. (11)

i=1 jeadj(i)

Figure 4: The correspondence algorithm deforms the source mesh
into the target, controlled by user selected marker points shown in
yellow. (A) Target mesh. (B) Source mesh. (C) Source mesh after
the first phase of deformation where the closest valid point term
is ignored. (D) Final deformed mesh using all three terms of the
objective function.

Here, Ty,... ’T\T\ are defined in terms of the target vertices accord-

ing to Equation 4, and adj(i) is the set of triangles adjacent to tri-
angle i. Note that this term is minimized when the change in defor-
mation, and not the mesh itself, is smooth. For example, regardless
of the smoothness of the mesh, any rigid transformation applied to
all triangles is a valid minimum for Ey.

Deformation identity, £y, is minimized when all transformations
are equal to the identity matrix:

7|
Er(vi..vp) = Y [Ti—T||7. (12)

i=1

The purpose of this term is to prevent the deformation smoothness
term from generating a drastic change in the shape of the mesh in
order to achieve optimal smoothness.

The closest valid point term, E¢, indicates that the position of
each vertex of the source mesh should be equal to the closest valid
point on the target mesh.

n

Ec(Vl...Vmcl...cn):ZHV,'—C,'H27 (13)
i=1

where ¢; is the closest valid point on the source mesh to target vertex
i. When computing the closest valid point, vertex normals of the
source mesh are compared with triangle normals of the target mesh
and a difference in orientation of less than 90° indicates a valid
point. A grid-based spatial sorting algorithm accelerates the closest
point computation.

To compute the deformed vertices V; ...V, of the source mesh,
we define the following minimization problem

min E(V] ...V, € Cn) =wsEs+wiE+wcEc
gyt ~ (14)
subjectto Vg, =my, ke€l...m

where wg, wy, and w¢ are weights, s is the source vertex index for
marker k, and my, is the position of marker k on the target mesh. We
solve this minimization in two phases. In the first phase, we ignore
the closet point term by using weights wg = 1.0, w; = 0.001, and
wce = 0. We solve the problem for the deformed source mesh (Fig-
ure 4 B). The marker points of the deformed mesh will match ex-
actly since they are specified as constraints, and the rest of the mesh
will be carried along by the smoothness and identity terms. We use
this initial estimation to compute a set of valid closest points. Then,
in the second phase, we solve the same problem increasing w¢ each
time and updating the closest points after each iteration. Preserving
ws = 1.0 and w; = 0.001 while increasing wc in four steps from
1.0 to 5000.0 produced good results in our tests. Each time the
minimization problem is solved, the source mesh is deformed from
its original undeformed state. Since w¢ increases, the source mesh
more closely approximates the target mesh after each iteration (Fig-
ure 4 C).

Once the source mesh has been deformed to match the shape of
the target mesh, we compute the triangle correspondences by com-
paring the centroids of the deformed source and target triangles.

To appear in SIGGRAPH 2004.

Mesh Vertices | Triangles
Horse 8,431 16,843
Camel 21,887 43,814
Cat 7,200 14,410
Lion 5,000 9,996
Face 29,299 58,836
Head 15,941 31,620
Flamingo 26,907 52,895

Table 1: Number of vertices and triangles for our example meshes.

Two triangles are compatible if their centroids are within a certain
threshold of each other and the angle between their normals is less
than 90°. This compatibility test prevents two nearby triangles with
disparate orientation (e.g., triangles from the upper and lower lips
of a face) from entering the correspondence. For each triangle of
the deformed source, we compute the closest compatible triangle
(if any) of the target mesh and add the pair to the correspondence
list. Likewise, for each triangle of the target, we compute the clos-
est compatible triangle of the deformed source mesh and add that
pair. This process ensures that all triangles of the source and tar-
get meshes, subject to the compatibility restriction, will be listed
among the correspondences. A target triangle may correspond to
many source triangles, and vice versa. This feature allows our de-
formation transfer method to accommodate meshes with differing
numbers of vertices and triangles.

6 Results

Figure 1 shows deformations of a horse transfered onto a camel.
The reference horse mesh, shown in the gray box, is deformed into
seven key poses. The key poses include obvious skeletal deforma-
tions such as bending of the legs or neck as well as more subtle skin
deformations like stretching near the joints. The input to our algo-
rithm is the reference horse mesh, the seven deformed horse poses,
the reference camel mesh, and the correspondence between the two
reference meshes. Given this data, deformation transfer generates
seven new camel poses by transferring the source deformations onto
the reference camel. Both the gross skeletal changes as well as
the more subtle skin deformations are faithfully reproduced on the
camel. Figure 5 demonstrates a similar set of deformations. Here,
key poses of a cat are retargeted onto a lion. Since deformation
transfer copies the change in shape induced by the deformation, we
require the source and target reference meshes to have the same
kinematic pose when skeletal deformations are retargeted.

While the deformations of Figures 1 and 5 are primarily skeletal
in nature, Figure 6 demonstrates the effectiveness of our approach
with non-rigid deformations. Here, the horse collapses as if it were
made of a rubber sheet. Its legs buckle and its entire body falls to
the ground, folding on top of itself. The deformations are transfered
to the camel, and its body buckles and collapses similarly.

In the accompanying video, we use deformation transfer to re-
target two deformations that vary continuously through time. First,
we transfer a gallop gait from the horse to the camel, and then
we transfer the collapsing motion from Figure 6. In order to re-
solve the global positioning of the camel over time and to enforce
foot/ground contact, we extracted the positions of one vertex on
each foot of the horse over time, performed an overall scaling to
better match the larger size of the camel, and added vertex con-
straints to match a vertex on each camel foot to these positions.
Deformation transfer then copies the horse deformation onto the
camel while simultaneously satisfying the vertex constraints. Be-
cause computing the source deformations as well as mapping them
to the target are both linear operations, temporal consistency of the
source animation and vertex constraints results in a temporally co-
herent target animation.

In Figure 7, facial expressions of a real person, acquired with a
3D scanning system, are transfered onto a digital character. A great
deal of expressiveness—especially around the eyes and nose—is

Example Number of | LU Factor- Back-
Markers ization substitution
Horse/Camel 65 1.559s 0.293s
Cat/Lion 77 0.299s 0.057s
Face/Head 42 1.252s 0.298s
Horse/Flamingo 73 1.495s 0.406s

Table 2: The number of correspondence markers used and the tim-
ing results for our examples on a 3.0GHz Pentium IV machine.

captured and adapted to the target head. This type of transfer might
be used when a digital stand-in must replace a real actor, or to map
the facial expressions of a voice actor onto an animated character.

Since the scanned data is in the form of face masks and the target
mesh consists of an entire head and neck, the mapping between the
source and target triangles is not onto. Only a subset of the target
triangles (those of the front of the face) are listed in the correspon-
dence. We specify that the deformation of the remaining target tri-
angles should be minimal by mapping them to the identity matrix.

Our deformation transfer technique was designed for the case
where there is a clear semantic correspondence between the source
and target. We chose anatomically similar meshes to demonstrate
our results since they have an obvious mapping (i.e., leg to leg, head
to head, etc.). In Figure 8, we challenge this assumption by transfer-
ring the horse deformation onto a flamingo mesh. The correspon-
dence is ambiguous as the flamingo has only two legs, no tail, and a
beak. We mapped the flamingo’s legs to the horse’s front two legs,
the flamingo’s body to the entire horse’s body including its tail, and
its beak to the horse’s head. Building this mapping pushes the lim-
its of our correspondence system as the flamingo’s “S”-shaped neck
must be unbent to match the horse’s straight neck. The deformation
smoothness term (Equation 11) fights against these large local de-
formations, requiring the user to select many marker points along
the neck. However, once the correspondence has been adequately
specified, the flamingo faithfully deforms like the horse. Of course,
a real flamingo’s hips bend in the opposite direction of a horse’s
front hips, which demonstrates a reason why deformation transfer
between anatomically different meshes may not be appropriate.

None of the source and target meshes in our examples share the
same number of vertices, triangles, or connectivity. Table 1 lists
this geometric information about each model, and Table 2 gives
timing results for each example. Our method is extremely fast.
For example, the camel mesh, consisting of 21,887 vertices and
43,814 triangles, required only 1.559 seconds for factorization and
0.293 seconds on average to solve for each retargeted pose. The
user time required to add the markers and compute the correspon-
dence for each example was under one hour.

7 Conclusion

Deformation transfer is a general mesh based technique that trans-
fers deformations exhibited by a source mesh onto a different target
mesh. The technique transfers between meshes with different mesh
structure (number of vertices, number of triangles, and connectiv-
ity). The process is numerically efficient. A precomputation step
factors and stores the system of equations for a source/target pair.
Transferring a new deformation involves a backsubstitution with
the factored system.

The user controls the transfer process by supplying a mapping
between the triangles of the source and the triangles of the target
that identifies which parts should move similarly. Our correspon-
dence tool assists the user by automatically computing the triangle
correspondence from a small number of user supplied markers.

In order to perform deformation transfer, the source and target
deformations are represented as affine transformations. The known
source deformations are mapped to the target via the correspon-
dence map. We solve a constrained optimization for the target de-
formation that matches the source transformations as closely as pos-

To appear in SIGGRAPH 2004.

Reference

Source

Target

Source

Target

Figure 6: The horse deformation, collapsing as if it were made of a rubber sheet, is transferred to the camel.

sible while maintaining consistency constraints. For efficiency, we
use a vertex formulation of this problem that satisfies the constraints
implicitly.

Several limitations of our current system point to directions of
future work. Our method allows limited control over the deforma-
tion transfer process in the form of the correspondence map and
vertex constraints, but provides no direct way to fine-tune the so-
lution aside from changing the source deformation and reapplying
deformation transfer. In particular, it cannot transfer the animation
controls used to generate the deformation in the first place. Ideally,
deformation transfer would carry over the controls as well, allowing
the retargeted deformation to be fine-tuned for the target shape. A
general technique to adapt animation control knobs from one char-
acter to another is an open problem in computer graphics.

The optimization problem that we solve is unique up to a global
translation. Thus, the global position must always be specified in
some way by the user. When retargeting only key poses, as in Fig-
ures 1 and 5, it is easy to resolve the global position by fixing one
vertex in place. However, when retargeting an entire animation se-
quence, the position must be specified at each point in time. A po-
sitional constraint specified only during selected intervals (such as
during ground contact) will result in “popping” artifacts when the
constraint becomes active. In the accompanying video, we resolved
the issue by constraining the camel’s feet to match the horse’s feet
at each point in time. But, if two meshes have very different pro-
portions, it may be more difficult to formulate an appropriate con-
straint.

One way to approach this problem is to directly address the tem-
poral dimension in the retargeting process in order to enforce tem-
poral coherence as well as reduce the global positioning problem

to the specification of positional constraints only during key events
such as foot/ground contact. However, a formulation of deforma-
tion transfer over time would increase the numerical complexity of
the optimization, requiring a different numerical approach. With
our direct LU solver, we have successfully transfered deformations
onto a target mesh with 400k triangles. However, at this point
the LU solver approaches memory limitations. The LU factoriza-
tion, with a considerable amount of swapping, took 95 seconds, and
backsubstitution took 6.5 seconds. For extremely large meshes, a
multigrid solver would likely outperform our direct method.

Perhaps the most conspicuous limitation of our technique is
the requirement of gross similarity between the source and tar-
get meshes. Transferring deformation between drastically different
meshes is an open problem in computer graphics that presents two
primary challenges. First, it requires a more versatile technique to
relate the source and target to one another that can accommodate
ambiguous and arbitrary mappings. Second, it requires a method to
appropriately adapt the deformation to the target, rather than simply
transferring it directly without modification.

Acknowledgments

The authors would like to thank Daniel Vlasic for his assistance on
an earlier version of this project, Ray Jones for his insightful com-
ments, Charles Han and Andrew Elliott for their help in preparing
the figures, and Shuang You for an earlier version of the correspon-
dence system. This research was sponsored by the Deshpande Cen-
ter for Technological Innovation.

To appear in SIGGRAPH 2004.

Reference

Source

Target

3
3

Reference

Source

Target

"
yoll

Figure 8: Horse poses mapped onto a flamingo.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-
as-possible shape interpolation. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, 157-164.

ALLEN, B., CURLESS, B., AND POPOVIC, Z. 2003. The space of
human body shapes: Reconstruction and parameterization from
range scans. ACM Transactions on Graphics 22, 3 (July), 587-
594.

BARR, A. H. 1984. Global and local deformations of solid primi-
tives. In Computer Graphics (Proceedings of ACM SIGGRAPH
84), vol. 18, 21-30.

BREGLER, C., LOEB, L., CHUANG, E., AND DESHPANDE, H.
2002. Turning to the masters: Motion capturing cartoons. ACM
Transactions on Graphics 21, 3 (July), 399-407.

Davis, T. A. 2003. Umfpack version 4.1 user guide. Tech. rep.,
University of Florida. TR-03-008.

GLEICHER, M. 1998. Retargeting motion to new characters. In
Proceedings of ACM SIGGRAPH 1998, Computer Graphics Pro-
ceedings, Annual Conference Series, 33—42.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S. M.
2002. Curve analogies. In Eurographics Workshop on Rendering
2002, 233-246.

Hsu, W. M., HUGHES, J. F., AND KAUFMAN, H. 1992. Direct
manipulation of free-form deformations. In Computer Graphics
(Proceedings of ACM SIGGRAPH 92), vol. 26, 177-184.

LEwis, J. P.,, CORDNER, M., AND FONG, N. 2000. Pose
space deformations: A unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, 165-172.

LitwiNowIcz, P. C. 1991. Inkwell: A 2 1/2-d animation system.
In Computer Graphics (Proceedings of ACM SIGGRAPH 91),
vol. 25, 113-122.

NGO, T., CUTRELL, D., DANA, J., DONALD, B., LOEB, L., AND
ZHU, S. 2000. Accessible animation and customizable graph-
ics via simplicial configuration modeling. In Proceedings of
ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-
nual Conference Series, 403—410.

NoH, J., AND NEUMANN, U. 2001. Expression cloning. In
Proceedings of ACM SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, 277-288.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 86), vol. 20, 151-160.

SINGH, K., AND FIUME, E. L. 1998. Wires: A geometric
deformation technique. In Proceedings of ACM SIGGRAPH
1998, Computer Graphics Proceedings, Annual Conference Se-
ries, 405-414.

SLoAN, P.-P. J., RoOSE, 111, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proceedings of the 2001 symposium on
Interactive 3D graphics, ACM Press, 135-143.

