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ABSTRACT

Image descriptors are widely used in applications such as ob-
ject recognition, pattern classification and image registration.
The descriptors encode the local visual content of the image
to provide a compact, robust and distinctive representation of
objects. If images differ in orientation, descriptors must be
rotation invariant. This paper introduces a compact rotation
invariant descriptor. The approach is based on the representa-
tion of the local visual content by a graph. A function living
on the graph vertices is evaluated and transformed through
spectral trimming. This transform is rotation invariant and re-
duces the dimensionality of the descriptor. The performance
of the introduced descriptor is as good as the SIFT descriptor
performance, while being about ten times more compact, as
shown by experiments on transmission electron microscope
images.

Index Terms— Compact descriptor, invariant features,
spectral trimming, Transmission Electron Microscope

1. INTRODUCTION

Descriptors are vectors of parameters describing the local
texture or structure of an image. They are extensively used
in texture analysis, pattern classification and image regis-
tration. These applications are usually dealt with in two
separate steps: the detection of key-points and the description
of key-point neighborhoods by a vector of parameters. This
paper focuses on the second step while a review of key-points
detection methods can be found in [1].

Rotation invariance of descriptors is required if scenes
may differ in orientation. Three common approaches achieve
rotation invariance: histogram-based methods, inner-product
methods and dominant orientation detection.

Histogram-based methods sort the values of some prop-
erty of the key-point neighborhood in a histogram. The re-
sulting histogram is invariant if the property itself is invari-
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ant. However, this approach requires a large number of di-
mensions to achieve good distinctiveness [2].

The inner product between any function and a rotation in-
variant function is rotation invariant. This property is used
in moment-based descriptors [3], descriptors using complex
filters [1] and polar Fourier analysis [4]. These methods typ-
ically require a large set of invariant functions resulting in
high dimensional descriptors and are not robust to small dis-
torsions.

Different methods [5, 6, 2, 7, 8] compute the descriptor
with respect to an explicit local dominant orientation. SIFT
descriptors [5] achieve good performance but are typically
high dimensional. To reduce the SIFT dimension, two ex-
tensions were proposed: PCA-SIFT [6] and GLOH [1] which
both apply principal component analysis (PCA) on the SIFT
vectors. The use of PCA requires the prior construction of
a database representative of the descriptor subspace and as-
sumes this subspace is euclidean. Furthermore, relying on a
single parameter (the dominant orientation) may be mislead-
ing if this parameter cannot be robustly defined.

This paper investigates another way to achieve rotation in-
variance, namely spectral trimming [9]. The key-point neigh-
borhood is represented by an attributed graph. The Graph
Fourier Transform (GFT), i.e. the projection of the attribute
vector on the graph Laplacian eigenvectors, is then computed.
The GFT has two advantages: first, it is rotation invariant, and
second, its first coefficients contain most information about
the visual content, reducing the descriptors dimensionality
without relying on PCA.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the developed descriptor. Section 3 presents
its performances and compare them with SIFT on Transmis-
sion Electron Microscopy (TEM) images. Finally, Section 4
concludes the paper and suggests some future research direc-
tions.

2. METHODS

The compact descriptor is obtained by describing the key-
point intensity neighborhood as a graph and computing the
Graph Fourier Transform of a structure function living on its
vertices. This section introduces the definition of the graph



from the neighborhood, then the concept of Graph Fourier
Transform, and the choice of a structure function. Spectral
trimming, bringing everything together in a compact descrip-
tor, is subsequently described. Finally, the numerical com-
plexity is analyzed.

2.1. Graph Definition

Our approach relies on the definition of a graph G = (V,A)
for each key-point neighborhood. Let I(n) be the image and
let every pixel and every key-points be referred by their loca-
tions on the image grid (c for key-points, n for other pixels).
For any key-point ck, the set of vertices Vr(ck) is the set of
all pixels lying within a radius r from the key-point:

Vr(ck) =
{
n
∣∣||n− ck|| < r

}
.

We note #Vr = Nv . A four-connectivity is used, i.e. each
pixel (vertex in the graph) is connected to its four neighbors.
The edge between vertices ni and nj is weighted by a gaus-
sian of the difference between intensities, yielding an adja-
cency matrix A:

(A)ij =

{
exp(− 1

2σ2 ‖I(ni)− I(nj)‖2), if ni ∼ nj ,

0, otherwise.
(1)

The motivation for this choice of adjacency is the convergence
towards the true space geometry when the image resolution
increases. In particular, the graph Laplacian:

L = I−D−1/2AD−1/2 ∈ RNv×Nv , (2)

with Dij = δij
∑
kAik, tends to the continuous Lapla-

cian [10].

2.2. Graph Fourier Transform

The continuous Fourier transform of a function can be consid-
ered as the projection of the function onto the eigenfunctions
of the Laplacian operator ∆. Indeed, in 2D, exp(iωTx), for
any ω, satisfies ∆ exp(iωTx) = −||ω||2 exp(iωTx).

The graph Laplacian eigenvector basis B constitutes an
orthonormal basis of RNv :

B = {vj ∈ RNv : 1 ≤ j ≤ Nv, Lvj = λjvj}
with λ1 = 0, λj ≤ λj+1 ≤ 2. (3)

The upper-bound on the eigenvalue is due to the Gerschgorin
Disk theorem [11]. For a regular distribution of vertices
on an infinite plane, B coincides with the 2-D Fourier ba-
sis. Representing this basis B by the orthogonal matrix
B = (v1, · · · , vNv ) ∈ RNv×Nv , the Graph Fourier Trans-
form (GFT) of a vector f ∈ RNv living on V is naturally
defined as

f̂ = BTf , or f̂j = vTj f , ∀1 ≤ j ≤ Nv. (4)

(a) (b) (c) (d) (e)

Fig. 1. Key-point neighborhood (a), eigenvector correspond-
ing to λ1 = 0 (b), λ2 = 0.0019 (c), λ10 = 0.011 (d),
λ780 = 1.98 (e). Grayscale is arbitrary, eigenvectors are nor-
malized.

The development of Lv = λv reveals the analogy with
the continuous Fourier Transform. Using (2), we get

v(i) =
1

1− λ
∑
j∼i

Aij√
DiiDjj

v(j), (5)

where j ∼ i is the condition that j is connected to i. For the
lowest eigenvalues, λ ≈ 0, the factor (1−λ)−1 ≈ (1+λ). In
homogeneous intensity areas (Aik ≈ 1,Djj ≈ Dii ≈ 4), v(i)
tends to be constant and transitions occur at the borders of the
region (Fig. 1(b-d)). Projections on eigenvectors with low λ
may thereby be considered as a low frequency analysis of the
structure function1. Symmetrically, for high λ(≈ 2), the fac-
tor (1− λ)−1 ≈ −1 and in homogeneous areas, v(i) is close
to the negative mean of the neighboring values (Fig. 1(e)).
Projections on these eigenvectors can then be considered as a
high frequency analysis of the vector f .

Interestingly, the GFT is invariant under any relabeling
of the graph vertices. Indeed, given a permutation matrix
Π ∈ {0, 1}Nv×Nv with only one 1 per row and column and
Π−1 = Π, if the nodes of V are permuted accordingly, f →
Πf , ∆→ Π ∆ ΠT and f̂ → (ΠB)TΠ f = f̂ . After rotation
of the image, only the vertex labels are modified. Therefore,
the relabeling invariance of the GFT implies its rotation in-
variance (especially for the first eigenvectors since they are
less affected by interpolation errors).

2.3. Structure Function

There exists an infinite choice of structure function f . This
paper focuses on one particular choice, the vertex degrees:

fck
(ni) = Dii

Due to equation (1), the degree of vertices take values in [0, 4].
For binary images, supposing that σ → 0 in equation (1), the
vertex degree is truly related to the local structure in the image
(Fig. 2). An isolated point has a zero degree; a line edge has a
degree of one; the rest of the line and the corner of an object
have a degree of two; the edge of an object has a degree of
three; and the interior of a object and the crossing of two lines

1The notion of frequency here is related to oscillations on the intensity
graph. Low frequency is therefore not inconsistent with sharp transitions
occurring at the borders of homogenous areas.



Fig. 2. Nodes degree for a binary image with σ → 0 showing
the principal recognizable structures.

have a degree of four. For grayscale images, the degrees con-
tinuously vary between zero and four and a similar relation
with the local structure applies. This function encodes the
structure of the object present in the image, hence its name of
structure function.

2.4. Spectral trimming

Given the structure function f defined in the previous sec-
tion, its GFT f̂ is computed using equation (4). The normal-
ized eigenvectors of the Laplacian are defined up to their sign
and so are the coefficients of the GFT. The absolute values of
these coefficients are therefore recorded. Since the structure
function is presumed to vary smoothly on the neighborhood,
the first Ns coefficients (Ns < Nv) of its GFT contain most
information. The spectral trimming is therefore defined as:

ϕSp(ck) =
(
|f̂ck

(i)|
)
i=1,...,Ns

∈ RNs .

The operation of trimming the GFT can be interpreted as an
intrinsic dimensionality reduction. This vector ofNs parame-
ters constitutes our descriptor. The distance between descrip-
tors is simply the euclidean distance between the vectors ϕSp.

2.5. Complexity

The computational complexity of the descriptor evaluation is
split as follows. The time-consuming part of the graph defini-
tion is the connectivity estimation in O(4Nv). The eigenvec-
tor decomposition is bounded by O(N3

v ). However, since the
Laplacian is sparse, its first few eigenvectors can be computed
efficiently by means of Lanczos algorithms, whose complex-
ity depends on the spectral gap |λk+1−λk|. Finally the spec-
tral trimming has a complexity of O(NsNv). On a 2.8GHz
laptop, for Nv = 793, Ns = 10, the descriptor construction
takes about 0.05s.

3. EXPERIMENTS AND RESULTS

This section assesses the descriptor performance and com-
pares it to SIFT descriptors [5].

Experimental setup: Four 1300 × 1300 TEM images of a
mouse visual cortex with intensities normalized in [0, 1] are
used. In each image, 130 key-points are detected. Each im-
age then undergoes 18 rotations uniformly sampled between 0
and 170◦. The key-point coordinates are simply rotated along
with the images so that the true correspondences are known.
This does not bias the comparison results since the same is
applied for both the proposed descriptors and SIFT. The de-
scriptors are then computed in every rotated version indepen-
dently, forming a database of 9360 descriptors containing 520
equivalence classes of 18 descriptors.

For the proposed descriptors, the key-points are detected
by a Laplacian of Gaussian (LoG) method [1] with scale pa-
rameters varying between σmin = 2 and σmax = 15. The
radius r = 16 leads to a number Nv = 793 of vertices, and
σ = 0.04 for the adjacency matrix definition.

SIFT descriptors are computed with the parameters sug-
gested in [5]. The key-points detection integrated in SIFT is
used rather than LoG, ensuring optimal performance. The de-
tected scales of key-points are also propagated to the rotated
images. The dimensionality is a function of the number of
spatial and orientation histogram bins.

Performance criterion: The equivalence between two de-
scriptors is tested by comparing the euclidean distance (d)
between them to a threshold T (positive test if d < T and
negative test if d ≥ T ). Two types of errors may occur: false
positives and false negatives. False negatives (positives) oc-
cur when the test is negative (positive) although the descrip-
tors are equivalent (distinct).

The number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) are computed for
all possible values of T . The Receiver Operating Characteris-
tics (ROC) curve presents the true positives rate (TPR(T ) =
TP/(TP + FN)) versus the false positives rate (FPR(T ) =
FP/(FP+TN)). The area under the ROC curve (AUC) equals
the probability that the distance between a random pair of
equivalent descriptors is lower than the distance between a
random pair of distinct descriptors [12]. The AUC is an ele-
gant criterion as it brings down the curve to a single criterion.

Results and Discussion: The curve of the AUC versus the
dimensionality shows that our method has better performance
with fewer parameters (Fig. 3). A peak of 96.8% is reached
for Ns = 9. Keeping additional GFT coefficients results
in slightly worse results due both to the higher frequency of
the corresponding eigenvectors (higher frequencies are sub-
ject to significant interpolation errors) and to the instability
of the Lanczos algorithm for higher eigenvalues. The plateau
reached by the SIFT performance may be related to errors in
the dominant orientation detection which is not reduced by an
increased dimensionality.

The observation of a key-point neighborhood and its near-
est neighbors (in terms of the distance between their descrip-
tors) among all key-points detected in a rotated version of
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Fig. 3. Evolution of the AUC with the descriptor dimension-
ality for the proposed descriptor and for SIFT descriptors.

the image, offers a better insight of the descriptors behavior
(Fig. 4). We notice that neighborhoods that have the same
structure contents are close together.

4. CONCLUSION AND FUTURE WORK

In this paper, spectral trimming has been used to produce
compact rotation invariant image descriptors. On top of en-
suring the rotation invariance, spectral trimming offers an in-
trinsic dimensionality reduction based on the low frequency
content of the structure function. As a result, better rota-
tion invariance is achieved with a dimensionality about ten
times lower than SIFT descriptors. Unlike other compact de-
scriptors, spectral trimming does not require a prior PCA and
makes no assumption on the descriptor subspace.

In a future work, we want to use our descriptors to register
2D TEM images in order to reconstruct a volumetric image.
The invariance of the descriptors under anatomical changes
should be investigated. The descriptor could also be extended
to be invariant under a larger class of transformations. Scale
invariance could be obtained by adaptively fixing the radius
r based on the scale detected by the LoG detector. Similarly,
invariance to smooth contrast changes could be obtained by
adaptively fixing the factor σ based on the local intensities.
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