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ABSTRACT
Untethered multimodal interfaces are more attractive than
tethered ones because they are more natural and expres-
sive for interaction. Such interfaces usually require robust
vision-based body pose estimation and gesture recognition.
In interfaces where a user is interacting with a computer us-
ing speech and arm gestures, the user’s spoken keywords can
be recognized in conjuction with a hypothesis of body poses.
This co-occurence can reduce the number of body pose hy-
pothesis for the vision based tracker. In this paper we show
that incorporating speech-based body pose constraints can
increase the robustness and accuracy of vision-based track-
ing systems.

Next, we describe an approach for gesture recognition.
We show how Linear Discriminant Analysis (LDA), can be
employed to estimate ‘good features’ that can be used in a
standard HMM-based gesture recognition system. We show
that, by applying our LDA scheme, recognition errors can be
significantly reduced over a standard HMM-based technique.

We applied both techniques in a Virtual Home Desktop
scenario. Experiments where the users controlled a desktop
system using gestures and speech were conducted and the
results show that the speech recognised in conjunction with
body poses has increased the accuracy of the vision-based
tracking system.

Categories and Subject Descriptors
H.1.2 [User-Machine System]: Human Information pro-
cessing; I.5.4 [Computing Methodologies]: Pattern Recog-
nition Applications—computer vision

General Terms
Algorithms, Experimentation

Keywords
Audio-Visual Tracking, Untethered Body Pose Tracking, Arm
Gesture Recogntion
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1. INTRODUCTION
Multimodal interfaces have gained a lot of attention in re-

search ever since Bolt’s Put-That-There system.[1]. Under-
standing untethered arm gestures in multimodal interfaces
is very useful as it allows richer expression and more natu-
ral interaction from users. Robust 3D body pose estimation
and gesture recognition techniques, however, are required.

Many 3D gesture systems using a vision-based tracker en-
counter tracking errors, leading to multiple interpretations
in gestures. In many existing multimodal interfaces, speech
has been used to improve gesture recognition. Previous work
in a pen-input system[12] and a virtual reality system[9]
have used speech to disambiguate gestures. User studies
in pen-input systems [14] and in 3D gestures systems[5, 2],
have shown that speech and gestures are correlated in time.
These systems have shown consistently that the start point
of a gesture is very closely correlated to the start time of the
deictic word that expresses the same intent. Weather nar-
ration[17] has employed the use of this co-occurrence and
successfully improved gesture recognition. Since this co-
occurrence has been effective in improving gesture recog-
nition, we question if the same insight could be used to
improve tracking in a vision based-tracker. Some vision-
based tracker generates multiple hypothesis of body poses.
In a human-computer interface which involves arm gestures
and speech,some of these body poses occur in conjunction
with the user’s spoken words in a consistent fashion. This
presence of the spoken word can help reduce the number of
hypothesised poses generated by the tracker.

In this paper, our primary goal is to show that the robust-
ness and accuracy of a vision-based tracking system can be
increased by considering body pose constraints induced by
the speech content. We show that our technique estimates
more accurate deictic references when speech is available.

Besides improving the accuracy of the vision-based tracker,
the robustness of multimodal interfaces can improved by ges-
ture recognition as well. As a secondary goal of this paper,
we present an approach for gesture recogntion. Using the
concept of phonemes in speech recognition, we show how
Linear Discriminant Analysis (LDA) can be employed to
estimate some ‘good features’ that can be used in a stan-
dard HMM-based gesture recognition system. We applied
our LDA approach, and showed that recognition errors can
be decreased significantly over a standard HMM-based tech-
nique.

Finally, we applied the integration of our multimodal ap-
proach for tracking and gesture recognition in a Virtual
Home Desktop application. This application allows a user to



manipulate windows and programs on a desktop projected
on a wall.

2. RELATED WORK
Ever since Bolt’s Put-That There[1] System, many other

3D multimodal interfaces have emerged. Koons et al [10]
presented a system that tracked 3D hand-based pointing
gestures, speech , and gaze, but did not use speech infor-
mation to assist in tracking of the hand. Corradini[2] aug-
mented Quickset[14], a multimodal voice/pen system that
allows users to create and control maps, such that it could
accept 3D hand movements as user input. He showed how
the system supported the concept of mutual disambigua-
tion. Sharma[17], conducted a co-occurrence analysis of a
selected set of spoken keywords with different gestures to im-
prove the performance of a HMM-based gesture recognizer.
More recently, a human-robot interface[5, 18] in Germany
used speech to resolve ambuiguity in deictic gestures. All
these systems have used speech to improve gesture recogni-
tion or deictic resolution. In our work, we would extend this
further by using speech to improve body pose estimation.

3. TRACKING WITH SPEECH CONTENT
This section briefly describes our real-time model-based

tracking algorithm. Our algorithm can be considered as an
audio-visual extension of our previous work on vision-based
tracking [4].

3.1 Fitting Error
We consider the pose estimation problem as the fitting of

a body model pose Π to a set of visual observations. In
this work, Π consists of the relative orientation θi (i ≥ 1)
between consecutive limbs.

When visual observations come from a stereo or multi-
view camera, tridimensional reconstructions P = {Mi} of
the points Mi in the scene can be estimated. In this case, a
fitting error function E(Π) defined as the distance between
reconstructed points P and the 3D model at pose Π is suit-
able. Such a function can be defined as:

E2(Π) =
∑

Mi∈P
d2(Mi,B(Π)) (1)

where B(Π) is the 3D reconstruction of the body model at
pose Π and d2(Mi,B(Π)) the Euclidean distance between
the point Mi and the 3D model B(Π).

3.2 Motion Constraints
A direct approach commonly used for pose tracking [3, 8,

4] consists of performing a local minimization of the fitting
error E(Π) using the pose Πt−1 estimated at the previous
frame as initialization.

However, estimating the pose Π by minimizing the fit-
ting error E(Π) only is usually not enough to provide a
robust tracking. Indeed, the minimization of E(Π) is likely
to fall into local minima, causing the tracking to fail. This
happens, for instance, when users perform fast motion (the
minimization starts with an initialization far from the true
minimum) or in case of partial occlusion of the body (cor-
responding to ambiguities in the pose).

The robustness of the tracking system can be increased
by adding constraints of the body pose Π. Indeed, addi-
tional constraints on the body pose Π (or equivalently on

the body motion) can reduce the search space to the ’good’
directions, therefore significantly improving the tracking ro-
bustness. For instance, when tracking a user pointing at
a screen, multiple constraints on the body pose (e.g. user
in a standing position, torso facing in the direction of the
screen, one arm pointing toward the screen) seem natural to
impose. In a similar manner, when the user is talking to a
person or is referring to a visible object in the scene, he is
more likely to face the person or object. Therefore tracking
the user using a body model constrained to have the torso
facing the physical referents is appropriate.

In this paper, we define the context c as the type of physi-
cal action, task or gesture a user is performing (e.g. pointing
at the screen, showing an object, talking to someone, resting,
agreeing/disagreeing). Let Cc be a set of motion constraints
associated with a context c. In this work, constraints are ex-
pressed using fixed bounds for the angles between the axes
of consecutive limbs or for the relative orientation of a limb
with respect to the world coordinate system. These con-
straints can be written as a set of inequalities on the ele-
ments of Π such as:

|Π(i)| ≤ angle
(c)
i

If the context c in which the user is is known, an estima-
tion of the pose Π(c) of the user is performed by minimizing
eq.(1) subject to the constraints Cc.

Next we explore the use of speech to provide some context
information (when applicable) about the pose and motion
of the user. The context extracted from the speech is then
used to provide a set of pose and motion constraints to the
tracking algorithm which concurrently evaluates the differ-
ent hypotheses.

3.3 Using Speech to Provide
Physical Constraints

Here we describe how speech content is used to generate
motion models hypotheses. The co-occurrence of words and
gestures is used to provide motion models.

Let W and probabilities p(W ) be respectively a set of
words and the probabilities that they have been pronounced.
Let p(c|W ) be the probability of observing the context c
conditioned on the word W being spoken. The conditional
probabilities p(c|W ) are empirically determined from a user
study described in Section 4.2.

The probability of observing the context c given speech
observation is:

p(c) =
∑
W

p(c|W )p(W ) (2)

As part of our model, we introduce a non-context c = 0
corresponding to the absence of specific context. For words
W which do not co-occur with any specific gestures, the
conditional probability p(c = 0|W ) is close to 1.

3.4 Audio-Visual Tracking
The complete audio-visual tracking algorithm consists in

concurrently estimating the poses corresponding to the most
probable contexts. More precisely, the contexts c with high-
est probability p(c) are evaluated from audio observations

(speech recognizer) and used to evaluate Π(c) by constrained
optimization of eq.(1) subject to the constraints Cc.



The final pose Π is estimated as a weighted sum of the
contextual poses Π(c):

p(Π) =
∑

c

w(Π(c))Π(c) (3)

where the weights w(Π(c)) are function of the fitting error
eq. (1).

It is important to notice that our approach is robust to
errors in speech. Indeed, if a word is mis-detected with a
high probability and induced a wrong context c, the weight
w(Π(c)) of the pose Π(c) will be small (because of the inad-
equacy between the motion model and the visual data).

3.5 User Study
Five English speakers participated in a user study to ob-

serve their multimodal interaction with a simulated “Home
Desktop System” application. This application basically al-
lows users to control windows or programs on the computer
screen without using the keyboard or mouse. The computer
screen is projected on a wall and the users have to stand in
front of it to control the system.

First, the five speakers were given an orientation about the
various objects for manipulation on the computer screen.
Then, they were briefed on a set of gestures they can use
in controlling these objects. Next, they were given various
tasks in controlling these objects. These tasks include resiz-
ing a particular window, re-positioning it and minimizing it
etc.. These users were free to use either or both speech and
hand gestures to perform their tasks. They were encouraged
to speak naturally with the gestures, to work at their own
pace, and to focus on completing their tasks. While they
are performing these tasks, their gestures and speech were
videotaped and recorded. The goal of this study is to find
out if there is a common set of words associated with a set
of body poses. The age of all five users range between 21
and 33 years old. Figure 1 shows a sample image of a user
taking the study.

Our study found that certain pose context occur consis-
tently when specific words were spoken. From the study,
we determined the empirical probability of the pose context
given the spoken word, p(c|W ). Table 1 shows a sample set
of pose contexts associated with a spoken word and their
probabilities. A total of 29 keywords were found to have
consistent association with certain pose contexts. We will
use these results for a user experiment (described in Section
5.1) to evaluate the performance of our audio-visual tracking
algorithm.

4. LINEAR DISCRIMINANT ANALYSIS
FOR GESTURE RECOGNITION

Using the body poses, Π from the audio-visual tracking al-
gorithm described in Section 3, we estimated features which
will be fed to a Hidden Markov Model(HMM)[15] for gesture
recognition. Hidden Markov Models (HMMs), usually per-
form well when the number of gestures to recognize is small.
However, their performance usually decreases tremendously
as the number and similarity of the gestures grows. One
of the reasons is that the features of different gestures are
too close to one another in the feature space. To overcome
this, we show how Linear Discriminant Analysis (LDA), a
technique used in feature separation of phonemes in speech

Word/s, W Context, c p(c|W )
Backward Both hands stretched in front 0.75

Other 0.25
Click Pointing 0.88

Other 0.12
Down Pointing 0.73

Right Hand Raised 0.18
Other 0.09

Fill Both hands stretched laterally 0.33
Both hands stretched vertically 0.33

Other 0.33
OK Both hands stretched in front 0.57

Pointing 0.14
Other 0.29

Stop Both hands stretched in front 0.31
Pointing 0.69

Up Waving 0.40
Pointing 0.60

Table 1: Sample set of spoken keywords, their asso-
ciated pose context and their posterior probabilities

recognition [6], can improve the performance of an arm ges-
ture recognition system.

We propose modelling body gestures using elementary
units, called “gestemes”[7]. Gestemes are estimated in the
following way.

An input feature vector, fn is a vector of K consecutive
poses.

fn = (Πn ,Πn+1, ..., ,Πn+K−1)T

Such a feature vector incorporates information about the
pose and motion dynamics. We assume that there are B
gestemes that models all the features in our L classes of
gestures. A Gaussian Mixture Model containing B centers
was estimated using a set of training feature vectors. All the
Gaussians are assumed to have full covariances. Parameters
for the B Gaussians are determined from the set of training
feature vectors fn, 1 ≤ n ≤ N , using the EM algorithm to
maximize a global likelihood function given below:

L =
N∑

n=1

log
B∑

i=1

δip(fn|i)

where p(fn|i) is a single component of the mixture of Gaus-
sians, and δi is the ith component’s mixing proportion.

Once this likelihood is maximized, each Gaussian cluster is
assigned a unique label. The probabilities of each training
feature belonging to each cluster, p(i|fn) are evaluated to
determine the most likely cluster they belong to.

Lfn = arg max
i
p(i|fn)

where Lfn is the best scoring Gaussian’s label assigned to
training feature fn. After this classification of the feature
vectors into gesteme clusters, a projection matrix, that sep-
arates these feature vectors in an optimal way, is estimated
by running LDA on these labelled training features.

Suppose there are B labels, then the within class expected
covariance is:



Figure 1: User gesturing in front of the projected desktop system

Sw =

B∑
i=1

pi · Λi

where pi is the prior probability and Λi is the covariance of
Gaussian i respectively.

The mean of the whole mixture of Gaussians is computed
as

uoverall =

B∑
i=1

pi · ui

where ui is the mean of each Gaussian component.
The between class variance is then computed as

Sb =
∑

(uj − uoverall) × (uj − uoverall)
T

Assuming a class-independent transform, the optimizing
criterion, J(w) is computed as

J(w) = (Sw)−1 × Sb

The projection matrix, Γ, is found as the eigenvector matrix

of J(w) and the projected feature vector, f
′
n becomes

f
′
n = ΓT fn

These projected feature vectors, which are more distinct
between classes, and less dispersed within each class, are
then used for training the HMM to classify the features by
the gesture classes.

5. EXPERIMENTS

5.1 Speech Constrained Tracking
We conducted a set of user experiments to evaluate the

performance of our Audio-Visual tracking algorithm described

Figure 2: System Diagram

in Section 3.4. This time, nine users participated in the ex-
periment. In a similar setting as the user study described
in Section 3.5, users were given an orientation about various
icons or windows for manipulation on the computer screen.
Then, they were briefed on a set of gestures to use for con-
trolling these objects. Next they were given a few tasks to
perform. During the experiments, the ground truth data
corresponding to the location of the objects deictically re-
ferred and the gesture performed was manually transcribed.

While the users were performing these tasks, the audio
visual data was used to track the user and perform the
gesture recognition. Color and stereo images of the user
were captured using a standard stereo camera. The users
wore a head-mounted microphone and their speech was sent
to the GALAXY[16] system for speech recognition. The
GALAXY system was trained with domain-specific gram-
mars. For each spoken utterance, the GALAXY Speech
Recognizer generates a time-stamped N-best list of words,
and a probability, p(W ) is assigned to each hypothesized
word. The probability of the context c is then computed
using eq. (2). Finally, the algorithm described in Section 3
is used to estimate the user’s pose.

In these experiments, the Word Error Rate of the Speech
Recognizer was 37.02%. The interactions between the vari-
ous sub-systems are shown in Figure 2.

We compared the performance of our system (depicted in
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Figure 3: Average ground truth error for the point-
ing estimation. The average error for our audio-
visual approach is about 0.27 m. (corresponding to
about 7 deg.) compared to about 0.47 m. (corre-
sponding to about 13 deg.) for the standard vision-
based tracking algorithm.

Figure 2) to a standard (context-independent) vision-based
tracker.

The location of the point of the screen pointed at by the
user was computed as the intersection of the line formed by
the (right) shoulder and hand of the estimated 3D model
and the plan of the screen.

First, the tracking performance of the algorithms was eval-
uated. In absence of ground truth for the pose of the users,
the pose provided by the tracking algorithms was visually
inspected in the testing sequences. The standard tracker (vi-
sion only) had an error rate of about 20%. The audio-visual
tracker had an error rate of about 12%.

Then, we evaluated the aptitude of the algorithms to
provide correct tracking information when the users were
performing deictic references. Figure 3 shows the average
ground truth error (in m.) for the pointing estimation. Fig-
ure 4 shows a more detailed distribution of the error. The
results show that our audio-visual approach for tracking has
less outliers (large errors) and provides more accurate point-
ing locations than the standard tracker. The average error
for our audio-visual approach is about 0.27 m. (correspond-
ing to about 7 deg.) compared to about 0.47 m. (corre-
sponding to about 13 deg.) for the standard vision-based
tracking algorithm.

Figure 5 shows the variation of the fitting error E2(Π)
during one of the sequences used in our experiments. The
graph shows that around frames 1850, 1980 and 2020, the
use of context from speech contributes a fitting error smaller
than the vision-based only tracking system (which fails to
track the user correctly). Figure 6 shows some tracking
results corresponding to the frame 1860 of this sequence.
Around this frame, the user pronounced the word ’move’,
which induced a pointing context (right arm pointing, torso
facing the projection screen) that was used in the audio-
visual tracking algorithm. The vision-based only tracker
actually failed to track the user correctly at this frame and
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Figure 4: Histogram of the ground truth error for
the pointing estimation.

corresponds to the large fitting error for this frame in the
Figure 5.

5.2 Gesture Recognition Results
We labeled eleven gestures for the HMM-based recognizer

to classify. Gesture data was collected and gathered from
thirteen users. These users were asked to perform the ges-
tures in front of a stereo camera, and their body pose se-
quences of these gestures were collected. Half of these sam-
ples were used for training the HMM recognizer and for lin-
ear discriminant analysis, while the other half was used for
testing. Examples of these gestures are shown in Figure 7.

We experimented with different techniques or different
types of features, while varying the feature length (the fea-
ture length is the number of consecutive poses used to form
each feature vector), and our results are plotted in Figure 8.
In the first technique, we applied LDA to pose features and

sent the projected features, f
′
n = ΓT fn to train the HMM

(The plot from this technique is labelled LDA Features in
the figure). In the second technique, we simply used pose
features, fn to train the HMM (labelled as pose features in
the figure). In the third technique, we used velocity from
consecutive poses as features for training the HMM (labelled
as velocity features, νn). A velocity feature is given as

νn = fn − fn−1

In the fourth technique, we simply used both pose and ve-
locity features for training the HMM (labelled as velocity
and pose features). A velocity and pose feature is given as

ψn =

(
fn

νn

)

In the fifth technique, we applied principal component
analysis on the pose features (labelled as PCA). The com-
ponents that contribute to 98% of the energy were extracted,
and the projected pose features were used to train the HMM.
In the last technique, we applied kernel principal component
analysis (kPCA) on the pose features, and used the pro-
jected features to train the HMM. We used a Gaussian ker-
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Figure 5: Average fitting error E between the estimation of the 3D articulated model and the 3D scene
reconstruction vs. number of frames. Peaks in the data (around frames 1850, 1980 and 2020) correspond to
tracking failures of the standard (vision only) tracking algorithm.

nel for the projection. The Gaussian kernel function k(x, y)
is given by:

k(x, y) = e
− ||x−y||2

2·σ2

and we used a σ value of 10. We did not display results
using other kernel functions as they performed significantly
worse.

From Figure 8, pose features projected into the LDA sub-
space performed consistently better than the other 5 tech-
niques. The error rate of the kPCA technique did not per-
form as well as we expected. We are currently investigating
this matter.

We trained the HMM 50 times using the various tech-
niques or feature types at a constant feature length of 4,
and tabulated the statistics of the error rates. Our results
are given in Table 2. As a comparison to pose features, the
error rate was divided by a factor of 1.5 by applying LDA.
The standard deviation of the error rate from our LDA-
based approach was also relatively low compared to other
techniques, which proves that this approach produced bet-
ter results consistently.

6. FUTURE WORK
Our system only constrains the tracker when words and

gestures occur simultaneously. However, studies have shown
that utterances and gestures forming the same idea unit
can occur sequentially as well. [13] According to psychology
literature, a person articulates a gesture over a set of words
described as a gesture phrase[11]. We can extend our work
to add constraints when a key set of words, i.e. gesture
phrase are spoken instead of just single words.

The process of segmenting the gestures into “gestemes”
during gesture recognition simply models the features in a
Gaussian Mixture Model using an EM algorithm. While this
is an automatic segmentation, the process is highly prone
to random initialisation of the EM algorithm. A further
analysis of clustering of the pose features is required.

7. CONCLUSIONS
In this paper, we have presented a body pose tracking

system that makes use of the context via spoken words to
improve tracking in a timely fashion. In other words, the
tracking is improved just at the time when the tracking
information is important for gesture recognition or deictic
resolution. While it might seem that improving deictic res-
olution using spoken keywords is a limited problem, we be-
lieve this idea can be extended to improve the recognition
or tracking of more complex gestures. For example, in a
lecture scenario, where a lecturer gesticulates to explain a
diagram on the board. Such gestures are more natural and
more complicated, and the vocabulary of words associated
with the same gestures are more extensive.

In the later half of this paper, we used a combination of
well-known approaches to improve gesture recognition. We
have shown a simple transformation on the pose features can
decrease the error rate significantly.

8. ACKNOWLEDGMENTS
We would like to thank Eugene Weinstein for all his ded-

icated help in setting up the Galaxy system for us, and Ou
Wanmei for kindly reviewing our paper and providing good
suggestions.



Pose Features LDA Features PCA kPCA Velocity Features Velocity and Pose Features

fn f
′
n νn ψn

Avg Error Rate, µ(%) 12.16 7.98 26.73 25.09 17.6 13.81
Std Error Rate, σ(%) 2.05 1.68 1.84 3.6 1.82 2.86

Table 2: Statistics of Error Rates of various techniques or feature types using a constant feature length of
4. The standard deviation and the average error rate of the LDA features is smaller than the other feature
types. This shows that LDA features will lower the error rate consistently

Figure 6: Original image (top) and tracking results
from the audio-visual tracker (middle) and the stan-
dard vision-based (bottom) algorithms correspond-
ing to frame 1860 of the sequence plotted in Fig-
ure 5. Around this frame, the user pronounced the
word ’move’, which induced a pointing context (right
arm pointing, torso facing the projection screen).

Figure 7: Images of a user articulating 4 different
gestures
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