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Abstract
Recent innovations on hardware (e.g. Nvidia A100) have motivated learning N:M structured sparsity

masks from scratch for fast model inference. However, state-of-the-art learning recipes in this regime
(e.g. SR-STE) are proposed for non-adaptive optimizers like momentum SGD, while incurring non-trivial
accuracy drop for Adam-trained models like attention-based LLMs. In this paper, we first demonstrate
such gap origins from poorly estimated second moment (i.e. variance) in Adam states given by the
masked weights. We conjecture that learning N:M masks with Adam should take the critical regime
of variance estimation into account. In light of this, we propose STEP, an Adam-aware recipe that
learns N:M masks with two phases: first, STEP calculates a reliable variance estimate (precondition
phase) and subsequently, the variance remains fixed and is used as a precondition to learn N:M masks
(mask-learning phase). STEP automatically identifies the switching point of two phases by dynamically
sampling variance changes over the training trajectory and testing the sample concentration. Empirically,
we evaluate STEP and other baselines such as ASP and SR-STE on multiple tasks including CIFAR
classification, machine translation and LLM fine-tuning (BERT-Base, GPT-2). We show STEP mitigates
the accuracy drop of baseline recipes and is robust to aggressive structured sparsity ratios.

1 Introduction
Overparameterized Deep Neural Networks (DNNs) have shown promising performance on various applications,
such as language modeling [Brown et al., 2020], translation [Vaswani et al., 2017] and image classification [Liu
et al., 2021]. However, modern DNNs usually contain millions of billions of parameters (e.g. BERT [Devlin
et al., 2018] and GPT [Brown et al., 2020]), which hinders the inference scalability. Recent innovation on
hardware architecture suggests structured sparsity is a promising way of alleviating this issue by deploying
N:M masks during inference (N out of consecutive M elements in the the weight tensor are kept while others
are pruned). N:M masks accelerate model inference with regular sparse structures [Pool, 2020, Fang et al.,
2022]. Compared to traditional unstructured sparsity [Frankle and Carbin, 2018, Lee et al., 2018, Evci et al.,
2020] or channel/block structured sparsity algorithms [Wen et al., 2016, Li et al., 2016, He et al., 2017],
adopting N:M masks has negligible evaluation degradation and progressively co-design algorithm (sparse
matrix multiplication) and hardware (e.g. Nvidia Ampere Sparse Tensor Core), reaching a desirable trade-off.

Following this line of research, recent studies indicate it is critical (and also possible) to learn these N:M
masks from scratch, without additional training or finetuning steps. Representative methods in this domain
include SR-STE [Zhou et al., 2021], DominoSearch [Sun et al., 2021] and Decaying Mask [Kao et al., 2022],
which sparsify the model weights during each forward pass in training to compute gradients, and update them
to models. While these methods demonstrate promising results with momentum SGD, their performance
over adaptive optimizers, such as Adam, is less satisfactory (Section 3). This implies the benefits of sparsity
are largely traded-off by adaptivity in training, leading to slow convergence on many state-of-the-art models
[Zhang et al., 2020]. In light of this, in this paper we answer the question:
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Can we learn N:M structured sparsity masks with Adam, without model degradation?

Motivated by the insights from recent studies on critical learning regime of Adam in a distributed learning
environment Tang et al. [2021], Lu et al. [2022], we first hypothesize that with masked weights, the back
propagation leads to noisy gradients and gives a poorly estimated variance (running average of second moment
gradients) in the Adam states. It essentially breaks the proper scaling of the coordinate-wise learning rate.

To alleviate this, we propose STEP that learns N:M masks with two phases: 1) in the first phase, no
mask is applied and STEP explores the gradient space to obtain a reliable variance estimate (precondition
phase); 2) in the second phase, such estimate remains fixed and is used to learn N:M masks (mask-learning
phase). While previous works have had similar ideas on two-phase training paradigm under the context
of low-precision training [Tang et al., 2021, Lu et al., 2022, Tang et al., 2020], the switching point of two
phases is still decided by heuristics or redundant hyperparameter tuning. In contrast, STEP leverages a
novel AutoSwitch subroutine that samples the variance update along the training trajectory and tests their
concentration.

Our contributions in this paper can be summarized as follows:
• We introduce STEP, a recipe for learning N:M structured sparsity masks from scratch with Adam. STEP

addresses the accuracy drop of state-of-the-art recipes (e.g. SR-STE) with Adam. STEP involves a novel
subroutine named AutoSwitch, which automatically separates the training into precondition and mask
learning phases by dynamically testing variance concentration.

• We provide in-depth analysis on why using preconditioning in Adam is justifiable, and prove in theory that
under the same conditions given in original Adam paper [Kingma and Ba, 2014], the precondition error
from STEP remains bounded and the averaged accumulated approximation error is decreasing over time.

• We perform extensive experiments on CIFAR image classification, WMT machine translation, fine-tuning
BERT on GLUE and GPT-2 on WikiText-2/-103 that STEP mitigates the accuracy drop of baseline
algorithms, and is robust to aggressive structured sparsity ratios.

2 Related Work
Recipes for Learning N:M Structured Sparsity Masks from Scratch. With the proposition of
Sparse Tensor Cores introduced in the NVIDIA Ampere GPU architecture [Mishra et al., 2021], there has
been an increasing interest of learning N:M structured sparsity masks from scratch. Zhou et al. [2021]
initiatively proposes SR-STE that leverages sparse refinement when evaluating gradients via masked weights
(termed Straight Through Estimator). Subsequently, Sun et al. [2021] and Kao et al. [2022] extend SR-STE
towards using adaptive N:M ratios across layers and steps. While these works focus on learning the N:M
masks from scratch, other works have separate discussions. For instance, Holmes et al. [2021] proposes a
general framework to learn the structured sparsity mask on a pre-trained model specifically. Hubara et al.
[2021] aims to find N:M masks to speed up training rather than inference. Pool and Yu [2021] advocates
a pre-permutation yields better results for N:M sparsity and Chmiel et al. [2022] discusses the structured
sparsity on activations.

Critical Learning Regime for Adam Variance. The existence of a critical learning regime during
neural network training has been observed by various studies [Frankle and Carbin, 2018, Achille et al., 2018,
Gur-Ari et al., 2018]. Many prior works including [Jastrzębski et al., 2018, Jastrzebski et al., 2020] highlight
that the early phase of training with SGD determines the difficulty of entire training. Lately, studies including
[Tang et al., 2021, 2020, Agarwal et al., 2021] suggests the critical learning regime also exists for Adam-type
optimizers [Kingma and Ba, 2014] in a distributed learning environment. More specifically, it has been
pointed out that if we wish to use communication quantization for distributed Adam, then we must run dense
Adam for the first few iterations to obtain a reliable variance, followed by iterations where quantization is
actually applied [Tang et al., 2021, Lu et al., 2022, Tang et al., 2020, Li et al., 2021]. Despite the similarity in
heuristics to our works, accurately identifying the critical learning regime (i.e. precondition phase) is much
more crucial in learning N:M masks: early exiting the precondition phase could lead to unreliable variance
estimate while late exit could result in poorly-trained N:M masks. This makes the previous methods on
hand-picking the phase length for preconditioning highly unreliable.
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(a) ResNet18 on CIFAR10

(b) DenseNet121 on CIFAR100

Figure 1: Figures demonstrating the state-of-the-art N:M masks learning recipe SR-STE [Zhou et al., 2021]
works with momentum SGD but fails to reach target accuracy when trained with Adam on CIFAR classification
tasks. In this demonstration, 1:4 (N=1, M=4) sparsity is applied on all the model weights using the exact
implementation from [Zhou et al., 2021]. Note that here we are not comparing the performance between
momentum SGD and Adam, but rather focus on the accuracy gap between dense and SR-STE under two
different optimizers.

3 Preliminary
In this section, we give a more formal description on the problem formulation. We first provide an overview
on the Adam updates and fundamentals to learn N:M masks from scratch with Straight Through Estimator
(STE). We also introduce our main baseline SR-STE [Zhou et al., 2021], the state-of-the-art recipe to learn
N:M masks. We conclude this section by showing naively applying SR-STE over Adam incurs non-trivial
accuracy drop when training ResNet18 on CIFAR10 [He et al., 2016] and DenseNet121 on CIFAR100 [Huang
et al., 2017].

Overview of Adam Updates. Model training in general can be formulated as an optimization problem,
i.e., finding a set of target model weights w∗ ∈ Rd that minimizes the loss function:

w∗ = arg min
w∈Rd

[f(w) = Eζ∼Df(w; ζ)] . (1)

where D denotes the training set and f(w; ζ) is the loss incurred over sample ζ given d-dimensional model
parameters w. The Adam optimizer [Kingma and Ba, 2014] solves this problem iteratively with an adaptive
learning rate schedule. Concretely, with some initialized value w1, for any t ≥ 1, the update formula of
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Adam1 can be summarized as:

(Sample Gradient) gt = ∇f(wt; ζt), ζt ∼ D, (2)
(Update m) mt+1 = β1mt + (1− β1)gt, (3)

(Update v) vt+1 = β2vt + (1− β2)(gt)
2, (4)

(Correct Bias) m̂t+1 =
mt+1

1− βt1
, (5)

(Correct Bias) v̂t+1 =
vt+1

1− βt2
, (6)

(Update Model) wt+1 = wt −
γt√

v̂t+1 + ε︸ ︷︷ ︸
adaptive learning rate

�m̂t+1, (7)

where γt is the learning rate at step t, ε is a small constant to prevent zero division, β1 and β2 are tunable
decaying factors. The running average of first and second gradient moments m and v are usually referred
to as momentum and variance, respectively. The Adam optimizer (and its variants) has been adopted as
the folklore method to train many models since its proposition. In recent studies like [Zhang et al., 2020], it
has been found that Adam is critical for many attention-based foundation models to achieve state-of-the-art
model quality.

Overview of SR-STE. Learning N:M structured sparsity masks from scratch refers to generating a set of
N:M masks at the end of model training, without any additional training steps, and apply these masks during
inference. STE [Bengio et al., 2013] is a basic method to solve this problem by directly masking the model
weights during forward passes, making the gradients mask-aware. This can be formally expressed as: ∀t ≥ 1

gt = ∇f(Πt �wt; ζt), (8)

where Πt is an N:M mask obtained based on the magnitude of wt. Comparing Equation (2) and Equation (8),
the main difference in STE is that the gradient is now computed on the masked weights, while the mask is
wt specific at any training step t.

Based on STE, SR-STE [Zhou et al., 2021] advocates a regularized version of gradients with masking.
Specifically, with a given regularizing coefficient λ, SR-STE estimates the gradient as:

gt = ∇f(Πt �wt; ζt) + λ(1−Πt)�wt, (9)

where 1 denotes all-one vector in Rd. It has been shown in [Zhou et al., 2021] that proper refinement and a
well-tuned λ mitigates the accuracy drop of momentum SGD over plain STE.

Issue on SR-STE with Adam. While the majority of results shown in [Zhou et al., 2021] demonstrates
the effectiveness of SR-STE over momentum SGD, here we identify even on simple CIFAR tasks, SR-STE
could lead to unsatisfactory sparse models when trained with Adam. We plot the results in Figure 1, which
compares the performance of dense training and SR-STE on two models (ResNet18 and DenseNet121) on
CIFAR10/100 datasets. We observe that when training a model with Adam, the masks learned by SR-STE
incur non-trivial accuracy drop during model inference.

4 STEP: STE with Precondition
In this section, we introduce the approach of addressing the aforementioned issue of SR-STE with Adam. The
intuition of our method is based on the observation on variance change during model training. We then justify
our approach with theory under the same condition in [Kingma and Ba, 2014], and illustrate its practicality.
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Algorithm 1 Proposed STEP Algorithm

Require: Initial time step t = 0, initialized model weights w0, Adam-related hyperparameters: {(β1, β2), ε
for preventing zero division, initialized momentum and variance m0 = 0, v0 = 0}.

1: while True do
2: Sample the data batch ζt.
3: Compute stochastic gradient gt = ∇f(wt; ζt).
4: Update the momentum: mt+1 = β1mt + (1− β1)gt.
5: Update the variance: vt+1 = β2vt + (1− β2)(gt)

2.
6: Correct momentum bias: m̂t+1 = mt+1/(1− βt1).
7: Correct variance bias: v̂t+1 = vt+1/(1− βt2).
8: Update the weights: wt+1 = wt − γtm̂t+1/

√
v̂t+1 + ε.

9: Update the time t = t+ 1.
10: if t is the switching point then
11: Set the preconditioned variance v∗ = vt and break.
12: end if
13: end while
14: while t < T do
15: Sample the data batch ζt.
16: Compute N:M mask Πt based on the current weights wt.
17: Compute stochastic gradient gt = ∇f(Πt �wt; ζt).
18: Update the momentum: mt+1 = β1mt + (1− β1)gt.
19: Correct momentum bias: m̂t+1 = mt+1/(1− βt1).
20: Update the weights: wt+1 = wt − γtm̂t+1/

√
v∗ + ε.

21: Update the time t = t+ 1.
22: end while
23: Compute N:M mask ΠT based on the current weights wT .
24: return ΠT �wT for inference.

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 2: Figure showing variance vt (running average of second moment) change in the Adam states, in the
CIFAR tasks shown in Figure 1. In dense training, the variance gradually becomes small in magnitude, which
suggests the model converges. In contrast, in SR-STE, the variance norm remains large, which suggests the
gradients are noisy even in later stage of the training, and thus it scales down the adaptive learning rates.

A Closer Look at Variance Change. Motivated by the recent studies on distributed Adam [Tang et al.,
2021, Lu et al., 2022, Li et al., 2021], we take a closer look at the variance change in the previous tasks and
plot them in Figure 2. We observe that while in both dense training and SR-STE, the variance norm first

1Note that in Adam, operations like division should act element-wise.
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increases and then decreases, the norm in SR-STE remains large at later stage of learning. This implies the
noise obtained in the gradients remains large and essentially scales down the learning rate [Kingma and Ba,
2014].

This motivates us to think extensively on the previous success in distributed learning: can we first run
dense Adam to obtain a reliable variance, and then learn the N:M masks over the preconditioned variance?
While this is mainly based on heuristics in previous works, we next illustrate it is well-justified in theory.

Theoretical Motivation. To motivate preconditioned variance, we start from the original objective of
having a variance scaler on the learning rate. In the original Adam paper [Kingma and Ba, 2014], it is shown
that vt is advocated to capture the expectation of the gradient magnitude at step t. In fact, Kingma and Ba
[2014] provably shows that if the gradient square g2

t is stationary, i.e. E[g2
i ] = E[g2

j ] for any i and j, then
E[v̂t] = E[g2

t ] so that v̂t can be used as an estimator for g2
t . Following this intuition, we next prove that

under the same condition, the averaged approximation error of leveraging a preconditioned variance estimate
is decreasing over time.

Theorem 1. Suppose g2
t is stationary and has bounded norm ‖g2

t‖∞ ≤ G for some constant G > 0. Given a
sufficient precondition step t0 such that t0 > logβ2

(
1− 1√

2

)
, then for any step t > t0 it holds with probability

at least 1− δ,

‖v̂t − v̂t0‖∞ <

√
4G2(1− β2)2(t− t0) log

(
2

δ

)
.

Theorem 1 provides the worst-case accumulated error of using preconditioned vt0 to estimate vt (∀t > t0).
Observing the bound given in Theorem 1, conditioned on t0, the maximal accumulated change to a variance
coordinate is sublinear to time t− t0. This suggests when we use vt0 to estimate vt for any t > 0, the average
error obtained in each step is decreasing over time with rate O(1/

√
t− t0).

On the other hand, the coefficient (1− β2)2 is a very small number both theoretically and empirically.
In theory, it is provably shown that to ensure Adam convergence, 1− β2 has to be small enough such that
1− β2 = O(N−3), where N is the size of the training dataset [Zhang et al., 2022], and having a larger 1− β2
could lead to divergence. In practice β2 is often set to a value such that (1− β2)2 reduces t− t0 by orders
of magnitude: For instance, the default setting of β2 is 0.999 given in the original Adam paper [Kingma
and Ba, 2014] and most of the deep learning libraries [Paszke et al., 2019, Heek et al., 2020], leading to
(1− β2)2 = 10−6; on foundation models like GPT-3 and Megatron, (1− β2)2 is around 10−4 [Brown et al.,
2020, Smith et al., 2022].

Building upon this, the overall structure of STEP algorithm is shown in Algorithm 1 that separates the
training into two phases. In the first phase (the first while loop), the normal Adam is used and the variance
estimate is actively updated; in the second phase (the second while loop), the variance estimate obtained
from phase I is then used as a precondition to learn the mask with Straight Through Estimator (STE).

5 Auto Switch Between two Phases
In the previous section, we’ve discussed the theoretical motivation of using preconditioned variance on learning
N:M masks with Adam. However, the central question is still left open: how should we set the switching point
t0 in Theorem 1. As partially discussed in Section 1, while identifying reliable Adam variance during training
is an established problem, most of the existing methods solve this via heuristics or hyperparameter tuning
[Tang et al., 2021, Lu et al., 2022, Li et al., 2021]. In this section, we introduce AutoSwitch, a subroutine
that automatically decides the switching point between precondition and mask learning phases by testing the
variance change concentration along the training trajectory.

Baseline Methods and Their Limitations. We start with the methods in the literature on identifying
the switching point. A straightforward way to do this is leveraging standard hyperparameter tuning protocol
such as grid search or random search [Bergstra and Bengio, 2012]: setting a few candidate steps and iterate
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Algorithm 2 Proposed AutoSwitch subroutine for STEP

Require: Sample size Tw = b(1− β2)−1c given by STEP, the current step t, (Optional: lower bound Tmin

and upper bound Tmax for clipping).
1: Compute the current sample on the variance change:

Option I: Zt = d−1‖vt − vt−1‖1;

Option II: Zt = exp(d−1‖ log(vt − vt−1)‖1).

2: Estimate mean over the sliding window:

Z̄ = T−1w

∑t

j=t−Tw+1
Zj .

3: if (Optional) Use Clipping then
4: return t > Tmax or Z̄ < ε and t > Tmin.
5: else
6: return Z̄ < ε.
7: end if

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 3: Figure showing per-coordinated variance difference d−1‖vt − vt−1‖1 over steps (in blue curves), in
the CIFAR tasks shown in Figure 1. We also plot the ε (in the red line). We observe the update to each
coordinate of the variance is quickly dominated by the ε.

over them and choose the one yielding best performance. However, adding hyperparameters heavily relies on
heuristics and requires certain domain knowledge for practitioners.

There have been a few efforts on identifying a good switching point by monitoring the variance metrics.
The first is to monitor the relative error as proposed in [Agarwal et al., 2021], which identifies step t as the
end of the critical regime if:

|‖vt‖ − ‖vt−1‖|
‖vt−1‖

< 0.5, (10)

where the bound 0.5 given by [Agarwal et al., 2021]. The intuition is to use the tensor norm difference to
approximate the tensor difference (note that storing vt and vt−1 directly could incur non-trival memory
overhead due to the high-dimensionality). Another similar method is proposed in [Tang et al., 2021], which
suggests a staleness comparison on the variance norm. Concretely, Tang et al. [2021] identifies step t as the
end of the critical regime if:

‖vt‖1∥∥vt−b(1−β2)−1c
∥∥
1

> 0.96, (11)
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(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 4: Figure showing how STEP mitigates the gap of baseline algorithm ASP [Mishra et al., 2021] and
SR-STE [Zhou et al., 2021]. In this experiment, 1:4 sparsity is used. The switching point of STEP is decided
by the AutoSwitch subroutine. Note that during the precondition phase of STEP, the model does not
involve the mask learning while the model is evaluated with sparsity (for fair comparison to baseline models).
And thus the evaluation accuracy during that phase is low compared to the mask learning phase.

where the criteria 0.96 is provided by [Tang et al., 2021].
The baseline methods (Equation (10) and (11)) are limited in practice in three-fold: (i) when evaluating

the switching point t, it can be easily affected by the noise at step t; (ii) Although both of the methods
require relative metrics, the thresholds are still hand-picked, and thus introducing additional noise to the
criterion; (iii) Both of the methods use the tensor norm over all the coordinates. On one hand, norm can be
a good indicator for status of variance but not for variance changes. On the other hand, the switching point
can easily mistakenly be missed due to the outliers among the coordinates, especially on large models, where
the order of variance magnitude varies significantly [Xiong et al., 2020, Liu et al., 2020].

AutoSwitch. The main procedures of AutoSwitch are summarized in Algorithm 2. To cope with the
gradient noise and outlier coordinates, AutoSwitch samples over time t the per-coordinate variance change
via arithmetic mean (Option I) or geometric mean (Option II). While geometric mean is robust to outliers,
in practice we found arithmetic mean is sufficient for deciding the switching point. We set the sampling
window length to be b(1− β2)−1c. This quantity is motivated from the Markov Chain theory: if we model
the dynamic of vt as a Markov Chain, then the mixing time of the chain then is roughly Õ

(
1

1−β2

)
.

While sampling mitigates the noise from single step evaluation, it still remains unclear what metric we
should be applying to decide the phase length. Note that in the baseline works (Equation (10) and (11)),
hand-picking values are applied. Ideally, we should leverage some metrics from the Adam optimizer that is
adapted to each task. Based on this, AutoSwitch uses the ε from Adam as the signal. The ε is originally
used in Adam to prevent zero division. In some research it has been found that it largely decides the model
convergence. To justify our motivation, we plot the per-coordinate variance change and ε in Figure 3. We
observe the update to each coordinate of the variance is quickly dominated by the ε as the training proceeds.

Clipping for Tight Training Budget. While Algorithm 2 provides a statistical way of identifying the
switching point, in practice, varying training budgets (e.g. model fine-tuning) are usually considered. We can
use clipping to clamp a computed switching point t0 between given Tmin and Tmax. The clipping bounds are
two optional variables that regularize the AutoSwitch subroutine. By default, we suggest using Tmin = 0.1T
and Tmax = 0.5T , these two values are motivated by Geweke’s convergence diagnostic in MCMC theory
[Geweke et al., 1991]. Recall that the update of vt forms a markov chain, and so concentration of the first
10% and last 50% of the chain can be used as a good indicator on the convergence [Geweke et al., 1991].
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(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 5: Figure comparing the performance of STEP under aggressive sparsity ratio. Comparing the results
with Figure 4, it suggests the STEP recipe is robust to aggressive sparsity ratio up to 1:16, while baselines
degrade the evaluation accuracy at 1:8.

Table 1: Comparing AutoSwitch (Algorithm 2) with two baseline approaches Equation (10) [Agarwal et al.,
2021] and (11) [Tang et al., 2021]. We measure the average change within 1k steps after the precondition t0
identified by different approaches: 10−3

∑t0+1000
t=t0

‖vt+1 − vt‖1. A lower number indicates better estimation
for the switching points. The numbers for each experiment are averaged over 5 different random seeds.

Task Eq. (10) Eq. (11) AS
ResNet18/CF10 1.58e-1 5.58e-2 0.79e-2
DenseNet121/CF100 5.26e-1 1.28e-2 0.46e-2
BERT-Large (PreT) 4.92e-6 2.71e-7 2.28e-7

6 Experiment
In this section we evaluate the effectiveness of proposed STEP and AutoSwitch on various tasks, comparing
it to other baseline recipes of learning N:M masks. We also show that STEP can be easily extended to
incorporate other techniques such as layer-wise sparsity [Sun et al., 2021]. All of the experiments run on a
Google Cloud TPUv3-8 virtual machine.

Overview of Tasks. Throughout these sections, we adopt the following tasks for the evaluation: (1)
Training various vision models (ResNet18, Densenet121) on CIFAR10/100 dataset [Krizhevsky et al., 2009].
(2) Finetuning BERT-Base[Devlin et al., 2018] on the GLUE benchmark [Wang et al., 2018]. (3) Training
a 6-layer Transformer model on the WMT17 De-En Translation task following [Vaswani et al., 2017]. (4)
Finetuning GPT-2 model [Radford et al., 2019] on Wikitext-2 and Wikitext-103 [Merity et al., 2016].

Hyperparameters. We apply the grid search over the following hyperparameters on each task. Notice
that we only tune the hyperparameters for the baselines, but not for STEP. That is, STEP reuses the
hyperparameters tuned for SR-STE. This suggests STEP can provide in-place improvement over the baseline
recipes. For all the Adam-specific hyperparameters we adopt the default values: {β1 = 0.9, β2 = 0.999,
ε = 1e− 8}. For the CIFAR tasks, we adopted batch size 128 and tune the learning rate from {1e− 4, 5e− 5,
1e− 5}; for BERT and GPT-2 fine-tuning we follow [Tang et al., 2021] and tune batch size from {8, 16, 32}
and learning rate from {1e− 4, 5e− 5, 1e− 5}; for WMT machine translation we follow the exact setup2 of
[Vaswani et al., 2017] and [Kao et al., 2022].

2A more detailed description can be found in Section 4 [Kao et al., 2022].
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Table 2: Finetuning BERT-Base on the GLUE development set. The original results are from [Devlin et al.,
2018]. The Dense results are reproduced by ours with no sparsity. For different recipes (ASP, SR-STE and
STEP), 2:4 sparsity is applied on all the linear modules (including attention, intermediate and output layer
of BERT.) The scores are the median scores over 10 runs with different seeds. We observe compared to
baselines, STEP has a negligible drop on the average score compared to the dense counterpart.

RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI-m MNLI-mm Avg Score
Original 66.4 84.8 85.8 52.1 93.5 90.5 89.2 84.6 83.4 81.1
Dense 65.0 85.1 85.2 51.0 92.3 91.1 91.0 84.6 83.6 81.0
ASP 57.4 79.2 81.7 47.2 88.5 83.7 84.8 80.6 79.5 75.8
SR-STE 55.6 81.3 88.2 47.8 90.2 86.6 90.1 82.1 82.9 78.3
STEP 62.4 84.7 88.7 50.4 91.8 89.2 90.9 84.2 83.9 80.7

Table 3: Training different language modeling tasks on Wikitext-2(-103). For different recipes (ASP, SR-STE
and STEP), 2:4 sparsity is applied on all the Conv1D modules of GPT2. The numbers are averaged evaluation
perplexity over 10 runs with different seeds.

Wikitext-2 Wikitext-103
Dense 21.15 16.57
ASP 37.09 26.29
SR-STE 28.54 18.93
STEP 23.85 17.02

(a) N:M=1:32 (b) N:M=1:64

Figure 6: Ablation Study on Decaying Mask. We follow the setting of [Kao et al., 2022] and train the 6-layer
Transformer model on the WMT17 De-En translation task. To shows the importance of preconditioning with
dense updates. We include the results and compare the Decaying Mask recipe with and without the dense
training phase.

The Effectiveness of AutoSwitch. We start from evaluating the effectiveness of AutoSwitch over
baseline methods as introduced in Section 5. Concretely, we compare Algorithm 2 with Equation (10)
proposed by [Agarwal et al., 2021] and Equation (11) proposed by [Tang et al., 2021]. For each task, we first
profile the ‖vt‖2, ‖vt‖1 and ‖vt+1− vt‖1 for all the t ≥ 1 since these suffice for running the three approaches.
Then for any t0 as a precondition step found by each method, we compute the average variance change in
the next 1k steps, i.e., 10−3

∑t0+1000
t=t0

‖vt+1 − vt‖1 as measuring the reliability of preconditioned variance.
Intuitively, a smaller average variance change implies better preconditioning. We summarize the results in
Table 1, the results suggest AutoSwitch is able to identify variance with subtle changes in the following
steps compared to the other two baselines.

Comparing with Baselines. We now evaluate the performance of STEP with the following baseline
recipes: Dense (no mask is learnt), ASP [Mishra et al., 2021] and SR-STE [Zhou et al., 2021]. The comparison
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Table 4: Extension of STEP to layer-wise N:M masks learning. The N:M sparsity ratios are decided in a
per-layer fashion following the strategy given in [Sun et al., 2021]. The numbers in this table are averaged
over 5 runs. The results suggest STEP can provide in-place improvement when combined with per-layer
structured sparsity.

N:M RN-CF10 DN-CF100
Dense / 91.56 65.62
DS Mixed N:8 89.94 64.88
DS+STEP Mixed N:8 91.42 65.71
DS Mixed N:16 87.08 62.13
DS+STEP Mixed N:16 90.93 65.04
DS Mixed N:32 85.37 60.47
DS+STEP Mixed N:32 90.12 64.91

is carried out on three tasks: training ResNet18 and Densenet121 from scratch on CIFAR10/100; finetuning
BERT-Base on GLUE; and finetuning GPT2 on Wikitext-2/-103. For all the recipes, we apply 2:4 sparsity
Pool [2020] to all the modules. More concretely: for ResNet and DenseNet, the sparsity is applied on all
the Conv2D layers; for BERT-Base, all the Linear modules in attention, intermediate and output layers are
sparsified; in GPT-2, the sparsity is applied on all the Conv1D modules. We summarize the results in Figure 4,
Table 2 and 3. The results consistently suggest under the same sparsity ratio, STEP is able to mitigate the
accuracy drop between baseline recipes (ASP and SR-STE) and dense training. Perhaps surprisingly, we
found in the DenseNet task, STEP achieves higher validation accuracy compared to the dense training.

Robustness to Aggressive Structured Pruning. We extend the previous experiments on pre-training
ResNet18 and DenseNet121 with different sparsity ratios, using STEP recipes. We summarize the results in
Figure 4, we observe up to N:M=1:16, STEP recipe has negligible accuracy drop compared to the dense
training, while other recipes have non-trivial evaluation accuracy gap at 1:8.

Ablation Study I: Layer-wise Pruning. We now demonstrate that STEP can be trivially extended
to layer-wise SR-STE as considered in DominoSearch [Sun et al., 2021]. We now run the STEP and
AutoSwitch following a per-module fashion, with per-layer sparsity ratio determined by the DominoSearch
algorithm [Sun et al., 2021]. We summarize the results of using plain DominoSearch (DS) and DS combined
with STEP in Table 4. The results there suggest combined with STEP, DominoSearch can have more stable
results, especially over aggressive N:M ratios. More concretely, when the sparsity ratios are increased to
N:32, the original DominoSearch already incurs over 5% accuracy drop while with STEP, the accuracy drop
is generally around 1% on both ResNet and DenseNet. Notice that STEP does not modify the dynamic
sparsity ratio assignment strategy as used in the original DominoSearch. This, on the other hand, implies
STEP provides in-place improvement over layer-wise sparsity.

Ablation Study II: Decaying Mask. In this experiment, we conduct an ablation study on a recently
proposed recipe named Decaying Mask [Kao et al., 2022]. The recipe proceeds as follows: first run dense
training for some iterations, and then start the sparse training phase. At the beginning of the sparse
training phase, it starts with M-1:M structured sparsity. As training progresses, Decaying Mask increases the
sparsification degree by applying N:M structured sparsity at different decaying intervals, where N =

⌊
M
2s

⌋
.

Note that the original Decaying Mask recipe already includes the dense training phase. In this ablation
study, we follow the setup of [Kao et al., 2022] and compare how Decaying Mask behaves with and without
its dense training phase. We summarize the results in Figure 6. It suggests if no dense training is performed
at the beginning of the recipe, there will be a certain accuracy drop even if the sparsity ratio is gradually
decreased. This, again, substantiates the motivation of STEP recipe.

Ablation Study III: Varying Preconditioning Phase Length. We continue investigating the effect
of preconditioning phase length on the final model accuracy. We repeat the CIFAR experiments on two vision
models and rerun the STEP algorithm with different precondition phase length. We summarize the results
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(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 7: Ablation study on different precondition phase length. The X-axis denotes the ratio of precondition
phase length over the total number of training steps; while the Y-axis denotes the evaluation accuracy of
the output model at the end. We observe that the switching point between precondition and mask learning
phase is quite flexible.

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 8: Ablation study on comparing with and without updating variance term during the mask learning
phase. The curves suggest freezing (fixing) the preconditioned variance during the mask learning phase is
crucial.

in Figure 7. We observe that STEP is able to achieve dense accuracy when the ratio of preconditioning
phase is between 10% and 80% (despite the fact that AutoSwitch decides the ending point to be around
20%). This suggests the switching point in STEP is quite flexible over the entire training trajectory, and is
robust to the potential noise in the AutoSwitch subroutine.

Ablation Study IV: Why Fixing the Variance. Note that in the original STEP Algorithm, the
variance remains fixed during the masking learning phase. A natural question to this would be: does it help
if we keep updating the variance using the gradients computed on the sparsified model? In practice, we
observe this in fact has negative impact. We rerun the ResNet/DenseNet experiments with two variants:
original STEP and STEP where variance is updated in the second phase. We summarize the results in
Figure 8. It suggests keeping updating the variance with gradients computed on masked weights reduces the
final evaluation accuracy, which implies the noise level in gradients remains high during mask learning, even
in the later stage of training.
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7 Conclusion
In this paper, we identify the state-of-the-art recipe SR-STE incurs non-trivial model degradation when
applied in Adam-based model training. We propose an algorithm named STEP that separates the training
into two phases, where in the first phase, the Adam optimizer precondition a reliable second moment (variance)
estimate; while in the second phase, such variance remains fixed and is used as a precondition to learn
the N:M structured sparsity masks. We also propose a subroutine named AutoSwitch that automatically
determines the switching point of two phases. Compared to other approaches, AutoSwitch shows stable
and reliable estimation. Empirically we evaluate STEP on various benchmarks including text classification,
image classification and language modeling. We demonstrate STEP mitigates the accuracy drop compared
to other recipes and is robust to aggressive sparsity ratios. We also show that STEP can be easily integrated
with other techniques such as layer-wise sparsity.
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A Technical Proof

A.1 Proof to Theorem 1
Proof. We first define the filtration Ft over step t ∈ {1, · · · , T}, where the randomness come from the
sampling of the data point ζt. And next we show the update for each coordinate of vt is a martingale
difference sequence. From the update of Adam, we get:

v̂t+1 − v̂t =
vt+1

1− βt+1
2

− vt
1− βt2

=
1

1− βt+1
2

(
vt+1 −

1− βt+1
2

1− βt2
vt

)
=

1

1− βt+1
2

[
β2vt + (1− β2)g2

t −
1− βt+1

2

1− βt2
vt

]
=

1

1− βt+1
2

[
(1− β2) ·

(
g2
t −

vt
1− βt2

)]
.

Take expectation with respect to the filtration, we obtain

E [v̂t+1 − v̂t|Ft] =E
[

1− β2
1− βt+1

2

(
g2
t −

vt
1− βt2

) ∣∣∣Ft]
=

1− β2
1− βt+1

2

E
[
g2
t −

vt
1− βt2

∣∣∣Ft] .
Note that

E[vt] = E

(1− β2)

t∑
j=1

βt−j2 g2
j

 = (1− βt2)E[g2
t ].

Push it back, we know for each i ∈ [d],

E
[
e>i (v̂t+1 − v̂t) |Ft

]
= 0. (12)

On the other hand, for each i ∈ [d],

∣∣e>i (v̂t+1 − v̂t)
∣∣ =

1− β2
1− βt+1

2

∣∣∣∣e>i (g2
t −

vt
1− βt2

)∣∣∣∣
Note that both e>i g

2
t and e>i vt

1−βt
2
is non-negative. Considering that

e>i vt
1− βt2

=
1− β2
1− βt2

t∑
j=0

βt−j2 e>i g
2
j ≤ G.

And so ∣∣e>i (v̂t+1 − v̂t)
∣∣ ≤ 1− β2

1− βt+1
2

G ≤ 1− β2
1− βt02

G ≤
√

2(1− β2)G, (13)

where we apply the fact that t > t0 and t0 >
log(1/2)
log(β2)

. Considering Equation (12) and (13), we know it is a
martingale difference sequence. Now we apply the Azuma-Hoeffding Inequality [Wainwright, 2019], and get
for any i ∈ [d],

P

[∣∣∣∣∣
t−1∑
k=t0

e>i (v̂k+1 − v̂k) ≥ c

∣∣∣∣∣
]
≤2 exp

(
− c2

2
∑t−1
k=t0

(√
2(1− β2)G

)2
)
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=2 exp

(
− c2

4G2(1− β2)2(t− t0)

)
.

Set the R.H.S. as δ, we obtain

c =

√
4G2(1− β2)2(t− t0) log

(
2

δ

)
.

Finally we get

‖v̂t − v̂t0‖∞ <

√
4G2(1− β2)2(t− t0) log

(
2

δ

)
,

as desired. That completes the proof
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