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Neurography is the imaging of the nerves in a volumetric scan, e.g. 
CT or MRI, to create a neuroanatomical map specific to the subject 
and understand which part of the body each nerve controls. 
Visualizing the network of nerves and understanding their functions 
is particularly important prior to and during surgery when the 
neurosurgeon needs to access a region of interest and to avoid to 
damage a nerve, which could lead to a limb paralysis. Although 
neurography has received a large interest for mapping the nerves 
and their functions, the creation and visualization of the nerve map is 
still time-consuming and thus seldom performed in either clinical or 
research applications.
We propose to automate this task using a statistical method for the 
detection of the nerve orientations and a stochastic process to 
integrate the nerve tracts over the orientation vector field. This fully 
automated tracking method is the first attempt to visualize and 
understand the neuroanatomy of the subject.
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Figure 1. Vector update rule
Figure 1. The position of the seeds evolves in 
a stochastic fashion as they propagate 
through the MRI volume.

We first create a dense vector field V within the volumetric image. At 
each position x we define v = V(x) as the axis of a local cylindrical 
model fitting the image. This model represents a small section of a 
nerve as a pair of co-axial cylinders with equal length. The two 
cylinders define two volumetric region: first the region Rin inside the 
inner cylinder and second the region Rout between the inner and 
outer cylinders.

The fitting of the model is achieved by exploring a number of 
orientations and computing the distributions of intensities in Rin and 
in Rout. Let's call these statistical distributions Hin and Hout. The 
orientation for the fitting model is the orientation that maximizes the 
distance between Hin and Hout. Our distance metric is defined as:

|| Hin, Hout || = - Σ(Hin ∩ Hout) / Σ(Hin + Hout)

where Σ counts the number of samples in a distribution subset. 
When Hin and Hout covers different areas in the intensity spectrum 
the statistical distance is maximized. The optimal orientation π at the 
position x is:

π(x) = argmax( || Hin(x,ω), Hout(x,ω) || ) with ω ∈ Ω

where ω is the orientation of the fitting model, Ω is the space of 
orientations that we explore, Hin is the intensity distribution inside the 
inner cylinder, Hout is the intensity distribution between the inner 
cylinder and the outer cylinder.

Second we integrate the vector field using a stochastic process to 
track the nerves starting from a set of seed points. The seed points 
are automatically generated according to a random sampling 
process. Starting from a position xt at time t=0 the following position 
is computed based on this equation:

xt+1 = xt + V(xt) + λ.r

where V(xt) is the vector interpolated within the vector field, r is a 
random unit vector and λ is a scaling factor.
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Method

We generate a number of random vectors r and define a set of 
positions xt+1. We then retain the position xt+1 which maximizes the 
distance metric computed above.

Figure 2. Nerve tracts overlaid on 
MRI of the spine

Figure 2. Segmented nerve tracts (blue-red)
as they exit the lumbar spine. Viewing the 
nerves intra-operatively helps minimally-
invasive surgery for disk herniation removal.

We applied our algorithm to MRI images of the lower spine. We 
created the map of the nerve bundles exiting the spinal cord between 
the L3, L4 and L5 vertebrae. Figure 1 illustrates the stochastic 
process that we applied to create the nerve tract. The tract moves 
from position xt to xt+1 with the addition of a random vector r and a 
vector v interpolated in the image-dependent vector field.

Figure 2 shows our results overlaid on one slice of the MRI volume. 
The brightest area that spans the image vertically is the 
cerebrospinal fluid (CSF). The spinal nerves (vertical dark lines) are 
visible in the center. The results of our stochastic neurography are 
indicates by two bundles on each side of the spine. The bundles are 
colored from blue to red based on local curvature to be visible on the 
gray scale MRI image.

Figure 3 is a close-up on the right bundle shows the nerve tracts as 
they exits the spinal cord. The figure indicates the effect of the 
random vector that allows to locally explore different image positions 
and to improve the finding of the nerve path.

Figure 4 shows a 3D rendering of the L3 vertebra and one nerve 
bundle exiting the spinal cord through the lateral foramen. The 
images in this figure show the nerve tracts from a view similar to 
coronal, sagittal and axial slices. The lower right image is a 3D view 
from a oblique view point to highlight the volumetric structure of the 
vertebra and the nerve bundle.

Figure 3. Nerve bundle exiting spinal cord 
(left to right)

Figure 3. Close-up showing one nerve bundle 
overlaid on an MRI slice. Our results 
successfully follow the nerve bundle.

Results

We have presented the first method for automatically creating a map 
of the nerves in volumetric MRI data. Our method is based on a 
stochastic process to generate a set of paths that model the nerve 
bundles connecting the brain and the functions of the body. First a 
vector field is computed from the intensity values of the MRI data. 
Then a number of random vectors are generated at every time step 
to create a path within the volumetric vector field. The created 
segments can be visualized on the MRI slices to indicate the 
connections of the nerve bundles.

We have tested our method on spine MRI images and created an 
anatomical map that follows the nerve bundles exiting the spinal 
cord. The overlay of our results on the MRI slices indicates that 
stochastic neurography can successfully provide a subject-specific 
map of the nerves. These promising results could save the 
neuroradiologist and the neuroscientist from the time-consuming and 
error-prone task of manually tracking nerves across MRI slices.

Figure 4. L3 vertebra and nerve bundle 
exiting the spine through the foramen 

Figure 4. 3D renderings of the L3 vertebra 
and nerve passing through the foramen. Our 
3DSlicer implementation can be applied 
automatically during MRI-guided surgery.
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