POLITECHNIKA WARSZAWSKA Rok akademicki
WYDZIAL. ELEKTRONIKI I TECHNIK INFORMACYJNYCH 2004 /2005
INSTYTUT INFORMATYKI

PRACA DYPLOMOWA MAGISTERSKA

Szymon Jakubczak

Joint rate control and stochastic routing in packet

networks

Zintegrowana kontrola przepustowosci i rutowanie stochastyczne

w sieciach pakietowych

Opiekun pracy

dr inz. Stawomir Kuklinski

Podpis Przewodniczacego

Komisji Egzaminu Dyplomowego

Specjalnosé: Informatyka — Inzynieria
Oprogramowania 1 Systemy
Informacyjne

Data urodzenia: 9 marca 1983 r.

Rozpoczecie studiow: 1 pazdziernika 2000 r.

7ZYCIORYS

Urodzitem sie 9 marca 1983 roku w Warszawie. Nauke w warszawskiej Szkole Podstawowej
nr 82 rozpoczatem w wieku 6 lat i, ominawszy jeszcze klase trzecia, ukonczytem w roku 1996.
Wyksztalcenie srednie zdobylem w XIV LO im. Stanistawa Staszica w Warszawie, w klasie
o profilu matematycznym-experymentalnym. W tym czasie uzyskalem m.in. tytuly finalisty
Olimpiady Fizycznej i Matematycznej. Przy wreczeniu §wiadectw maturalnych otrzymalem
Nagrode Burmistrza dla Najlepszego Absolwenta.

Sukcesy ze szkoty dredniej umozliwity mi rozpoczecie studiéw bez egzaminéw wstepnych. Na
Wydziale Elektroniki i Technik Informacyjnych wybratem specjalnosé Inzynieria Oprogramowa-
nia i Systemy Informacyjne. Co semestr otrzymywaltem stypendium naukowe, a za ostatnie dwa
lata — Stypendium Ministra Edukacji Narodowej i Sportu za osiagniecia w nauce. Caly czwarty
rok studiéow spedzitem na wymianie zagranicznej w University of Waterloo w Kanadzie, gdzie

bytem takze zatrudniony jako research assistant w Shoshin Lab.

podpis studenta

EGZAMIN DYPLOMOWY

Ztozyt egzamin dyplomowy w dniu 2005 r.
Z WYDIKIEI oo
Ogoélny wynik studiow e

Dodatkowe wnioski i uwagi Komisjio e

Zintegrowana kontrola przepustowosci i rutowanie stochastyczne w sieciach pakietowych

Streszczenie

Pozadany przydzial zasobdéw do przepltywdw w sieciach IP cechuje sie zaré6wno roéwnoscia wsrod uzytkown-
ikow jak i rozkladaniem obciazenia pomiedzy taczami. Alokacja jest typowo kontrolowana za pomoca
dynamicznego rutowania i ograniczenia obcigzenia w Zroédtach. Te dwa mechanizmy sa tradycyjnie
podzielone pomiedzy dwie warstwy stosu protokoléw, i zazwyczaj nie maja konretnie okreslonej globalnej
funkeji celu. W tej pracy proponujemy nowe podejscie, ktore taczy w sobie rutowanie stochastyczne i kon-
trole przepustowosci. Podejscie to ma dobrze okre§long i dostosowywalna funkcje celu, ktéra bierze pod
uwage zaré6wno uzyteczno$é¢ uzytkownikéw zwigzana z przepustowoscia jak i koszty zasobéw wynikajace
z obciazenia. Pokazujemy, ze ten problem optymalizacyjny jest wypukly i moze zostaé zdekomponowany
na dwa dobrze znane podproblemy, ktére pasuja do podziatu stosu protokoléw na warstwy, ale uzywaja
wspolnej metryki kosztu przyrostowego. Dokonujemy przegladu uprzednio zaproponowanych rozwigzan
dla obu podprobleméw i omawiamy problemy implementacyjne algorytmu taczonego. Podajemy takze
warunki wystarczajace dla zbieznosci w wyidealizowanym modelu. Opisujemy ze szczegdltami jeden z
mozliwych wariantéw i poddajemy go ewaluacji poprzez symulacje numeryczna.

Stowa kluczowe: zintegrowana kontrola przepustowosci i rutowanie, rutowanie stochastyczne, réwno§é

uzytecznosci, rozkltadanie obciazenia oparte na kosztach

Joint rate control and stochastic routing in packet networks

Abstract

In IP networks, a desirable allocation of resources to user flows exhibits both fairness among users and
load balancing across links. The allocation is typically controlled by means of dynamic routing and
load limiting at sources. Traditionally, the two mechanisms are split between two layers of the protocol
stack, and mostly lack any explicitly—defined global objective. We propose a new scheme that combines
stochastic routing and rate control and attains a well-defined and tunable goal that accounts for both
rate-related user utility and load—-induced resource cost. We show that this optimization problem is
convex and can be decomposed into two well-known problems that conform to the layer—separation,
but employ a common marginal cost metric. We survey multiple solutions previously proposed for each
of the two sub-problems. Further, we discuss the implementation issues of a joint algorithm and state
sufficient conditions for convergence in an idealized model. We describe in detail one possible variant

and evaluate it through numerical simulations.
Keywords: joint routing and rate control, stochastic routing, utility fairness, cost—based load balancing,

global performance optimization

Contents

1 Introduction

1.1 Motivation e
1.2 Contribution e
1.3 Outline o .

2 Background

2.1 Modelling oL
2.1.1 Networkmodel
2.1.2 Servicemodelo Lo

2.2 Resource sharingo
2.2.1 Objectives e
2.22 Fairness e
2.2.3 Selfishness and social welfare oL

2.3 Mechanisms
2.3.1 Adaptiverouting
2.3.2 Congestion avoidance

3 System Model and Objective

3.1 Systemmodel
3.1.1 Entitieso
3.1.2 Routing

3.2 Objective
3.2.1 Definitiono
3.2.2 Imterpretation L e

3.3 Optimal allocation
3.3.1 Convexity and equivalence
3.3.2 Problem decomposition L Lo

4 Related work
4.1 Scope . .o
4.2 Adaptive routing

10
14
17
17
25

29
29
29
30
31
32
33
34
34
35

4.2.1 Gallager’s minimum delay Lo
4.2.2 Gupta and Kumar’s STARA
4.2.3 Reinforcement learningo Lo
4.24 Antcolonies
4.2.5 Marginal cost estimation Lo
4.3 Ratecontrol L
4.3.1 Kelly’s decomposition L oo
4.3.2 Joint routing and rate control

5 Joint Algorithm

5.1 Composition e e e
5.2 Distributed cost estimationo 0oL oL
5.2.1 Distance-vector algorithm oo
5.2.2 Link-state algorithm o Lo
5.2.3 Information propagation
5.3 Continuous adaptation algorithmo 0oL
5.3.1 Continuous model
5.3.2 Ratecontrol.
0.3.3 Routing
5.3.4 Joint operation
5.4 Delayed adaptationo
5.4.1 Non-infinitesimal adjustments 0oL
54.2 Updatedelays. L
6 Algorithm Evaluation
6.1 Simulation methodology
6.2 Scenariol
6.3 Experiments L
6.3.1 Phased vs. concurrent operation Lo
6.3.2 Optimal routing vs. demand L oL
6.3.3 Fairness and load balancing o000 L
6.3.4 Utility vs. cost L
6.3.5 Selfishness
6.3.6 Convergence issues oo

7 Conclusion

A Proofs for Chapter 3

55
5%)
56
26
58
59
62
62
62
64
67
68
68
68

70
70
71
73
73
74
77
77
80
80

84

86

Chapter 1

Introduction

The IP networks that connect our computers are highly dynamic environments. There is a
persistent struggle to balance the varied needs of many users with the limitations of resources.
The dynamics are already present at both sides. The user demand is bursty at a wide spectrum
of time scales, and the capacity of resources (e.g. data links) has gotten variable with the rise
of lossy wireless media. As the user needs are ever-increasing, and just over-dimensioning the
network capacity does not suffice, we shall need dynamic, adaptive algorithms to resolve the
users’ competition for resources.

With the evolution of IP networks, the primary concern switched from rough connectivity
to the specifics of the needs of users. A typical user is elastic, i.e. able to adjust its load in
response to resource availability. Fairness or utility are some proposed measures of satisfaction
of such users from quantity of service. At the same time, an important network-centric issue is
how the load is balanced across resources. Load balancing can improve quality of service and/or
reduce costs. The focus of this work is how to improve the satisfaction of users through adaptive

routing and rate control in dynamic networks.

1.1 Motivation

While the history of both adaptive routing and load control is not much younger than that of the
pre-Internet ARPANET project, the solutions proposed to-date conform to the layer separation
paradigm as described below.

The traditional reference model for data networks is a stack of layers as shown in Fig. 1.1.
The Internet Protocol stack roughly follows this model [SK91]. Two adjoining layers are the

focus of this work:

network layer - responsible for routing, i.e. establishing routes and forwarding packets along

them.

transport layer - responsible for splitting streams into packets, flow control (buffer protection),

3

Chapter 1. Introduction 1.1. Motivation

Application

| Present ati on ‘

Sessi on

‘ Transport ‘

Requests

| Net wor k

S9JINISS

] Data |ink ‘

| Physi cal ‘

Figure 1.1: The ISO Open Systems Interconnection (OSI) reference model. Each
layer performs services in response to requests incoming from the layer directly above

it. The inner workings of a layer are concealed within and unavailable to others.

and also reliable delivery.

Adaptive mechanisms installed in the network layer, are automatically rerouting the traffic
based on analysis of current network conditions (traffic patterns, resource availability), as to
reduce costs or improve quality of service (e.g. end-to-end latency). But a packet network is
also a queuing system and when the demand surpasses its capacity, a congestion occurs, i.e. the
packet delay rises, and packet delivery ratio may suffer due to limits on queue space. In the
extreme case, a congestion collapse (severe inefficiency) and undesired unfairness may occur. In
order to avoid the collapse, mechanisms for congestion control or avoidance are incorporated into
the protocol stack. Since they are generally of the same nature as flow control, they are built
into the transport layer, e.g. TCP. Therefore the network layer is responsible for the allocation
of resources (links) to users by selecting routes, while the transport layer is responsible for the
sharing of allocated resources by limiting the load of users. As such, the mechanisms that control
the load in response to congestion (resource availability) are not allowed to change the routes
that were established in the network layer, but only regulate traffic along the preselected paths.
The network layer does not control the users, and the transport layer does not control the routes.

Commonly, to deal with dynamics present in networks, the current solutions comply with this
layer separation offering adaptive routing and congestion control or avoidance algorithms. While
this decomposition is, generally, advantageous, it lacks a well-defined global objective. Also, the
interactions between the two mechanisms were not well studied until very recently [AA03, Voi04,
KVO05]. A different approach is to let the user control its allocation of resources in a selfish
manner. This however does not fit the IP datagram routing paradigm, and is typically realized
in overlay layers [Col98, ABKMO1]|.

The focus of this thesis is resource sharing in unstructured packet networks aiming for both
user utility and resource cost, using both aspects of share allocation: routing and load control.
We are looking for a tunable, adaptive mechanism that deals with the dynamics of both users’
needs and available resources. Most of the inspiration comes from the works of Kelly and
Voice [KV05, Voi04].

Chapter 1. Introduction 1.2. Contribution

1.2 Contribution

In this work, we introduce a new scheme for packet data networks: a joint rate control and
stochastic routing algorithm. The scheme is a combination of well-studied Wardrop hop-by-
hop stochastic routing (e.g. [Gal77,SDC97,GK97,VGLA99,CD98, BK03,XQYZ04,RK04]) with
source rate control (e.g. [KMT98, KST01, LA02, LBS03|). Both mechanisms have been shown
to be beneficial for the performance from both the viewpoints of users (throughput and delay)
and resources (utilization and load balancing). However, in our solution, the two mechanisms
operate jointly by sharing a common cost metric based on virtual resource price as discussed by
Kelly and Voice in [KV05] and Voice in [Voi04]. We show that the equilibrium of this algorithm
is globally optimal according to an intuitive and tunable goal function that is defined in terms

of both user utility and resource cost.

1.3 Outline

The rest of this thesis is organized as follows.

In Chapter 2, we provide the relevant background information to facilitate the reading of
the thesis. In particular, we introduce the terminology, overview the model of network services,
and discuss the objectives of resource sharing from both user and network perspective. We
have given increased attention to the notion fairness driven with concave utility functions and
the paradigm of selfish flow routing and equilibria. Also in Chapter 2, we briefly introduce the
mechanisms employed in the proposed scheme: dynamic proportional routing and rate control.

Chapter 3 contains the definition of the system model and objective, together with interpre-
tation and theoretical analysis. Our system model basically assumes rate control at flow sources
and flow—conserving routing. We consider per—flow and proportional routing policies and show
their equivalency with respect to the chosen objective. Qur assumptions on routing are in con-
trast to the most relevant work on joint routing and rate control scheme proposed by Kelly
and Voice [KV05] that uses preselected routes. In our analysis, we show that the objective is a
convex optimization problem, how it can be decomposed into two well-known sub-problems of
minimum cost proportional routing and maximum profit rate allocation, and how a joint scheme
could attain it. This decomposition conforms to the traditional layer—separation principle.

In Chapter 4, we describe several solutions to each of the two sub-problems that have been
proposed by other researchers. Only a small portion is surveyed. We focus on such methods
that could be employed in our algorithm and are fairly representative to various approaches.

The implementation details of the joint algorithm are discussed in Chapter 5. We propose
that its two components would use a common marginal cost estimate, and consider possible ways
to obtain and distribute it among nodes. For the theoretical analysis we introduce a continuous
model that neglects both propagation and update delays and assumes that the adjustments are

performed continuously. We state the sufficient conditions for such adjustment algorithms that

Chapter 1. Introduction 1.3. Outline

yield improvement in the overall performance at every instant. One variant that shall be used in
our evaluation is described in detail and proven to satisfy these requirements. Finally, we discuss
the issues that arise in a more realistic model that includes propagation and update delays.

We present the results of our evaluation through numerical simulation in Chapter 6. In the
simulation we neglect propagation delays to match the model used in Chapter 5. The focus of
the evaluation is to illustrate how the algorithm converges using either phased or concurrent
interleaving, and the properties of the resulting allocation. Specifically, we demonstrate how
routing adapts to increasing load, how fairness and load balancing is achieved and how the
network can be driven at desired saturation level using global utility weighing. We also discuss
convergence issues that arise in the discrete-time simulation.

Chapter 7 summarizes and concludes this work. We also outline open problems and future

research directions.

Chapter 2

Background

In this chapter, we provide the preliminaries. It is intended as a less formal introduction to
the concepts discussed later. It describes basic mathematical models of a network service, the

principles of resource sharing and introduces the mechanisms employed to attain them.

2.1 Modelling

2.1.1 Network model

A network comprises hosts, routers and communication links. Hence, it is commonly described
using directed graphs, where vertices represent the nodes and directed edges represent the links,
as illustrated in Fig. 2.1. Typically, there can be at most one link for an ordered pair of
nodes, but this restriction is usually easily relaxed. The practical difference between hosts and
routers is that the hosts host users that inject their load into the network, while the routers
are solely responsible for directing the load through links to the target host. Thus, a simplified
model contains only routers and links, and places the users in the routers that their hosts are
connected to.

Each user sends data from its designated source to its destination host. Different users may
have different sources and destinations. Therefore the network is a multicommodity resource, as
opposed to a single commodity resource to which all users have exactly the same access through
common source and destination nodes.

In order to transmit data over the network, it needs to be split into small chunks, called
packets. The packets traverse the network according to the store and forward paradigm: a packet
needs to be fully received by the router and then transmitted (forwarded) further. The links
are characterized by propagation delay or latency (i.e. time for a single bit to traverse it), and
bandwidth (i.e. number of bits that can be transmitted in unit time) which is the measure of
its capacity. Therefore, the routers that forward the packets need to manage a queue, in which

they store the packets before the specific outgoing link is available.

7

Chapter 2. Background 2.1. Modelling

Figure 2.1: Modelling network as a graph. Solid arrows represent links. Dashed
arrows represent users sending data across the network between their specific source

and destination.

In this queuing model, when a router persistently receives more packets than it can forward,
a congestion collapse occurs: its queue grows until it overflows, and then the packets are being
dropped. In this work, we will assume that the network is never overloaded, though we do

account for the congestion, i.e. increase in queuing delay when the load increases.

2.1.2 Service model

The network is providing the users with service, i.e. shipping their packets over from source
to destination hosts. Naturally, it is a discrete process consisting of such events as packet
creation (at source), packet relay (between routers), and packet consumption (at destination).
However, as the number of packets is large, such a detailed view is not usually necessary. Instead,
more usable aggregate descriptions of packet flows rather than the individual packets have been
proposed.

A flow is comprised of the packets that belong to a specific user, and are transmitted over the
network from its designated source to destination node. A flow is approximated as a continuous

fluid and can be described by the following statistical characteristics:
rate - the average number of packets (or amount of data) that is created within unit of time

delivery ratio - the fraction of the packets created at source that get delivered to the destina-

tion. Sometimes replaced with loss ratio = 1 - delivery ratio

throughput - the rate of packets that get successfully delivered. In stationary systems, through-

put equals the product of rate and delivery ratio
delay - (or latency) the time for a packet to reach the destination

delay or throughput jitter - the variation or range of delay or throughput

Chapter 2. Background 2.2. Resource sharing

Our assumption that the network is not overloaded implies a flow-conservation law: the to-
tal rate of flows coming out equals the total rate of flows coming in plus/minus the flows in-

jected/consumed at the node.

2.2 Resource sharing

By design, the service in IP networks is "‘best-effort"’ only, i.e. all packets are treated alike, and
no guarantees about the service (e.g. reliability) are made. Elastic users, defined later in this
section, are well-prepared for this environment, and will adjust their load to match the resources
available when necessary. Still, the objective is to maximize their satisfaction, minimize the
incurred cost, and yet remain fair in the allocation. In this section, we describe the utility and

cost objectives as well as the notions of fairness and selfishness of a resource allocation.

2.2.1 Objectives

There are several aspects of resource sharing in data networks. We focus on the user perspective
and treat any system-oriented objectives (e.g. load balancing) as purposed to improve the
provided services (e.g. reliability, delivery ratio, etc.). The user is interested in a number of

characteristics of the service it receives:

delivery ratio - Ideally, the network would be lossless, and the delivery ratio would be 100%.
Losing packets is clearly undesirable for users that require reliable data transfer. When

packets get lost, transport-layer protocols need to take counter-actions and re-issue them.

throughput - Throughput determines the time needed to transfer finite amounts of data, e.g.

a document, and also the bandwidth available for online streaming applications.
delay - In the Internet setting, this characteristic is crucial for interactive applications.

jitter - For many applications the unpredictability of delay is more undesirable than the delay
itself. Streaming applications are a particular case, in which fixed delay would allow

uninterrupted consumption of the incoming data, to the extent of bufferless reception.

Throughput is distinguished as the quantity opposed to the quality of service. In this work,
throughput will be given precedence followed by delay. In the wireless domain, we should most
likely focus also on delivery ratio that firmly depends on the quality of wireless links.

With respect to these characteristics, the requirements may be more or less strict. In their
research, Roberts and Massoulie make a distinction between elastic and non-elastic applica-
tions [RM98]. An elastic user is able to utilize surplus bandwidth and, at the same time, can
benefit from even the smallest amounts of service. The majority of Internet traffic comprises of
elastic documents (web requests, file transfers). But the state-of-the-art streaming applications

are rarely elastic - their satisfaction is a step function of throughput, i.e. a specific threshold

Chapter 2. Background 2.2. Resource sharing

exists. Later in this chapter we describe the elasticity of user with a wiility function which
describes its satisfaction regarding the throughput it receives.

In human world, to deal with the possible variety of user needs and resource costs, we have
developed the notions of money and prices. Inspired directly by theory of economy, a concept of
virtual service pricing is gaining increased interest amongst Internet researchers [GK99, KMBL99,

DHKO04]. We distinguish two variants of the concept:

e cach resource is characterized by a unit price. The price and load determine the cost.
The goal is to minimize the total cost of service. Note that this goal alone could stabilize
at the trivial state of zero service. Hence, it is rather used in the pure routing problem,

where the user demand is fixed.

e "

e cach user offers to a unit price per service. The goal is to maximize the total

pay
income. Note that this price may be virtual, or in another scenario, used to determine
the optimal rate of the user. We later relate to such a scheme that was proposed by

Kelly et al. [KMT98].

In our work we combine both aspects of pricing and aim to maximize the profit as the difference
between income and costs. However, as researchers before us [Kel97, KMT98, LA02] we use
pricing only as a facility, no payments are actually made. We are especially interested in the
particular way of pricing the resources in proportion to the latency incurred to packets that use
them. Thus, the profit of a user could be defined as the difference between its income due to
achieved throughput and its costs due to the perceived latency.

We have purposefully omitted the notion Quality of Service, because we focus our work
around elastic applications for which detailed QoS specifications make little sense. Further,
QoS mechanisms are typically founded on resource reservation and call admission control, which
rejects new requests, when they could violate the QoS guarantees already made. But the inherent
property of elastic applications is that they are ready to adjust in both directions, also to sacrifice

some amount of their service, when the incurred costs are too high.

2.2.2 Fairness

Suppose that fairness amongst users is our primary concern. What is it that constitutes fairness?
Intuitively, an allocation of resources is fair, if it does not "‘hurt"” any user. Some of the users’
access to the network may be hindered, and such users may be starved out of service by others
if global performance (e.g. resource utilization) was the only factor that counted. Specifically,
when we introduce a unit resource-price of unit service, then to maximize the total amount of
service, we would definitely prefer those users that are cheaper to serve, i.e. have smaller prices
per unit.

Fairness criteria has recently gained increased interest with the evolution of single- and multi-

hop wireless networks. Wireless links are unlike wired in that they are subject to both external

10

Chapter 2. Background 2.2. Resource sharing

Bottleneck 2----_{--__.

Bottleneck 3-----{-----

L LT T T TaISpa S

L S

Bottleneck 1-----J--occieeeeeees

W

I
'
1
+
I
'
'
1
I
'
1
'
'

__________ Fmmmmm
]
]
I
1
I
I
'
1
]
'
1
'

 User 1 User 2: User 3

Figure 2.2: Water-filling algorithm for max-min fairness. Bottleneck ¢ limits the
volume allowed for user ¢. It is impossible (laws of hydrodynamics) for a user to

receive less than its limit when the water-line has exceeded it.

and internal interference. The effects are such that flows virtually share common resources even
if they do not traverse common nodes. Moreover, a flow suffers from self-interference, since the
transmissions over subsequent hops on a path interfere with each other. See [LBB04, HJB04,
GSKO04] for reference.

Max-min fairness

One common approach to prevent user starvation is maz-min fairness which in its principle aims
to maximize the service of the least serviced user. In its widely used definition, the criterion is
stated as: the gain of no user should come at the expense of a less serviced user. More formally,
an allocation of services to users x is max-min fair if and only if for any other allocation x*,
an improvement in one user’s service x; > x, implies there exists a less serviced user z; < x4
which is hurt by the improvement, i.e. =} < ;. An equivalent definition states that, if users
are constrained by resource capacities, then for each user there exists a bottleneck (the actually
constraining resource) in which it is the best serviced user. Max-min fairness has been well-
studied in the areas of both wired and wireless networks [KVR95, Mar03, RB03, RB02, TS02|.
The common approach to finding max-min fair allocations is a water-filling algorithm that

increases the service of all users until each hits its bottleneck, as illustrated in Fig. 2.2.

Proportional fairness

Kelly in [Kel97| argues that max-min fairness is not truly appropriate for the bandwidth sharing
problem. Instead, he advocates for proportional fairness, which has its roots in economy and
game theory and is directly connected to the maximum aggregate utility problem.

In contrast to max-min fairness, proportional fairness allows to hurt a less serviced user’s

share provided that the improvement is at least proportionally better. More formally, an allo-

11

Chapter 2. Background 2.2. Resource sharing

cation of services to users x is proportionally fair if and only if for any other allocation x*:

L
Ts o

S

Kelly notes that this criterion restated as:) dxs/xs < 0 is equivalent to the optimality condi-

tion for:
max Z log x4
S

Utility fairness

Inspired by the aforementioned results by Kelly on proportional fairness, researchers turned
to the notion of utility, which allows to define collective objectives of elastic users and still
accounts for fairness. In general, the criterion of utility fairness is to maximize the sum of

individual utilities:

maxZUs(xS)

A sensible utility function for a user is a strictly increasing and strictly concave function. The
smaller the current share, the more worth is its increase, and the better is the improvement in
user satisfaction. Doubly differentiable concave functions have the first derivative increasing and
the second derivative positive. When the concavity is strict, then the derivatives are, respectively,
strictly increasing and strictly positive. The strict concavity is essential for fairness. In Fig. 2.3,
we illustrate how it improves the balance of the allocation of user shares on a very simple
example. In general, for a single-commodity resource and multiple users of same concave utility
functions, the optimal allocation is absolutely fair (i.e. all equal shares). In the very same
manner, if we use strictly convez resource cost functions (of total resource load) to evaluate the
performance, then a minimization problem of total cost would balance the load over resources.

Although the user might be interested in various aspects of service as outlined in the previous
section, the characteristic that is typically subject to utility evaluation is throughput or flow

rate. A selection of utility functions has been proposed:

U(x) =logz, U'(x)=1/x The logarithmic function attains the proportional fairness as pro-
posed by Kelly in [Kel97], and is also shown to be the result of the popular additive-
increase-multiplicative-decrease scheme also by Kelly in [KMT98|. We describe this scheme

in more detail in section 2.3.2.

U(z) = —1/x, U'(z) = 1/2> Massoulie and Roberts propose in [MR99] to use the reciprocal
of throughput interpreted as potential delay. If all packets were equal sized, then this
utility is proportional to the packet delay.

U(z) =27%/(1 - a), U'(zx)=x"% A generalization for a class of utility functions was pro-

posed by Kelly in [KMT98]. Referred to as a-utility, the class encompasses both pro-

12

Chapter 2. Background 2.2. Resource sharing

\ A
N
) N N ' \\\ {
\\ \ \\ \\ (
AN N
. AN
N \ N N
AN \\ N
R Ux)+U(y) =A
“a4—— XtYy=A \\\ \\\ \\4/))
\\\ \\\ \\\\ %
/7 Sa N \\V
. S ~ X
fairness o
A x+y:C
X y U u(y)
x X

Figure 2.3: A comparison of total utilization and strictly concave utilities as perfor-
mance measures. User shares x and y are limited by resource capacity C. The charts
on the top indicate the gray region of feasible allocations. The lines of perfect efficiency
(resource utilization) and perfect fairness (equality) are plotted. The family of dashed
lines across the region are equal-performance lines. The charts below show how the
performance varies along the perfect efficiency line x +y = C. Total utilization does

not "care" about fairness.

13

Chapter 2. Background 2.2. Resource sharing

u(r) u(r)

» »>
» —>

r

Figure 2.4: A sample comparison of utility functions of elastic (left) and non-elastic
(right) users. Non-elastic users may have a strict threshold of service below which the

level of satisfaction is none, but above which the satisfaction is full.

portional (« — 1) and potential delay (o = 2) fairness as well as the max-min fairness

(a0 — 00).

Each of the schemes allows for additional differentiation between users by per-user weighing.
We point to the derivative of the utility function, as it is more informative. It is not the

value of global optimum that is of interest to us, but rather the optimal allocation of resources

e "

to users. Note, that none of the classes allows an allocation to "‘starve"’ any user, because
lim, ,oU(x) = —oo. It should be emphasized that non-elastic applications do not respect
any concave utility. Figure 2.4 illustrates the contrast between the utility functions of elastic
and non-elastic users. Also, many applications are sensitive to more than just the throughput

received.

2.2.3 Selfishness and social welfare

Let us suppose that we can measure each user’s profit which increases with the quantity of
service received and decreases with the costs incurred by the service on resources. The two poles

on the scale of possible ways to approach such system are:

social way - when the users cooperate to maximize the total or average (per-capita) profit, also

called social welfare
selfish way - when each user seeks to maximize its individual profit

Users’ behaviour is selfish or non-cooperative when they are not interested in the system-wide
criteria but only their own performance. The discrepancy between "system-optimality" and
"user-optimality" was evidently first noticed by Pigou [Pig20] and we describe it later in this
subsection.

The notion of selfishness originates from game theory [Mye91| and has been studied thor-
oughly in the past. Recently, it has also received increased attention in network research. The
classic hop-by-hop routing paradigm (in which the node only decides on the outgoing link, not on
the whole path) does not support selfishness per se, but it has been shown to be inefficient from

the user’s perspective [Col98, TGSEO1]. In response, new end-to-end routing paradigms (e.g.

14

Chapter 2. Background 2.2. Resource sharing

source routing [CCS96, ELR*96, JMBO1], overlay routing [Col98, ABKMO01, CFSK04]) emerged
allowing the user (or host) to pick the path for its flow.
In this thesis, we do not resort to selfish routing directly, but we do base on the notion of

equilibrium, i.e. the stable state of a selfishly driven system.

Equilibrium

Consider a sharing problem from a different, yet quite related domain of road traffic. Which
route, given origin and destination, would one usually take? Reasonably, the one that gives
shortest trip time. Note that even if the decisions of other road users are known, the strategy
remains to optimize own goal unilaterally, i.e. assuming that others will not adjust their decisions
to our favor. Naturally, the trip time of a route increases with the amount of traffic using it.
Obviously, this system reaches its equilibrium (i.e. stable state) when no user is willing to change
his route, because it would increase his trip time.

Let us formalize this notion in a more general system. A flow game is a multicommodity
network shared by a set of users. Each user selects a route for its flow. The cost of the route is
the sum of the costs of the links it uses (traverses over), and the cost of a link is an increasing
function of load, i.e. number of flows using the link. Two definitions of equilibria have been

defined for non-cooperative flow games:

Nash equilibrium in which no flow (seen as an agent playing the game) has the incentive
to unilaterally adjust its route. In other words, the flow evaluates its reduction in cost

assuming that no other flow would be rerouted.

Wardrop equilibrium in which routes used by all flows having common source and destination

have equal cost, and there exists no route of smaller cost that could be used by the flows.

The Nash definition is used for small number of atomic users. When the number of users
increases and the impact of each one’s decision becomes negligible (zero-weight), the users form
an atomless continuum and the Nash equilibrium converges to Wardrop equilibrium as shown
by Haurie [HM85]. There is a clear intuition behind Wardrop’s definition: if, for a given source-
destination pair, there existed a route of smallest cost, the envious users would reroute their
flows until the costs of all routes in use get equalized.

In a continuous variant of the model there is a fixed flow demand per each source-destination
pair which can be split in any fraction over all routes available. In such a case, the social welfare
is the average cost per flow which is the average of costs of routes weighed by the amount (i.e.

rate) of flow using each route.

Consequences

Selfish behaviour comes at a price, i.e. decrease in global performance goal (or social welfare).

Counsider the common example by Pigou [Pig20] of a single commodity (one source-destination

15

Chapter 2. Background 2.2. Resource sharing

I(X) = X
) ®

Ix) = 1

Figure 2.5: Pigou’s example of loss in social welfare due to selfish routing. Total flow
is 1 and the optimal allocation is shown. Under selfish routing, the flows from s to ¢
that take the bottom link are envious as long as the load on the top link is less than
1, because the latency over there is smaller. Effectively, all flows take the top link.
The loss in social welfare is the ratio of average latency of selfish routing to optimal,
(I1x1)/(0.5%0.54+0.5%1)=4/3.

Figure 2.6: Braess paradox. The social welfare of the equilibrium in the original
network is 3/2 (a). After adding a new zero-cost link, the cheapest route traverses the
new link and all flows switch to it. The social welfare of the augmented network is 2

(b). The price of anarchy is 4/3, the worst-case for linear latency functions.

pair) network with two links characterized by different load-latency functions with flows willing
to minimize their latency, as depicted on Fig. 2.5.

This price of anarchy in general networks have been shown by Roughgarden and Tardos
in [RT00] to be unbounded. Yet, in the same work it was also shown that, if the load-latency
functions are linear, the price of anarchy is no more than 4/3. In other work, Qiu et al.
[QYZS03] substantially reduces this gap with simulations in a more realistic, restricted overlay
setting.

The Pareto-inefficiency of the equilibria of non-cooperative flow games also manifests itself
as a potential degradation of social welfare when available resources are increased, commonly
referred to as the Braess paradox [Bra68|. An illustration taken from [Rou02] is given in Fig. 2.6.

A property of non-cooperative flow games that is crucial to this thesis was shown by Wardrop
in [War52| for road traffic, generalized by Beckmann et al. in [BMW56]|, and later applied
to selfish routing by Roughgarden in [Rou02]. It states that the globally-optimal flow (i.e.
maximizing social welfare) is a flow at Nash/Wardrop equilibrium with respect to a different

set of edge latency functions. Specifically, given a network with latency functions [that are

16

Chapter 2. Background 2.3. Mechanisms

xIx)' =2x
5) ©

(x1(q) =1

Figure 2.7: Marginal latencies used in the example by Pigou on Fig. 2.5. The
allocation shown is at Wardop equilibrium, all paths have the same latency. It matches

the socially optimal allocation of the original flow game.

differentiable and such that xl.(z) is convex ! for each edge e, the optimal flow is a Nash flow
for the same network with marginal latency functions I} (xz) = (zl.(x)). Hence, a switch from
user-optimality to network-optimality can be made by a simple replacement of cost function.
Fig. 2.7 illustrates how this property works in Pigou’s example from Fig. 2.5. The globally-
optimal equilibrium that results from selfish routing using marginal latency is often referred to
as Wardrop’s second equilibrium. In Chapter 4 on related work we refer to past research on

globally optimal routing that makes use of this fact.

2.3 Mechanisms

In this section, we introduce the mechanisms that shall be employed in our algorithm. These

are adaptive methods for routing and load control.

2.3.1 Adaptive routing

In the earliest computer networks, the primary task of routing was to ensure at least crude
connectivity. With their evolution, the secondary concern on quality of service increased. The
task is not only to provide a path but also a good one. This shift of focus was due to the fact
that the dynamics of network topology (i.e. links and nodes going up and down) went down
with the development of more reliable communication systems. A routing algorithm is adaptive
if it responds to the dynamics of load and capacity. The class of networks they are designed to
operate in is often called quasi-static.

While most of the routing protocols implemented for IP networks (e.g. shortest hop-count)
are dynamic in the sense that they do react to the changes in network topology (i.e. connectivity),
the dynamics we are concerned with are less severe. Yet, the varying load of users can lead to
congestion even in otherwise static networks. There still exist, however, such network settings
as wireless mobile ad hoc networks (MANET), in which it is difficult to satisfy the primary task,
i.e. provide any path.

'Note, that if /() is increasing, then x () is convex.

17

Chapter 2. Background 2.3. Mechanisms

Broadly, traffic-aware adaptive routing algorithms perform the following steps:
1. measure current state of the network, such us traffic load or residual link capacity
2. compute routes

3. operate the network using the new routes

Basically, the cycle is repeated ad infinitum. In-between measurement and computation neces-
sary information needs to be communicated between the participants. In this work, we resort
to a particular class of load-distributing algorithms: hop-by-hop stochastic routing. The two
essential components are dynamic link and route metrics and the stochastic routing scheme
which we describe below. We also give a brief overview of means used by routers to distribute

the information on dynamic link state between them.

Dynamic metrics

Metrics are used to evaluate routes in order to differentiate between them and select the one
that best matches needs. The metric of a route is typically composed of the metrics of all the
links it traverses. Usually, it is a plain sum, but not necessarily, as we discuss later.

The purpose of a link metric is to evaluate the quality of link, i.e. its value for routing.
As outlined in Section 2.1, the (typically bidirectional) links are characterized by latency, and
bandwidth. It should also be noted that for most communications media the transmission of
a packet may fail. The lower layer (i.e. data link) could attempt to hide this with automatic
retry (e.g. ARQ), but, in general, the lossiness of a link could be significant. For example, this
issue is a definite concern in modern wireless networks based on IEEE 802.11. Which of these
characteristics should the metric be based on? That depends on what objective the routing
algorithm is designed for. For example, if the goal is to minimize end-to-end latency, then the
route metric would be the sum of the latencies of its links. Alternatively, the routes could be
evaluated on end-to-end basis, i.e. time for the probing packet to traverse the whole route. If the
links are lossy and we are interested in the probability of packet loss over the whole route, then
the link metric is multiplicative, i.e. probability of delivery is the product of delivery probabilities
over all links (assuming that the losses on different links are independent) 1. On the other hand,
if the goal is to maximize throughput, then under the fluid model, the throughput of a route is
determined by the capacity of its bottleneck (i.e. least bandwidth) link. Yet another scheme that
combines the sum and minimum operators was recently proposed for multi-channel wireless mesh
networks [DPZ04]. In other work, exponential weighted moving average was advocated [Wan03],
in which the closer the link to the source the more important its metric. But usually, the metric
of a route is a simple sum over its links. The rationale behind that is the ease of computability
of cheapest paths with costs defined by additive metrics using Bellman-Ford (distance vector,
e.g. RIP [Moy89]) or Dijkstra (link state, e.g. OSPF [Hed88|) algorithms.

! Actually, if the loss probability is low, then it can be approximated by an additive metric.

18

Chapter 2. Background 2.3. Mechanisms

Whichever metric is chosen, the fundamental problem is how to obtain it, i.e. measure the
interesting characteristic. As for the latency, it could be measured with timestamped probing
packets, but the there is no global clock in a distributed system. A round-trip time (RTT) of a
packet can be measured instead. Assuming that the delays in both directions are equal, RTT
divided by two gives the one-way latency. However, this assumption is frequently unfounded.
Gupta and Kumar [GK97] point out that in order to discern between routes the absolute value of
the latency is not required, but rather the differences in latencies, which in fact can be measured
using timestamps. Estimates on maximum link throughput are often obtained indirectly from
the queuing delay. If, on average, a packet remains in the queue for the specific link for time
J, then the packet throughput is 1/6. A different approach to measure the available bandwidth
ignoring the queuing delays (useful for multiple rate wireless channels) is to send a pair of back-
to-back packets of differing sizes and infer it from the difference in time needed to transmit
them [Kes93|. As for the delivery probability, it could be estimated by observation of a sequence
of probing packets, as proposed by De Couto [CABMO03|. A different view on the purpose of
link metrics bases on the concept of resource pricing. A virtual additive cost may be assigned to
links, so that savvy users would adjust their resource allocation in order to minimize their costs
or optimize their profit. Such cost could be based on the aforementioned link characteristics,
but it can also incorporate the total load on the link, defined as the sum of rates of all flows
that use the it. In such case the load needs to be measured, either as the total observed flow
rate, or by gathering the demand from the flows explicitly, e.g. the packets of the flow could
contain explicit information on the flow rate at source. Some metrics, though, are quite difficult
to obtain. Consider the marginal latency metric as defined in Section 2.2.3, which is the value
of a derivative rather than a directly observed characteristic. We discuss several methods for
this purpose in Chapter 4.

Another issue is the metric stability. On one hand, the metric needs to be sensitive enough
so that the system as a whole is reactive and actually adapts to the current inputs. On the
other, the metric should be insensitive to transient spikes and noise. Otherwise, the system may
fail to converge and remain in sub-optimal region of state-space for most of the time. A common
way to achieve this is through smoothening the metric with a moving exponentially-weighted
average. If m(t) is the current reading, then the long time-scale average m over all observations

is computed as:

m(t +1) — (1 —~)m(t) +ym(t)

The scalar v < 1 is sometimes called the damping or forgetting factor. The older a sample is,

the least it counts as it is exponentially attenuated:

m(t) = o + Zyim(t —)

)

Table 2.1 summarizes the main metrics and their properties.

19

Chapter 2. Background 2.3. Mechanisms

Table 2.1: A summary of dynamic metrics

metric route-link composition measurement
latency sum round-trip, timestamps
throughput minimum queuing delay, packet-pair
delivery probability product sequence observation
load-dependent cost sum based on other metrics

Stochastic routing

The classic hop-by-hop forwarding paradigm is simplistic: the router needs only to lookup the
destination address of the processed packet in its routing table and select the proper outgoing
link. Therefore, the table actually contains the next hop information for all addresses. Note,
that the decision is made basing purely on the destination address. Other information on the
flow that the packet belongs to, such as source address or flow id, is not considered. As a
result, all packets destined for the same node will be pushed through the single designated
outgoing link. But redundancy is one of the design principles of the Internet, and so there are
usually multiple routes to destination available. Lorenz et al. in [LOR101] give quantitative
comparison of such non-proportional destination-oriented and per-flow splittable routing, and
indicate that the benefits in throughput of the latter one are unbounded in general network
topologies. Therefore, a firm association of the next hop to the destination addresses could be

inefficient, in the sense of both bandwidth utilization and reliability of delivery.

Several methods for distributing the load addressed to a single destination over a set of
routes have been proposed. One way of extending the hop-by-hop scheme is to select the next
hop using more information, including the source address or even more precise flow identification.
A different approach, multi-path datagram routing, is to distribute all packets addressed to the
same node over a set of multiple routes either in round-robin fashion (if equally good, e.g.

equal-cost-multi-path (ECMP) employed in OSPF [Moy89]) or in proportion to the preference.

The main difference between the two schemes is that multi-path datagram routing is still
making decisions basing on the destination address alone. Hence, it is source-invariant and
insensitive to the path that the packet already travelled before reaching the routers. Yet, in some
cases it could be desirable to account for the past of the packet as illustrated on Fig. 2.8. Note,

however, that flow-sensitivity serves the flows’ individual goals and bears a mark of selfishness.

Another difference between the two concepts is that per-flow routing protects the nature of
flow, i.e. all packets of a flow follow the same route and thus out-of-order delivery is unlikely.
On the other hand, multi-path datagram routing selects the routes per-packet, so the packets
can follow routes of substantially different latency, which in turn leads to loss of order. How-

ever, proportional routing can be combined with per-flow routing for flow protection, e.g. by

20

Chapter 2. Background 2.3. Mechanisms

Figure 2.8: Sources sl and s2 send packets to d through router r. If the hop count
is to be minimized, both flows will be routed over link 1. But if the capacity limit is
reached, and both links should be used, then a fair router would select link 1 for sl
and 2 for s2.

3/4

— 14

~

T

Figure 2.9: Incorporating flow protection into proportional routing. The fraction of
unsplittable flows routed along a specific link corresponds to the desired proportion
for that link.

distributing the flows (rather than packets) over the selection of outgoing links. See Fig. 2.9 for
illustration.

We should point out, that of the two multi-path datagram variants, a routing paradigm
which allows the routing proportions to vary is substantially more general than such that uses
the multiple paths in equal fractions. Actually, it is relatively simple to give a two-link flow
game as in Fig. 2.5 that would require such capability to achieve optimal social welfare.

An interesting argument for multi-path routing is its increased robustness in dynamic en-
vironments. An analysis by Wang and Crowcroft [WC92| shown that single-path routing al-
gorithms using dynamic metrics may fail to converge and display undesirable oscillations. If
multiple paths are used, then a change in the metric of a single link could affect just one of the
paths. Even better, if the routing proportions can be varied, then the load can be tuned more
finely.

A wide-spread implementation of proportional hop-by-hop routing is stochastic routing. In-
stead of a single next hop, the stochastic router at each node maintains for each destination a
probability distribution over all its neighbours. When a packet for a specific destination arrives,
the router uses this distribution to draw a random neighbour and forwards the packet there.
Effectively, this distribution marks the proportions of incoming flow that are routed through
each outgoing link. This paradigm is still destination-oriented, so we can discuss the case for
each destination separately. We can estimate the rate of flow forwarded over to each neighbour

to be the associated fraction of the incoming flow. This is illustrated on Fig. 2.10 and later

21

Chapter 2. Background 2.3. Mechanisms

Figure 2.10: Flow conservation rule for proportional routing. For each destination
we have the following: If ¢; denotes the total rate of flows routed by node %, p; ; is the
fraction of flow that is routed from ¢ to j and r; is the total rate of flows sourced at i,
then t; =3 . t;pji+ i

7 downstream
[

L 4
T -t

Figure 2.11: The dashed lines represent unused links. The solid arrows are the
directed links that are used for routing, i.e. p.. > 0. A packet is sent from s to d. All
nodes that can be traversed by the packet before it reaches the node i are upstream
from it. All nodes that can be traversed by the packet after it is forwarded by i are

downstream from it.

formalized in the core chapter 5 of the thesis.
One inherent problem of stochastic routing is the possibility of loops. Suppose there exists
a cycle in the network graph (i1,i2,...,i, = 41). If p;; is the probability of routing a packet

from ¢ to j, then, with probability []; ps,, the packet will be forwarded over the whole

Iy
loop. Although, if this product is less than 1, the loop is not persistent and no packet is looped
forever, the packet could be trapped for too long and eventually dropped. Another way to
state the condition of loop-freedom is using the terms downstream and upstream illustrated on
Fig. 2.11. A loop is formed whenever a node is upstream and downstream of another at the

same time. We describe two methods to avoid forwarding loops:

e One that works in single-path routing as well, is to tag the packet with the information on
the nodes it already visited. Then a forwarding loop will be immediately discovered when
the packet reenters a node. This, however, is incompatible with the classic datagram IP

routing, in which no modifications to the relayed packet shall be made.

22

Chapter 2. Background 2.3. Mechanisms

e The second solution is to ensure loop-freedom by restricting the set of neighbours that
can be used for routing to a particular destination. Loop-free routing has the following
property for each destination: there exists an assignment of values ¢; to nodes, such that
pij > 0 & ¢ > ¢j. Conversely, if the routing algorithm is designed to enforce such
assignment, then it is loop-free. The straightforward interpretation of the value ¢; is the
"distance"’” or "‘cost"’ of routing packet through node i. The work by Vutukury and
Garcia-Lunes-Aceves [VGLA99] explicitly uses this property to preclude transient loops

in minimum-delay routing. We elaborate on their solution in Chapter 4.

Managing metric information

In order to react to dynamically changing state of the network, the routers need to gather and
share the dynamic metrics of their links. We describe several basic variants here. Chapter 4
contains reference to other concepts, e.g. reinforcement learning.

A centralized routing algorithm would only require the routers to communicate their link
status to a central entity (the coordinator), whose work is to manage the routing and balance the
load. The coordinator selects the routes and instructs the routers to conform to the selection.
Like all centralized solutions, such algorithm would be prone to reliability issues (when the
coordinator fails), as well as efficiency and speed of convergence. The routes will not be updated
until the whole round-trip communication between the routers and the coordinator is complete.

In contrast, a distributed algorithm allows the routers to make quick adjustments in their
immediate neighbourhood and enables a kind of softer convergence. In his early work, Gallager
argues that distributed algorithms have important advantages in robustness, since the central
entity would need means to communicate with the routers and for that it needs another set of
pre-set routes [Gal77].

A centralized algorithm can be transformed into a distributed link-state algorithm using
a simple technique. Instead of having a single coordinator node compute the routes, we can
spread the burden over all routers. In such scheme, the routers share their link state (local
topology) information with all others, and use this global information to compute the routers.
The information is spread through flooding: as soon as it is received at a node, it is relayed over
to all neighbours, but only at the first reception, so that no node transmits the message more
than once. Fig. 2.12 illustrates this procedure.

Afterwards, all the participants essentially perform the same computation. The router is only
interested in the routes that traverse it, and therefore the amount of necessary computation can
be reduced. Note, if the hop-by-hop routing paradigm is employed as usual, then the routers
only decide on the next hop, and therefore they must use a common path selection algorithm
so that they fully agree on the computed routes. If, for example, ties were not properly broken,
forwarding loops could be formed. A widely-used routing algorithm that operates in this link-

state fashion and computes shortest paths using Dijkstra algorithm is OSPF [Moy89]. One of

23

Chapter 2. Background 2.3. Mechanisms

S TR
o—& N O—P

>/
Figure 2.12: Message flooding. The arrows represent message transmissions, and the
numbers on nodes denote how many transmissions were needed to obtain the message.

In reality, the communication is not synchronous and hazards occur, though usually

harmless.

the frequently praised features of link-state algorithms is their inherent loop-freedom provided
the information flooding is complete .

Yet, the first dynamic routing algorithms were constructed quite differently. Truly dis-
tributed algorithms use distributed computation, i.e. the nodes do not exchange full input data,
but rather partial or intermediate results. For example, the neighbours can exchange informa-
tion about the routes they use, and next decide which of the routes — own or the neighbour’s — is
better. This procedure is equivalent to edge relaxation for shortest (or cheapest) paths in graphs:
if the known path to d from node ¢ has cost ¢;, and the cost of edge (7,) is ¢; j then after relax-
ation of edge (7, 7) the known path cost is updated to min(c;, ¢; + ¢; ;). Bellman and Ford have
independently proven that, if every edge is relaxed and the whole cycle is repeated a number of
times equal to the number of nodes, then the resulting costs are optimal, i.e. of cheapest paths.
The crucial property of this algorithm is that it is easily distributable: edge (or link) relaxation
can be performed asynchronously and its scope spans just two participants. This yields the
Distributed Bellman-Ford (DBF), and a class of distance-vector routing algorithms, of which
the most widely used is RIP [Hed88, Mal98|. Some advantage of distance-vector algorithms is
that the routers do not have to use the very same globally-known routing algorithm, as long as
the reported costs are accurate. Furthermore, the routers need not inform other participants
how they route the packets. This might slow convergence down (as we discuss in Chapter 5),
but is advantageous for stochastic routing, where the routing tables are substantially larger.

Up to now, we have silently assumed that the routes are computed proactively for all destina-

!Loop-freedom of most link-state algorithms referrs to permanent loops, as transient loops, while the

information is disseminated, are possible.

24

Chapter 2. Background 2.3. Mechanisms

tions. That is, the set of destinations that routes are maintained to is not dependent on current
need. A different class of routing algorithm is based on reactive or on-demand operation. A
reactive routing algorithm builds routes in response to requests and maintains them as long as
they are needed. On-demand algorithms receive increased interest in networks of highly variable
topology, e.g. MANET, in which the overhead induced by proactive routing is unacceptable.
Hybrid solutions that combine the features of both schemes have also been proposed. As an
end note, we point out that Feamster et al. have recently proposed to actually separate the
routing from routers at the inter-domain level, i.e. remove the burden of finding routes from the
nodes that take care of forwarding along them [FBRT04]. Still, in this thesis we will follow the
traditional distributed approach.

2.3.2 Congestion avoidance

Admission control and resource reservation do not lie in the nature of "‘best-effort"’ service,
and so the IP networks when overloaded can be driven into a congestion collapse. But before
congestion collapse occurs, the queuing, connection-less nature of the datagram networks reveals
itself in the rise of end-to-end delay and packet-loss. The idea behind congestion control is to
protect the network’s resources from being flooded with the users’ requests.

Figure 2.13 illustrates the difference between the two notions of congestion control and
avoidance. Congestion avoidance mechanisms allows the network to remain in the state area of
high throughput and low delays and keep the packetloss low. A good survey on the fundamentals
of congestion control and avoidance is given by Jain in [Jai90|. By considering the popular myths
about possible ultimate solutions to congestion (such as increasing resources), Jain makes an

important statement:

(...) congestion is a dynamic problem. It cannot be solved with static solutions
alone. We need protocol designs that protect networks in the event of congestion.
The explosion of high-speed networks has led to more unbalanced networks that are
causing congestion. In particular, packet loss due to buffer shortage is a symptom

not a cause of congestion.

A typical way to deal with congestion is through demand reduction. It should be noted that,
although the primary goal of congestion regulation is to avoid uncontrolled service degradation,
it is usually also burdened with a fairness requirement. So, if the users’ load is restricted to
maintain high overall service quality, this allocation of load should also be fair (see section 2.2.2
for overview).

The three main components of a congestion avoidance scheme are:

detection - The network needs to monitor the load and remaining capacity of resources. Other-

wise, congestion-related events such as losing packets and overflowing queues can work as

25

Chapter 2. Background 2.3. Mechanisms

cliff
throughput i / | /

delay

load

Figure 2.13: The characteristics of service as the load increases. The purpose of
congestion avoidance is to keep the dynamic state near the knee rather than the cliff

as in the case of congestion control.

implicit evidence of congestion. However, remedial action should be taken well in advance

of the service cliff.

signalling - After congestion is detected, the entities responsible for actions need to be in-

formed. A number of feedback schemes is discussed below.

control - Using the feedback as a source of information the restraining mechanism reduces the
load. This mechanisms can be placed in a number of locations along the IP stack, as

discussed below.

Feedback mechanisms

Typically, the resources are monitored on-location by adjacent routers. For example, a router
can monitor its outgoing links by observing the persistent size of its queue, the average queuing
delay, the remaining capacity (based on the current load estimate), etc. If this is the case, then
the routers will be the source of congestion feedback signals. Such signal can be conveyed by
sending out a special control packet towards the restraining entities (most likely the sources that
use the congested resource). Alternative scheme, that potentially reduces additional overhead, is
to use designated fields in the data packets that flow in the desired direction. The disadvantage
of the second method is the dependence on existing data flows. Hybrid solutions are possible.
However, it is also possible for the user to perform the monitoring of the resources that its flow

uses. This is achieved with probing, i.e. sending probe packets across the network and measuring

26

Chapter 2. Background 2.3. Mechanisms

its delay or delivery probability. A particular case is when probing is done implicitly by observing
the backward flow of acknowledgement (ACK) packets, as used in reliable transport protocols.
Using ACKSs the round-trip-time (RTT) can be estimated, and when no ACK is received within
some the timeout period, the packet is presumed lost.

The great advantage of implicit feedback in the form of ACK loss is its minimum additional
overhead (the ACKs need to be sent anyway). However, the inherent problems of this scheme are
its slow signal propagation (several RT'Ts needed), susceptibility to delay spikes (robust timeout
threshold is needed), and the fact that, by default, it is triggered at the congestion cliff (packets
are actually lost).

An interesting method to match the implicit feedback scheme with the requirements of
congestion avoidance is random early discard (RED) queuing discipline. A RED queue starts to
randomly drop packets when the persistent queue size exceed a specified threshold. That way,

the implicit feedback signal is sent out before the real congestion occurs.

Load control

When congestion is detected, the competing sources need to reduce their load in order to pro-
tect the resources. The load restraining mechanism can be implemented at several alternative
locations.

The transport layer seems to be best fit for load control, because it is directly below the
source user (at the end node). Note that the same amount of control should be applied only
to the flows that share bottleneck links. If the amount of control is determined per-flow, then
one load-control agent is needed for each flow. Also, as some flow control mechanism might be
already implemented (with purpose to protect the destination), it is natural for the transport
layer to also take on congestion control. A common way to implement both functions is with
ack-paced moving window, as illustrated in Fig. 2.14. A different way to implement load control
is by enforcing flow rate using a paced queue, i.e. such that releases packets at specified intervals.

The responsibility of load control can be pushed down into the network layer. One concept is
to apply load limits at each hop rather than just at the source node. Such limits could be applied
per flow using queuing schemes that alleviate congestion by isolating traffic load of different users,
e.g. as in fair queuing [DKS89]. In a coarser variant, the limit would be applied to all incoming
traffic aggregately per destination. This latter scheme has recently gained popularity in the area
of sensor networks in which there are frequent floods of data towards a common destination,
e.g. [WEC03,HJB04].

Control loop

A typical congestion avoidance scheme is a control feedback loop: the load causes congestion
which causes load control. Various adaptation algorithms to determine the appropriate amount

of control have been developed.

27

Chapter 2. Background 2.3. Mechanisms

Last ack’ed Last sent
l J source destination
Lrrrrrrrro,
| ‘ window
window size size
a)

bottleneck

b) c)

Figure 2.14: The sender keeps a buffer of packets sent but not yet acknowledged (a).
When an ACK is received, the window is moved to the right and more packets can
be sent out. Since the destination acks every packet, the acks return to the source
at a steady rate determined by the bottleneck resource (b). Thus, the system is self-
regulatory (c). The size of the window depends on the available resources and is to be

maximized to the extent when ACKs are lost.

One deeply-studied and widely-implemented scheme is the already mentioned in Section 2.2.2
additive-increase-multiplicative-decrease (AIMD) scheme. AIMD proceeds as follows: normally
the rate increases at a steady rate « (additively), but whenever congestion is detected, the rate
is multiplied by 8 < 1 (multiplicatively). This scheme could be approximated with a differential

equation:

d

Sa(t) = a— ()

where p(t) is the rate of congestion feedback

Chiu and Jain show in [CJ89] how this scheme attains both efficiency (i.e. high utiliza-
tion) and absolute fairness in single-commodity environments. Moreover, Kelly et al. prove
in [KMT98]| that this scheme actually attains proportional fairness as defined in section 2.2.2.
Recently, however, the fact that this simple regulator manages both utilization and fairness has
been argued by some researchers as disadvantageous. Instead, Katabi et al. propose in [KHR02]
to decompose the control loop into two regulators, one to control utilization by adjusting the
aggregate allocation, and the other to manage fairness by balancing the individual rates within

the allocation. In Chapter 4 we discuss other schemes.

28

Chapter 3

System Model and Objective

In this chapter, we state the system model and the global objective that we design our algorithm
for. The objective is inspired by the work of Kelly and Voice [KV05], but our system model
uses a different routing paradigm. W discuss the details and interpretation of the objective and
its components, and provide a brief theoretical analysis. Specifically, we state the conditions on

optimal solution and propose a decomposition of the problem.

3.1 System model

First, we define how we model the system network and users. Essential to the model is the
routing paradigm employed by the nodes. The model incorporates the assumptions we make

about the system.

3.1.1 Entities

As described in Chapter 2, the system comprises of network resources and users. We model
the network with a graph and the users with flows. Therefore, the formalization of the system

model contains the following:

e network graph G = (V, E), of which vertices (denoted by i, j, k) represent network nodes
and directed edges (denoted by e or (i, 7)) represent links.

o user set S. Each user s € S is described by its source node, src(s), and destination node,

dst(s). We use terms user, source and flow interchangeably.

We also assume that the network is not overloaded, thus no packets are lost and the flows have

a single rate along the whole route. In other words, the flow allocation is feasible. Define:
e the flow rate of user s denoted by ys

o the total load (aggregate flow rate) of link e = (7,5) denoted by z. or z;

29

Chapter 3. System Model and Objective 3.1. System model

To simplify notation we shall omit the containing set in most enumerations and let ¢,5,k € V,
e, (i,j) € E, s € S, and so on. We assume that the users enforce rate control at source (see
Section 2.3.2). The next section covers the relationship between ys and z. determined by the

routing policy.

3.1.2 Routing

We first define a generalized per—flow routing paradigm and subsequently restrict it to match the
stochastic routing paradigm. In the absence of packet—loss, the policy is traffic-conservative, i.e.
at a stable state the total rate flowing in equals the total rate flowing out (see Section 2.3.1). For

both systems, we state the constraints that are implied by the assumption on flow conservation.

Per—flow routing

Let us first define the generalized per—flow routing paradigm. Each flow is routed independently
and can be split at any fraction at any node it passes on its route. The routing variables are
of the form x5, which denotes the flow rate of the part of flow s that flows through e. Then
the relationship between ys and z. is imposed by flow conservation requirements. For each flow,
the total rate of the part coming out of a node (in any direction) equals the total rate of the
part coming in, unless it is the source or the destination node. In the former case the total rate
coming out is increased by the flow created ys, and in the latter it is null. The total flow over a

link is the sum over all flows that use it. We can write:

Ts,e >0
Z Tse = Ze
0 if 1 = dst(s) (3.1)
sz,(m‘) =\ 2k Ts (ki) TYs if i =sre(s)
’ Dk T, (ki) otherwise

Note that the total flow coming out of its source may be larger than y, in the pathological case
of forward looping.

Since it allows the users to choose the routes for their flows, this paradigm is very flexible
and supports selfish routing in particular. However, it is not compatible with the datagram
forwarding nature of IP networks. That is why we propose to use stochastic routing instead.

Later in this chapter, we show that they are equally powerful for the purpose of our objective.

Stochastic proportional routing

The stochastic hop-by-hop routing policy is destination—oriented, i.e. the routes for different
destinations are defined independently (see Section 2.3.1). Therefore, we maintain the set D =

{dst(s) : s € S} of all possible destinations, and instantiate the routing policy for each d € D.

30

Chapter 3. System Model and Objective 3.2. Objective

Let Nb(i) denote the set of i’s neighbours, Nb(i) = {j : (i,j) € E}. Each node i maintains a
probability distribution over its neighbours, j € Nb(i). A packet addressed to d is forwarded by
1 to j with probability p?,j' For easier manipulation, we extend the vector over all 7 € V and

require pz ; = 0 when (i,7) ¢ E. Therefore:

p‘ij>0

> pii=1
j

If + = d, the flow is not forwarded but consumed, so we make an exception to the above and

require that:

If we take the flow—conservation requirements of (3.1) then under the stochastic routing

policy, we also add that:
d
Ts,(i,5) :Pijt(s) Z«Ts,(i,k) (3.2)
k

That is, the amount of flow that is routed over a particular outgoing link is given as a specific
fraction of the total outgoing flow. This fraction depends not on the flow, but solely on its
destination. Thus, this policy does not support selfishness.

Let us introduce an aggregate description of this system in a fashion similar to other re-
searchers, e.g. [Mas85,Gal77,Seg77, BGG84]. Denote by t¢ the total amount of traffic (low rate)
that node i needs to route to destination d. Further denote by rf the total amount of traffic

that is injected at node ¢ by the users that connect to it. Thus we require V;cvy q4ep:

Tzd = Z Ys

s:sre(s)=t,dst(s)=d

d d ,d , d (3.3)
tf =2 pfit] +ri
J

Finally, for each link e = (i, j) € E, the aggregate flow rate that flows through it, i.e. its load

Ze = z;j is given by:
d .d
Zij = sz‘,j ti (3.4)
d

Fig. 3.1 illustrates the notation and relationships between values on a simple example.

3.2 Objective

We shall now define the global objective that will be the point of optimization and drive our
algorithm. We also discuss possible interpretation and how the objective can be tailored to

match desired goal.

31

Chapter 3. System Model and Objective 3.2. Objective

Flows: Routing:
a. (1 4 3) p31,4 = p41,4 = p34,3 = 1
(t:) g : i)) p32,1 =p=1- p32,3
' remaining =0 ré, = Y,
r=y, 2 f=r
r41 = yc Zy3= (1 - p) t32

(1,4)
Zy4= t+ 1
=t
Figure 3.1: Example network and set of flows. The routing probabilities are given

and so is the resulting allocation of r, t and z.

3.2.1 Definition

The global optimization objective is the profit defined as the difference between total utility of
users and total cost of resources. The utility of user s is given by its strictly increasing utility
function of its rate Us(ys). The resources of the system are network links, and the cost of link
e is given by its strictly increasing cost function of its load Ce(z.). Hence, the system objective
is:

max Y Us(ys) = Ce(ze) (3.5)

s€S)

with z. defined as in the previous section. Note that the variables of this system are source
rates ys and either xs . under the per—-flow routing policy, or routing probabilities pgj under the
stochastic routing policy. We will also use Ur = Y Us(ys) and Cp =), Ce(2e).

The history of this optimization problem is quite long both in the context of road transport
networks |[War52, BMW56|, and communication networks [Gol80, BG92|. In this choice, we
are directly inspired by the work of Kelly and Voice [KV05|. Many researchers state a different
objective, called Kelly’s system problem, that is only concerned with the aggregate utility subject
to feasibility constraints due to limited resource capacities [Kel97, KMT98,LA02, Chi04], i.e.:

maXZUS(yS)

subject to z. < Cap(e)

However, such a system problem accounts only for network feasibility requirement and satisfac-
tion of received throughput. In contrast, using a cost function we can account for link utilization
and end-to-end delays, considerably extending the scope of optimization. There has also been

substantial research done in pure cost minimization problem, in which only the aggregate cost

32

Chapter 3. System Model and Objective 3.2. Objective

Cr is considered, e.g. [Gal77,BGG84,GK97, BK03,XQYZ04, RK04].

min Z Ce(ze)
€
subject to given ys

Still, this problem does not account for user satisfaction of received throughput, but rather
assumes that the user demand (i.e. load) can be fully satisfied. Thus, the proposed objective
combines the features of both problems as we discuss in the next section. Also note that the
Kelly’s problem can be transformed into (3.5) by means of Lagrange multipliers, Cc(z.) =
Ae(Cap(e) — ze).

In a fashion similar to that of Kelly and Voice [KV05], we restrict the classes of the utility
and cost functions. Us(y) are differentiable, strictly increasing and strictly concave over y > 0.

Furthermore, assume that Us(y) —— —o0. Ce(z) are differentiable and C,(z)/z is strictly
y—0

increasing over z > 0, which implies that C.(z) is strictly convex. In addition, assume that

there exists a capacity equivalent Cap(e) > 0, such that Ce(2) oo. Finally, we shall

z—Cap(e)~
assume that there exists at least one feasible allocation, i.e. one that yields a finite value of the
goal. Note that this implies that the network is connected as needed, i.e. there exists a directed
path between each user source and destination. Similar assumptions have also been made by

other researchers, e.g. [Gal77, BGG84, KV05, Rou02, RK04].

3.2.2 Interpretation

The proposed objective function has the advantage of comprising both user utility and explicit
resource costs. A function of flow rate, Us(y) represents user’s satisfaction from the received
throughput y. On the other hand, C¢(z) reflects the penalty for using the capacity of the
resource. In particular, Cr may well represent the total aggregate latency of all users. In fact,
since we require that Ce(z)/z be increasing, we may define Ce(2) = zle(2), with [.(z) being the

packet latency on edge e. Then the global objective can be rewritten as:

max Z Us(ys) — Z Ze le(2e)

seS ecE

and is equivalent to:

maxz <Us(y5) — Z Ts,e Ze(ze)>

seS eeE

where x, . is the flow rate of the part of flow s that flows through e. Note, > % le(2e) = Ysls,
where [is the average end-to-end latency of flow s. Therefore, the objective can be interpreted
as a maximization problem of aggregate of users’ profits, defined as the difference between each
user’s utility and cost.

Another interpretation inspired by Kelly [KMT98| is possible if Us(ys) = ws 1gys, for some

weight ws. Informally, Us(ys) — ys ¢s is at an optimum with respect to ys, when ys = ws/cs, i.e.

33

Chapter 3. System Model and Objective 3.3. Optimal allocation

the received rate matches the price paid ws divided by the incurred average cost per unit of flow

s, that is cs.

Further, since Us(y) —— —oo and Ce(z)
y—0t z—Cap(e)™

allocation must be within the interior of ys > 0 and z. < Cap(e), i.e. no user is starved and no

oo for some Cap(.), the optimal

edge is overloaded.

We discuss a number of cost functions previously used by researchers in Chapter 4. However,
the reader should bear in mind, that the specifics of the utility and cost functions beyond that
assumed in the previous section are tmmaterial, provided that the their derivatives can be

measured for the purpose shown in the next section.

3.3 Optimal allocation

In this section, we discuss the character of the optima of the objective under both routing
paradigms and show their equivalence. Further, we show that the composite profit problem can

be decomposed into two well-known problems.

3.3.1 Convexity and equivalence

Consider the generalized per—flow routing policy (3.1). In other words, the users are fully
controlling the routes of their flows, rather than subject to aggregate routing probabilities as in
(3.2).

Lemma 3.1. The local optima of the per—flow system (3.1) are also global and the optimal ys

and ze are unique.

Proof. Since Us(.) are concave, C¢(.) are convex, and the solution space of 4. is also convex,
therefore the maximization problem (3.5) is convex. Thus all local optima are also global [BNOO03].
While z; . at optimum do not need to be unique, due to the strict concavity of U(.) and strict

convexity of C(.) the optimal values of ys and z. are unique. O

Let us point out that the requirements for strict concavity/convexity could be relaxed to allow
linear functions. For example, if latency of a link was constant (i.e. not strictly increasing), then
its cost function would be linear (i.e. not strictly convex). Although such scheme would still be

feasible, it would not support load balancing (See Section 2.2.2).

Lemma 3.2. Any allocation of ys and z. feasible in the per—flow system can be achieved in the
the stochastic system (3.3)-(3.4).

The proof of this lemma is given in Appendix A. The implications of this lemma are far-
reaching. Although the per-flow system allows for selfish routing (see Section 2.2.3), the signif-

icant values of ys and z. can be achieved using stochastic hop-by-hop routing, which does not

34

Chapter 3. System Model and Objective 3.3. Optimal allocation

explicitly support selfishness. The global objective is the aggregate of user’s profits, thus the
individual user costs depending on z, . need not be optimized.

The two lemmas give us the main result of this section:

Theorem 3.1. The local optima of the system (3.3)-(3.4) are globally optimal and the optimal

allocation of ys and z. is unique.

3.3.2 Problem decomposition

Theorem 3.1 implies that to obtain the global optimum it is sufficient to satisfy conditions of
local optimality. Therefore, we can decompose the joint routing and rate control problem along

the typical layer splitting line into two separate problems:
1. optimal routing under fixed user load
2. optimal user rates under fixed routing

It is quite clear how the composite problem can be solved using procedures solving these sub-
problems. The two algorithms need just to be run iteratively interleaved. But actually, a single
run of each procedure does not need to go all the way and reach the local optimum, but only
improve on the global objective.

We finish this section by stating the conditions of local optimality in the two sub-problems.

However, before we proceed, we define marginal cost which is a common notion to both problems.

Marginal cost

Recall from section 2.2.3, selfish mechanisms can be used towards social goals provided that
marginal cost is used instead of the full cost.

Define the marginal cost of using node ¢ to route packets to destination d:

oC
a_ olr
and the marginal cost for each link e:
pe = Cl(2e) (3.7)

As stated above, conditions for both optimal routing and optimal rate control are defined
with respect to /\f. Let us show how the marginal cost can be computed. For this purpose, each
node ¢ maintains the estimated marginal cost cfl to reach destination d. Given the costs of all

neighbours and the routing probability distribution, we can give the estimated cost at the node:

3.8
= S0rl e+) 3

Chapter 3. System Model and Objective 3.3. Optimal allocation

This formula is based on the intuition that that the cost is the outcome of a probabilistic try,
and thus its estimated value is an average of the possible outcome costs weighed by outcome
probability. Same formula was used for hop-by-hop (in contrast to end-to-end methods) cost
estimation in [Gal77, Mas85, CAT90, VGLA99, XQYZ04|. In order to show that this estimate
is accurate, we obtain closed-form (fix-point) solutions to the recursive equations for routing
load (3.3)-(3.4) and cost estimate (3.8). This procedure is similar to that in [Gal77] and [Mas85].

Define a family for d € D of routing matrices P containing pg ;» vertical source flow vectors
r? containing r¢, and rate load vectors t? containing t¢. Also denote A x B the element-by-

element product of same order matrices, and AT be the transpose matrix of A.

Then the stable state of the routing paradigm (3.3)-(3.4) can be restated as:
td = PiT¢d 4 vd
This yields a fix-point solution:

where A = (I - P%)~!
Therefore, the matrix A contains the rate transfer functions of the network:

d
)
Z7J - d
dr§

In particular, the diagonal values can be used to determine if the routing is loop-free. If p is the

probability that a packet injected at ¢ addressed to d returns to ¢, then:

1 =1 if there are no loops from ¢ addressing d

l=p|>1 otherwise

Qi

Note that, if persistent loops (of cycling probability equal 1) are present, then the matrix A
cannot be computed, as I — P is singular.

d

Similarly, if we use cost vectors c¢” containing cg and link cost matrix M containing u; j,

then we obtain a new fix-point form for cost estimation (3.8):

c? =Pl + (P4 xM)1

(3.10)
cd = AP« M)1
where 1 is a vector of 1’s of appropriate height. Note that pg’i = 0 ensures that cg = 0.

Theorem 3.2. At a stable state, the marginal cost estimate obtained by (3.8) is accurate. For
all s e S:

= \4 (3.11)

Chapter 3. System Model and Objective 3.3. Optimal allocation

A proof of this theorem using the fact that the matrix A is common to both formulae is

given in Appendix A.

Remark: It is tempting to approach this fact using mathematical induction. Unfortunately,
as the cost estimation formula recursively bases on the estimates of neighbours and cycles are

not explicitly forbidden, there is no direct method to build atop of a previous inductive step.

Optimal routing

When the allocation is feasible (as assumed) and flow rates are conserved, the routing variables
p do not affect the utility component Ur which depends on the fixed ys. Therefore, the optimal
routing given fixed user rates y is such that minimizes the total cost Cp =), Ce(2e). We will

show that the optimal routing is at a Wardrop equilibrium equivalent for proportional routing.

Lemma 3.3. Given fized user rates ys, a Wardrop equilibrium of the generalized system (3.1)
driven selfishly has the property that the cost of routing flow s from node i to destination d does
not depend on s nor whether the flow begins at or is relayed by i. Moreover, if this cost is given

by AL, and the cost of using link (i,7) is yi; ;, then

77

AJ min(p1s + AD)

i =

Proof. At a Wardrop equilibrium, no flow has the incentive to adjust its routing unilaterally. It
follows that all routes in use have the same cost, which is less than that of all unused routes.
Otherwise, envious flows would unilaterally adjust their routing to follow cheaper routes and

reduce their cost. U

Theorem 3.3. Given fized user rates ys, the optimal proportional routing is at Wardrop equi-

librium of marginal costs. If t;-i > 0, then:

i =

A} = min(u;; + A}) (3.12)
j
where \¢ and p; j are defined in section 3.3.2. or equivalently:

=X ifpd; >0

{2

> 2 ifp?,jZO

(2

i+ /\? (3.13)

Proof. As shown in section 3.2.2, we can define C,(2z) = zl.(z). Using the result first shown by
Beckmann et al. [BMW56|, described in Section 2.2.3, we know that the optimal flow of the

generalized minimum cost problem:

min Z Zs e le(2e)
s,e

is given by the Wardrop equilibrium of marginal costs .. By lemma 3.3 we have the conditions

of Wardrop equilibrium of selfish per—flow routing. We just observe that, since the cost does not

37

Chapter 3. System Model and Objective 3.3. Optimal allocation

depend on s, the conditions can be satisfied under proportional routing, which routes the flows

in an aggregate manner. We obtain the above conditions since we know that:

N =Y 0O + i)
i

Note this is only necessary, when some routes are actually used, i.e. tld > 0. O

Remark: Gallager offers a slightly different but equivalent proof for minimum delay routing

in [Gal77]. The author points out that:

aCT d d
ol =1 (pij + A7)
and states the optimality condition as follows:

— in, OCT e d
oCy | = ming o, if p;; >0

d . oC e d
8]92'7]‘ > ming Bp‘.lq; if Pij = 0

Yet another sketch proof, though for user-optimal (i.e. selfish) Wardrop routing, is given
by Gupta and Kumar in [GK97| !. They first show that at equilibrium all sub-paths (i.e. from
intermediate nodes) have the Wardrop property. Next, they map the problem to the domain of

electrical circuits.

Corollary 3.1. The optimal routing is loop-free.

This observation stems straight from Theorem 3.3, (3.13) and the assumption that the cost
functions Ce(.) are increasing, which yields p. > 0. It follows that pgj > 0 only if \¢ >)\;l.
Thus, A¢ form an ordering of nodes such that the packets traverse the routes in the direction of

decreasing cost, i.e. downstream nodes have lower cost. Therefore, routing loops are impossible.
Corollary 3.2. The optimal routing under linear cost uses cheapest paths.

In the previous section, we noted that the class of cost functions could be relaxed to accept
linear functions. In such case, the marginal cost forms a load-independent metric and the
Wardrop condition yields cheapest-paths routing. If there are ties between paths (i.e. multiple
of the same minimal cost), all of them are used for routing in any proportions. Note that in

ECMP (see Section 2.3.1) the proportions would be equal.

! Although Gupta and Kumar do not refer to Wardrop’s definition, their optimality conditions are

equivalent.

38

Chapter 3. System Model and Objective 3.3. Optimal allocation

Optimal rates

To obtain optimal rate conditions, we make use of the fact that the problem is convex and

consider the local optima of the goal (3.5) with respect to each user’s rate.
Theorem 3.4. Given a fized routing of p, the user flow rates ys are optimal if and only if:
U’ (ys) = A&1) (3.14)

sre(s)

A detailed proof of this theorem is given in Appendix A.

39

Chapter 4

Related work

We have shown in Chapter 3 that our joint control problem can be decomposed into two separate
sub-problems of routing and rate control. Multiple algorithms solving each of the two parts have
been proposed. In this chapter, we refer to suitable solutions and results developed by other
researchers for the purpose of adaptive rate control and routing. In the next chapter, we will
discuss how these algorithms could be combined to attain the global objective defined in the

previous chapter.

4.1 Scope

We need to emphasize that we attempt to provide an exhaustive survey of neither of the two
domains of adaptive routing and rate control. We consider only a small part of the research
done and leave much out, regarding it out of this thesis’ scope. The routing algorithms we seek

for are:

e optimal, or sub-optimal, i.e. attempt to optimize or approximate a well defined cost-based

goal, either selfishly or socially

e adaptive, i.e. react to dynamic network state (traffic pattern, resource availability), not

just topology

o hop-by-hop, i.e. comply to the datagram routing paradigm where router only decides on

the next-hop neighbour
The rate control algorithms we consider are:

e optimal, i.e. attempt to optimize a goal defined in terms of throughput-related utility

functions

o feedback-driven, i.e. base their actions on implicit or explicit, quantitative cost-related

signals

40

Chapter 4. Related work 4.2. Adaptive routing

Most importantly, we discuss only online algorithms, without full knowledge of the system
(utility and cost functions), but only its current state. Still, the review presented here is far

from complete.

Let us point out that since the problem is convex, many general optimization methods are
available. We refer the interested reader to [BNOO03|. However, such methods are generally

designed to work offline, having perfect knowledge about the system.

We shall begin with adaptive routing, subsequently discussing a few methods for marginal
cost estimation, and proceed to rate control and joint algorithms that directly inspired this work.
To avoid confusion, we will translate the concepts of cited authors to our notation whenever

possible. We mostly classify the algorithms by the influential work that they are based on.

4.2 Adaptive routing

In section 2.3.1, we have pointed out the difference between routing for dynamic topology and
routing for dynamic load and capacity. In this section, we shall relate to distributed algorithms
for stochastic or proportional routing, since they are compatible with the routing paradigm

specified in Chapter 3. Segall proposes several different models for adaptive routing in [Seg77].

We indicated in section 3.2.1 that there has been extensive research done targetting the
problem of minimizing the aggregate cost or individual user costs. We discussed the difference
between "system-optimality" (the social approach) and "user-optimality" (the selfish approach)
in section 2.2.3. Such models assume that the user demand (load) is given as input, and cannot

be regulated.

The cost function addressed by multiple researchers is the (expected) end-to-end message
delay. The benefits of using delay as the overall performance indicator is that it intrinsically
covers multiple aspects of network operation, e.g. providing best service, load balancing (avoid-
ing congestion). Some of the algorithms discussed here address the selfish optimization problem,

but as shown in section 2.2.3 could be adopted for social (i.e. global) optimization.

We begin with the seminal work by Gallager on minimum-delay social routing and its deriva-
tives. Next, we discuss a different approach to minimum-delay selfish routing proposed by Gupta
and Kumar. A substantial part of this section is dedicated to routing algorithms based on re-
inforcement learning including ant colony optimization. We finish this section with a short

discussion on how marginal cost essential to social routing objective can be estimated.

Since most of the algorithm described below perform adaptation steps locally, we will assume

for later convenience that the adaptation is performed at node ¢ for destination d and drop these

41

Chapter 4. Related work 4.2. Adaptive routing

indices in our considerations. Thus:

Hj = i

b =1,
t=t]
A=)\

but A; = A}

4.2.1 Gallager’s minimum delay

As a starting point, we present Gallager’s work on minimum-delay routing using distributed
computation |Gal77]. Although his algorithm is similar in its workings to the one proposed
earlier by Agnew in [Agn76|, Gallager deals with more general multi-commodity networks. The
goal is to find routing probabilities that minimize the total expected delay of all messages per unit
time. Gallager’s algorithm solves the problem of optimal routes, minimizing C over routing
probabilities p as defined in Section 3.3.2, provided that p;; is the marginal delay of the link
(7,7). The optimality conditions developed by Gallager match the Wardrop’s second equilibrium
definition. Using our notation:

oCr (. aCr\
3Pj_t<uj+37“j>_

= t(pj + Aj) 0 el
>0 itp;=0
for some ¢ (defined for the particular node and destination under consideration). Therefore,
this algorithm constitutes one candidate that could be employed to solve the routing part of the
joint objective.

Gallager’s algorithm is a subgradient method and proceeds by making small re-routing steps
at all nodes and for all destinations at a time. Thanks to a special blocking technique, the
routing is loop-free at every instant. Loop-freedom allows for easy distributed marginal cost
computation: the node can compute its cost as soon as all nodes that are downstream (i.e. are
used for further forwarding) to the specific destination reported their costs.

Both the original algorithm and its derivatives adapt the routes by promoting the best routes.
In a single re-routing step each node boosts the routing probability of the best of its neighbours.
The boost in the routing probability to the best route neighbour is comprised of cuts among
remaining neighbours. Hence, no re-normalization to ensure that p remain in the probability
simplex ! is necessary. Fur future convenience, let us define k to be the best neighbour of node

1 for destination d:

k = argmin;{p; + Aj}

'positive and summing up to 1

42

Chapter 4. Related work 4.2. Adaptive routing

Also, we will denote by A the cuts in probabilities, so that
Aj < pj
pj —pj — A

Pk P+ YA
J
In the Gallager’s algorithm, the cuts among remaining neighbours are proportional to the

excess in marginal cost above the best (minimal cost) neighbour, and inversely proportional to
the flow rate, so that the change in load after a single step is bounded:

A = min [pj) n%}

where a; = (5 + Aj) — (e + k)
To maintain loop-freedom, the algorithm maintains in a distributed fashion a blocked set of
routing probabilities that are forbidden from being raised above 0, as it would create a loop.
Gallager provides a proof that the algorithm always converges to the optimal equilibrium if one
exists, provided that the convergence speed factor n is sufficiently small.

Vutukury and Garcia-Lunes-Aceves point this dependence on small fine-tuned adaptive steps
as a shortcoming of Gallager’s algorithm. Instead, they propose in [VGLA99| a sub-optimal al-
gorithm for the same problem that offers a much improved speed of convergence. Their solution
is two-phased: first, a set of multiple loop-free paths for each source and destination is created
using distributed computation; afterwards, adaptive adjustment of routing proportions is per-
formed. The path-setup part does not consider traffic load, and hence it is run only when the
network topology changes. Since this preselection of paths might preclude a path that is used in
the optimal routing, the second part works in a restricted environment, and the whole algorithm
is sub-optimal. However, the authors claim that the overall performance in terms of goal is not
much hindered, while the speed of convergence and robustness (e.g. no parameters depending
on network topology) is greatly improved.

The original definition of marginal cost at node ¢ (\) is modified into marginal distance so
that:

A = min {1 + A;}

Then the forwarding set (for that node and destination) S = {j|p; > 0} is restricted to subsets
of {jIx > A;}. The A-ordering ensures loop-freedom. Furthermore, this new definition of A
implies that p is an additive metric and any shortest-path algorithm can be used to compute
A given p, e.g. Dijkstra, Bellman-Ford. Their path-selection algorithm is a link-state routing
algorithm, specifically tailored to minimize the amount of exchanged information and maintain
multiple paths. The second part of the framework dynamically distributes traffic over the prese-
lected paths using heuristics for both initial allocation and incremental adjustments. The initial
allocation prefers the neighbours of smaller costs:

p,(_<1_ P+ A) 1
’ Desl+A)) IS =1

43

Chapter 4. Related work 4.2. Adaptive routing

Like in the original Gallager’s algorithm, the incremental adjustment procedure is boosting
the probability of routing to best among neighbours and matching the increase with cuts over
remaining neighbours. Each cut is effectively computed as:

A= 29 mlin{Z}
so that Aj; < p;/2 for all j # k.

A different approach to improve Gallager’s algorithm was proposed by Bertsekas et al.
in [BG92|. They address the same deficiency of Gallager’s method: its reliance on small steps
driven by a scaling parameter 1, which needs to be tuned for each network and user demand
(also called input). Bertsekas et al. first generalize the original algorithm. If at each step the
probabilities are adjusted p; < p;j + A}, then the (vertical) vectors A are any solution to the

problem:
minimize 67 A + atATMA
subject top+ A >0 ZAjzo VieA; =0
J

where 5j = W5+)\j

M is some symimetric matrix, scalar « is a positive parameter, and B is the set of blocked nodes.
The definition of blocked set is slightly different from Gallager’s. The matrices M determine how
the adjustments in probabilities A; depend on route-through-neighbour costs ;. The conditions
basically restrict the performed changes to such that preserve the routing probabilities in the
probability simplex and prevent looping.

The choice of M defines a whole class of algorithms, and a specific selection yields the original
algorithm by Gallager with the small redefinition of B. The main convergence result of their

work is that if M satisfy a simple condition, namely for some positive scalars A and A:
M>A

Av[? < vITMv for all v such that Zvl =0
l

then there exist a range of a such that the algorithm converges preserving its initial loop-freedom,
regardless of the network topology and input. The authors propose to use diagonal M of p;/ (t)2
where P is an upper bound obtained using second cost derivatives. The resulting A vectors
are computed iteratively using Lagrange’s method. Although this method substantially allevi-
ates the n-stepsize problem of Gallager’s original algorithm, it does not guarantee convergence.
Hence, the authors try to correct this with approximate Newton’s optimization method. Recall

the Newton’s method in optimization is driven by both first and second derivatives:

for single dimension Tptl = Ty — P
for multiple dimensions Tng1 = Tn — Y[Hf(22)] 'V f(z2)

where H is the Hessian matrix of second partial derivatives. However their method resembles

that of Newton, it has been tailored for real-time, distributed and loop-free operation.

44

Chapter 4. Related work 4.2. Adaptive routing

4.2.2 Gupta and Kumar’s STARA

A simple approach to Wardrop routing was conceived by Gupta and Kumar for wireless net-
works [GK97]. Although their algorithm (STARA) is designed for user—optimal (i.e. selfish)
routing, the adaptation procedure could be adopted for system—optimal routing with a switch
of link metrics.

Algorithms based on STARA are driven by the differences between the cost of regarded route
and the weighted average cost among routes in use. For convenience, let us denote the difference
between the total cost of all routes in use by ¢ for destination d and the cost of the route offered

by neighbour j as:
05 = A= (s + X5)“ (g + X5)

All of the algorithms presented here require normalization of p. Therefore, let use denote by [.]*
the projection onto the simplex of probability vectors. The projection p* = [p]™ is the solution

to the problem:
min Z(p;‘ —p;j)?
J

subject to Zp;‘ =1
J
p}'f >0

In the original STARA, the adjustment in routing probabilities is simply:
Pj < Dj + « 9]'

Although this fact is not mentioned by the authors, this scheme can yield p out of the probability
simplex, and therefore normalization is required. The authors did not discuss how to choose
the appropriate value for ae. A valuable contribution by Gupta and Kumar is their method to
obtain delay estimates which is unidirectional and based on timestamp offsets, assuming only
that the discrepancy in individual clocks’ speed is negligible. Unfortunately, this scheme cannot
be directly applied to obtain marginal delay estimates.

Recently, Raghunathan and Kumar have built a practical implementation directly on STARA
in [RK04]. The original scheme is modified in two ways. Firstly, the adaptation step uses two
sets of routing probabilities, of which only one is actually used for routing. Using our notation
(p are used for routing and ¢ are virtual):

gj < laj + Bp; ;1"
pj — (1—6)61j+6|N1b|

Thus the adjustment step of virtual probability is sized proportionally to the respective routing

probability, and the routing probability distribution always spreads e over all neighbours that

45

Chapter 4. Related work 4.2. Adaptive routing

can be used for routing to the specified destination (the set Nb is defined for each node i and
destination d). This is to ensure the minimum amount of probing of unutilized routes. The
two-plane scheme is based on work of Borkar and Kumar [BK03]. The concept to keep some
miniscule load on all routes for the purpose of probing is commonly used in algorithms based
on reinforcement learning discussed in the next subsection. Secondly, Raghunatan and Kumar
address multiple practical issues such as speeding up convergence and maintaining loop-freedom
while converging. The convergence is sped up restricting the forwarding neighbour sets (i.e. the
subset of neighbours that can be used for forwarding to a particular destination) in a fashion
much similar to the one of Vutukury and Garcia-Lunes-Aceves described above [VGLA99|. The
only allowed forwarding neighbours are the ones with not-greater hop-count distance to the
destination. Note, that this renders the resulting algorithm sub-optimal. However, as the domain
of their work is wireless meshes, this sub-optimality might be negligible. Their algorithm ensures
loop-freedom by introducting two packet states, "odd" and "even", which are alternated as the
packet traverses the network. When the packet is "even" it can be routed to any neighbour in
the forwarding set (i.e. of no farther in hops from the destination), but when it is "odd", it can
only be routed to a neighbour of smaller hop-count distance to the destination.

Another work based on [BK03| is that by Xie et al. [XQYZ04|. They evaluate the scheme
for both user— and system—optimal routing through simulations. It is comprised of two compo-
nents. Firstly, the delay or marginal delay is "learned" using from the current sample p* the

exponentially-weighted average similarly to [GK97, RK04|:
pj = (1 —a)pj +op;
The cost A is computed as usual. Next, the virtual probabilities are "learned":
gj — laj + B (q50; +)"

where ; are i.i.d. I random vectors distributed on an appropriate unit ball, which purpose is to
add disturbance so that non-Wardrop equilibria are avoided. The actual routing probabilities
p are computed from ¢ as in [BK03,RK04| and described above. It should be emphasized that
the algorithm developed by Borkar and Kumar [BK03] requires the learning factors « and (3 are
positive, non-increasing, of infinite sum, and finite power, and also that at learning step n they

are such that:
S ((a(n) — a(n +1))/a(n))" < oo
> (B(n)/a(n))* < oo

n
for some s,7 > 1

This yields 5 — 0 as n — oo. Thus, at least 5 needs to be reset whenever the input (i.e. user

demand) or network capacity (i.e. topology) changes.

lindependent, of identical distribution

46

Chapter 4. Related work 4.2. Adaptive routing

4.2.3 Reinforcement learning

Machine learning is an area of artificial intelligence concerned with the development of techniques
which allow computers to "learn", in other words, improve automatically through experience.
This experience comes from the analysis of data sets. Reinforcement learning is a class of
problems in machine learning which postulate that an agent is exploring a dynamic environment
through trial-and-error interactions with it. In return of the agent’s actions the environment
returns a reward (either positive or negative). Reinforcement learning differs from the supervised
learning problem in that correct input/output pairs are never presented, nor sub-optimal actions
explicitly corrected. Further, there is a focus on on-line performance, which involves finding a
balance between exploration (of uncharted territory) and exploitation (of current knowledge). A
good reference is available from Sutton and Barto [SB98|, and survey of reinforcement learning
is available from Kaelbing et al. [KLM96|.

The influential work we begin with is Q-routing by Boyan and Littman [BL94]. The task
of the packet routing policy is to answer the question: to which neighbour should the packet be
forwarded so that it gets to ils eventual destination as quickly as possible? Thus, the problem
they address is that of selfish minimization of end-to-end delays. The authors point out that,
although the policy is rewarded according to its performance, i.e. the time it took to deliver the
packet, which can only be measured when the packet reaches its destination, the policy can be
updated more quickly using local reinforcement. Suppose node x is given the task to forward a
packet P addressed to destination d. The total delay of routing is comprised of queuing delay at
each node and propagation delay over links. Let Q.(d,y) be the time that x estimates it takes
to deliver P if its forwarded to a’s neighbour y. Upon sending a packet to y, x immediately
receives y’s current estimate for the remaining trip:

t= mi d,
Zer]nvlbr(ly)Qy(z)

If P spent time ¢ at x (queuing), time s on the link (z,y) (propagation), then the new estimate
for Q.d, y is ¢+s+t which is used as the reinforcement signal in a scheme derived from Q-learning
(see [SB98]):

AQq(d,y) =nlg+ s+t — Qu(d,y))

where 7 is the "learning rate". This resembles the relaxation step of Distributed Bellman-Ford
algorithm (see Section 2.3.1).

Q-routing as a reinforcement learning problem suffers from the conflict between exploration
and exploitation. If the routers always use the neighbour y that is charted with smallest Q. (d, y),
then they fully exploit the knowledge learned to-date, but fail to properly explore the action-
space. Specifically, since only the neighbours and links used for routing report their updated
states (delays), the node fails to notice the appearance of better choices among unused neigh-
bours. To support exploration, reinforcement learning algorithms often involve random actions

or some minimum probing. Random actions, however, can spoil the overall performance of the

47

Chapter 4. Related work 4.2. Adaptive routing

system. Q-routing uses a scheme called "full-echo" which requires the nodes to ask all neigh-
bours for ¢ before the routing decision is made. This scheme resembles minimum probing by the
actively routing nodes.

An improvement over Q-routing was proposed by Kumar and Miikkulainen in [KM97]. Dual
Reinforcement Q-routing (DRQ) makes use of the observation that when packet P from source
s to destination d is received at y from neighbour z, then y can get up-to-date information
about the time it took the packet to get there from s. Therefore, they employ both forward and
backward exploration. When forwarded to y, packet P also carries the z’s estimate for the trip

to s:

t= i x\9,
nin Qals,2)

Node y uses this to update @y (s, z):

AQy(S, x) - 77(q +s+t— Qr(da y))

where g, s are y’s estimates for queuing and propagation delays. Experimental results show that
DRQ is twice as good as Q-routing in terms of adaptation speed and average delay.

If we were to adopted Q-routing for our purpose, we would use p; ; in place of ¢(z)+s(7, j) and
i+ /\;l in place of Q;(d,j). The probability distribution over neighbours favors the neighbour
k of smallest Q;(d, k).

4.2.4 Ant colonies

Many reinforcement learning algorithms employ metaheuristics such as simulated annealling,
tabu search, evolutionary computation, and so on. Among nature-inspired techniques, there is
swarm intelligence based around the study of collective behaviour of distributed, self-organized
systems. Examples of systems like this can be found in nature, including ant colonies, bird flock-
ing, animal herding, bacteria molding and fish schooling. Although such systems are typically
made up of simple agents interacting only locally (with one another and the direct environment),
these interactions lead to the emergence of global behaviour. As such they are particularly suited
for managing a "herd" of network routers that can only interact with neighbours. Ant Colony
Optimization (ACO) is the most successful swarm intelligence technique employed for routing in
packet networks. See the book by Dorigo and Stuetzle [DS04] for reference on both theory and
applications. ACO works on problems that can be reduced to finding best paths in graphs. Arti-
ficial ants build solutions by moving around on the problem graph and leaving trails of attractive
pheromones. The ants that visit the same place again, are more likely to follow the paths of
stronger reinforcement. Hence, the ant agents use stigmergy to communicate, and require very
limited memory. Eventually, all ants follow the globally best path. The advantage of ACO over
many other metaheuristics is that it works well in dynamically changing graphs, adapting to the

changes on-line. This is particularly desirable in network routing.

48

Chapter 4. Related work 4.2. Adaptive routing

A simple ant-driven algorithm was proposed for adaptive routing by Subramanian et al.
in [SDC97]. It uses small, fixed-size ants to probe the current state of the network, i.e. link
costs. As the ant is routed through the network, it accumulates the reverse cost of its path, i.e.
when it is sent over a link (7,), the cost information it carries is increased at j by the cost of
reverse link (7,7). Thus, an ant injected at d and seen at j carries the cost of a path from j to
d. The ant causes adjustment in routing probabilities of the routers it visits, i.e. leaves a trail.

An ant of origin d received at node ¢ from it neighbour k carrying cost ¢ makes an update:

pld’j +Ap

d _ 1+Ap ifj=k
Pij; = d
Pig otherwise
T+Ap

where Ap = k/f(c). Factor k > 0 is the learning rate, and f(c) is a non-decreasing function of
c. Thus, the link just used receives a reinforcement in the routing probability. Note that the
updated p remain in the probability simplex. Subramanian et al. distinguish two types of ants
by how they are forwarded. Regular ants are forwarded according to the routing probability
distribution, i.e. better paths get more ants. Uniform ants are forwarded using a uniform
distribution, i.e. all neighbours have equal chances. They show that regular ants converge to
the same result as QQ-routing, but lose exploratory properties afterwards, because "good news"
(i.e. improvement in unused paths) are not propagated at all. In contrast, the uniform ants
occupy all possible routes in proportion to the available capacity. The authors propose a hybrid
scheme which allows the regular ants to be routed uniformly f% of the time, for some small f.
This noise affects only ants and not the data packets. One advantage over classic shortest-path
algorithms indicated by authors is that the routing traffic (or control overhead) is independent
of network dynamics.

A more sophisticated AntNet was conceived by Caro and Dorito in [CD97,CD98]. AntNet
uses both forward and backward ants. Forward ants memorize the path they traverse using a
memory stack, on which each node pushes its identifier, the delay and congestion information
of the used link. Forward ants are routed same as data packets, using the current routing
probability distribution over the neighbours that have not yet been visited (not on its stack). If
no such neighbours are left, the ant is routed randomly, and the loop that is formed that way
is popped from the stack. When the ant reaches its destination, it changes into a backward
ant. The backward ant uses the node identifiers popped from the stack to follow the route of
the original ant in reverse. During the backward travel the ant updates the local models of
the network state and the routing probabilities of the visited nodes. The ants are destroyed,
once they reach their initial source. Besides the routing probability distribution, each node
maintains model of the current network state M (ug,d4), containing the estimated mean and
variance of the times to reach each destination d. The forward ants are initiated at s to random
destination d chosen according to the current demand of flows going from s to d. The backward
ants update M with the new time sample o using reinforcement learning: (g < pqg + n(o — pg)

and 64 « 64+1((0 — p1q)? — d4) The backward ant coming back from destination d through node

49

Chapter 4. Related work 4.2. Adaptive routing

k update the routing tables at node ¢. For all destination nodes traversed by the forward ant,

ie. foralld €i—d:

o p;z +r <2/— pey) i j= k
pij — TP otherwise

If the reinforcement signal (the goodness measure) r is constant then only the implicit signal
(ant rate) is used. The authors propose a more elaborate scheme that scores r using the values
of M. For example, if the ant carries new time sample o and the currently known mean is p,
then u/o could be used to evaluate how out-of-scale the new sample is. Their simulation results
indicate that AntNet offers a much better reactivity and adaptivity over classic shortest-paths
algorithms (distance-vector and link-state) at the price of increased routing overhead. We refer
the reader to Kassabalidis et al. for a survey on other routing algorithms based on swarm

intelligence [KESIT01].

4.2.5 Marginal cost estimation

As shown in section 2.2.3 on the consequences of non-cooperative routing, essential to the
socially-oriented routing objective is the marginal resource cost. In section 2.3.1, we indicated
that marginal cost metrics are particularly troublesome to use, as they rarely can be measured
directly.

In his original work [Gal77], Gallager suggests a function derived from an analytical model
could be used. For his off-line algorithm in [Kle64|, Kleinrock proposed a delay function based
on an M/M/1 queuing model. The M/M/1 is the analytical model for a single server with
unbounded queue in which both request inter-arrival and service times are exponentially dis-
tributed (i.e. a Poisson process). When the average rate ! of requests is A and the average
service rate is p then the average queuing delay is u%)\ Thus, the cost function for the links
takes the form: Ce(z) = W. Unfortunately, the assumptions for M/M/1 are far from being
fulfilled in the IP packet networks, in which the traffic is self-similar rather than Poisson.

We need to point out that, if the chosen cost function is given by a closed-form formula
of link load, then obtaining marginal estimate is only as difficult as it is to measure the load.
The total incoming flow rate can be estimated using, for example, observation windows. The
estimate is the amount of inbound data recorded over that fixed time divided by window length,
and possibly averaged exponentially 2 to smooth out any noise.

However, if such function form is unavailable, then the direct and indirect effects of the cost
need to be measured so that the marginal cost can be deducted. For example, if the cost is
the queuing delay, then it could be estimated by timestamping the packets when they enter

the queue and observing them as they depart. But to measure the marginal delay directly, one

would need to observe how the average delay changes with load.

!The average rate is the reciprocal of average time between consecutive events.
2See Section 2.3.1.

20

Chapter 4. Related work 4.2. Adaptive routing

Segall considers in [Seg77| methods to estimate the marginal queuing delay dD(f)/df of alink
that would not require actual deviation in the load, but rather base on the record of arrival and
departure times over the interval between routing updates, and recursively update the current
estimate, so that its memory-requirement is reduced. His method requires no assumptions
whatsoever about the nature of the statistics or other parameters of the traffic, just that the
packets are processed on a first-come-first-served basis (FCFS). The procedure estimates the
effect of a hypothetical decrease of § f in the current incoming flow rate. The particular algorithm
by Segall is sometimes called "Customer Rejection". Suppose that incoming packets are rejected
with probability €, then the decrease in flow rate is 6f = ef !. If ¢ is the amount of time that
the mth packet would save if the nth packet were to be removed, then a simple recursive formula
to compute ¢}, from the record of arrival and departure times a, and d, respectively can be

formulated:

=0 form <n
ey =dp — an
CZ—&—I =dn — max(anﬂ, dnfl)

cyo=min(cy 1, dp—1 —apy) form>n+1

A summation of ¢}, for all m,n within the observation period gives D(f), which divided by d f
estimates the marginal delay.

Cassandras et al. propose a different marginal delay estimation procedure based on the
same set of simple assumptions in [CAT90|. They use a technique known as perturbation anal-
ysis (PA), originally developed to efficiently estimate the performance sensitivities of complex
discrete systems. The main improvement is noticed in the convergence speed to a stable esti-
mate. Moreover, the authors compare through simulations their PA algorithm with analytical
approximations with queuing theory models. Cassandras et al. also study the possible appli-
cation of this technique to improve the convergence of the algorithms by Gallager |Gal77| and
Bertsekas et al. [BGG84|, described earlier in this section, by selecting an appropriate step size
n.

The drawback of both methods described above is that they only measure the queuing delay,
while there are other factors that contribute to the total end-to-end delay as perceived by user
packets. In particular, if the link propagation delay is load-dependent, we need other ways to
determine what the marginal cost is. Guven et al. propose in [TKL104] a method that measures
the marginal costs by actually introducing flow rate deviation (stochastic noise). Their technique

is based on Monte Carlo estimation.

since the chances of removing more than one packet are negligible

o1

Chapter 4. Related work 4.3. Rate control

4.3 Rate control

In this section, we relate to rate control solutions proposed by other researchers for the purpose
of utility optimization. Note that there are many rate control algorithms intended for congestion
control, but those utility-driven are of more interest to us, as they target an objective similar to
(3.5). The gross majority of the work discussed here was either part or inspired by Kelly’s work
on utility-based rate control. Also, we relate here to the work that directly inspired this thesis

by Kelly and Voice.

4.3.1 Kelly’s decomposition

The seminal work was done by Kelly et al. [Kel97, KMT98]. The Kelly’s system problem

assumes single—path routing and can expressed using our terminology is:

maxz Us(ys)

subject to z. < Cap(e)

It can be decomposed into two sub-problems of which one is solved individually by all users and
the other is solved by the network. Each user is responsible for establishing the price it is willing

to pay if its unit price for service (throughput) is A\s. The user’s problem is:

max Ug(ws/As) — ws

over w, > 0

The network does not need to know each user’s utility functions but just their declared prices.

The network’s goal is that of weighted proportional fairness:

max Z ws lgys
S

subject to z. < Cap(e)

They show that there exist unit prices As such that the solution to the decomposed problem

optimizes the original problem. Their rate control algorithm operates as follows:

d
%ys =k ws—ys z pe<ze)

e used by s

The factor k is a positive gain, and the function p.(.) gives the virtual price of link e. Kelly et al.
show that this algorithm converges under a variety of pricing schemes, e.g. explicit notification,
packet loss, delay. If p.(.) is the rate of feedback signals from link e then the algorithm is an
AIMD scheme. La et al. propose different algorithms for the Kelly’s problem in [LA02]. Also,
a simple algorithm driven by binary feedback has been proposed by Kar et al. in [KSTO1].

22

Chapter 4. Related work 4.3. Rate control

4.3.2 Joint routing and rate control

Also in [KMT98]|, Kelly et al. extend the single-path system model to multi-path and propose

a tailored algorithm. If z,, is the amount of flow s routed over a route r, then:

d
%xs,r =k Ws — Ys Z pe(ze)
e used by r

Kelly and Voice study the scheme of joint rate control and routing in [KV05] and show that,
if designed properly, both algorithms can operate at the same time-scale of round-trip times.
Their objective is exactly the same as (3.5) addressed in this thesis, except that they assume
that the routing is done over a set of preselected routes, while our objective uses stochastic
routing. Therefore, their algorithm adjust x,, - the amount of flow s routed over route r as
follows:

0=t (1)
M) = Y pelze(t = T)

e used by r

where T, is the round-trip time of route r. They define:

Colze) = /0 " pe(2)de

which implies that pe(.) is the marginal cost of link e. The rationale behind using 7T,-delayed
values of marginal utility stems from the fact, that when implemented, the marginal cost feedback
that is obtained at time ¢ was actually generated after the load injected at source reached the
link and the back-signal reached the source. The authors assume that the signal actually needs
to reach the destination and travels back in ACK packets. One viable way to implement such
scheme, as discussed by the authors, is to put the current ys; in the data packets and move
them to the ACK packets at the destination. A simpler scheme would simply monitor the rate
of incoming ACK packets to determine what was the rate of the packets that those packets
acknowledge, assuming that each data packet is acknowledged.

For the utility function they use a-fairness:

1—
WelYs ¢

l—«

Us(ys) =

For the marginal cost function they use:

Pe(2e) = (éi)ﬁ

which can be interpreted as the probability of marking a packet that arrives at a M/M/1 queue
serviced at the average rate of C¢ to find [packets already in the queue. Kelly and Voice

23

Chapter 4. Related work 4.3. Rate control

conclude that such scheme not only converges to the optimum but is also locally stable at the
optimum if:

™
RorTrlas + max Be) <3

Therefore, the gain parameter k, should be adjusted to the round trip time and steepness of
utility and cost functions. See also work by Johari and Tan [JT00| for a study on stability of
joint routing and rate control.

Voice further studies the composition of rate control and routing in [Voi04]. The author

considers the algorithm:

d

_ /
%xs,’r‘ - fr(xs,r) Us(ys) - Z He

e used by r

gpHe = gele) (ze — ce(pte))

properly bounded at 0, where f,, g. are positive and:

< w
U’s(ys)—>0asy5—>ooor/ dw = oo

o [fr ’LU)

< w
ce(ze)—m)oasze—m)oor/ dw = oo

0 ge(w)

Voice proves that such algorithm always converges regardless of the initial state, assuming that

there are no propagation delays.

o4

Chapter 5

Joint Algorithm

Having stated the global optimization problem and how it can be decomposed into two sub-
problems in Chapter 3, and how other researchers approached them in Chapter 4, we now
proceed to describe the joint algorithm targeting the whole problem. In this chapter, we discuss
the composite structure of the proposed algorithm. We describe the requirements and design
concepts of its components. A brief theoretical analysis is also provided. The main focus of
the analysis is convergence and stability in the presence of delays. We also discuss the arising

implementation issues focusing mainly on information propagation mechanisms.
5.1 Composition

Given the results of Chapter 3 we propose to compose the algorithm of two sub-procedures

each achieving the optimal solution for its sub-problem:
1. find optimal routing probabilities assuming that load will not change
2. find optimal user rates assuming routing that will not change

We already mentioned in section 3.3.2 that for such composition to work it is sufficient that
every run of each of the two procedures either achieves its optimum or simply improves in the
global performance goal. The two algorithms need just to be run interleaved. Although such
method may be slowly converging, in a dynamic environment, it is reasonable to accept solutions
that are near-optimal but quick.

As shown in Chapter 4, both problems have been addressed previously, and we could use the
algorithms proposed to-date as components. The crucial point of our composition is based on the
observation that both algorithms will need an estimate for the marginal cost /\ﬁl !, We propose the

two components to share the common cost estimate cf. So, provided that the adaptive routing

'Segall points out that marginal cost is needed for all minimum-cost routing algorithms [Seg77].

35

Chapter 5. Joint Algorithm 5.2. Distributed cost estimation

algorithm already gathers this information, the rate control algorithm needs no further effort,
e.g. a backstream of ACK packets, in order to estimate it. This is advantageous for applications
that do not require reliability (e.g. like that provided by TCP), but still should be subject to
congestion control. Currently, streams that are not rate-controlled in any way are usually not
TCP-friendly, and as such give rise to many issues, e.g. how to protect TCP-controlled flows
from preemption and starvation.

Another possible scheme of application is to apply the rate control to the aggregate flow of
all users hosted by a node (i.e. node is an aggregate user). In such case, the node manages
the whole traffic it sources using a single utility function. Such scheme might be useful for
wireless mesh networks, where routers are not operated by a single institution, but rather form
a self-regulated community.

It should be pointed out that this algorithm is not intended to fully substitute for TCP-like
end-to-end control. Specifically, it will not take care of flow control (i.e. end buffer protection)
nor of necessary retransmissions if reliable delivery is required. Instead, it will only regulate
the load on the resources of the network trying to balance between utility and cost, and most
importantly, protect the resources which should result in reduced packetloss.

Last but not least, as shown by Kelly and Voice [KV05], a properly driven, joint algorithm
operating at the same time-scale is viable and stable. This suggests that both components can
reasonably use the same information updated no quicker than it takes messages to cross the

network. We discuss this issue in greater detail in this chapter.

5.2 Distributed cost estimation

First, we discuss design issues of the distributed algorithm for (marginal) cost estimation. We
consider several variants of the algorithm following the popular paradigms of distance-vector
and link-state among others (see Section 2.3.1). Afterwards, we will discuss how this estimate

can be used by the two component adaptation algorithms.

5.2.1 Distance-vector algorithm

Recall from Chapter 3 the cost estimation formula (3.8):

He = Cé(ZE)

This suggests a straightforward algorithm following the distance-vector paradigm:

1. node ¢ monitors its outgoing links and computes p; .

2. 1 periodically advertises its c;-i estimate for each destination d to its neighbours

26

Chapter 5. Joint Algorithm 5.2. Distributed cost estimation

®
©)
©

Figure 5.1: A trivial example of counting to infinity. The task is to obtain the
correct cost to node C. When the link (B, C) fails, node B turns to its currently best
neighbour A, which advertises cost 2. A loop is formed between A and B and the cost

fails to converge.

Figure 5.2: If the routing (thick lines) is loop-free (acyclic), then the routes to a single
destination (thick border) form a spanning tree. The numbers on the nodes count the
number of messages (or update periods) necessary to obtain up-to-date information

about the route cost to the destination node.

3. using the advertisements from its neighbours, ¢ updates cf

While this algorithm is bound to converge to accurate values of \¢, it suffers from the same
deficiency as the Distributed Bellman-Ford (used in e.g. RIP). It turns out, the convergence time
is infinite if temporary routing loops may exist. See Fig. 5.1 for illustration of such behaviour.
However, if only finite accuracy is needed, then the algorithm converges within finite time, if
there are no loops of probability 1 (see Section 2.3.1).

On the other hand, if the routing is loop-free then the number of advertisement messages
necessary for the estimate to converge is equal to the hop-distance (over existing route) to the
farthest node from the source of update, i.e. the node that noticed a change in locally observed
. Supposing the advertisements are sent periodically, the sufficient number of periods equals
the same bound, as illustrated on Fig. 5.2.

The route adaptation algorithm proposed by Gallager in [Gal77| preserves loop-freedom and

ensures that the cost (in this case, delay) estimation procedure is complete before making re-

o7

Chapter 5. Joint Algorithm 5.2. Distributed cost estimation

c=2 c=0
® ©
® ©

c =inf
Figure 5.3: With split horizon the nodes do not advertise their cost to nodes that
they use for routing. With poison reverse the nodes advertise their cost as infinity.
Thus, A will advertise inf to B, because it was its next hop to C'. The routing loop

is avoided.

routing decisions. Thus, each node waits until all its downstream (i.e. towards destination)
nodes report their costs on a recent update. A similar technique was used by Vutukury and
Garcia-Lunes-Aceves in [VGLA99], although they proposed a different method to maintain loop-
freedom. Also, see their work in [VGLAO1] for a distance-vector algorithm that maintains loop-

freedom at every instant and avoids counting to infinity.

Split horizon

To alleviate the convergence problem we propose a technique similar to split horizon or poison
reverse developed for the RIP distance-vector protocol [Mal98|, and used in EIGRP. The split
horizon rule states: Never advertise a route to a neighbour from which you learned it. The poison
reverse rule states: Once you learn of a route through an neighbour, advertise it as unreachable
back through that same neighbour. The rules are illustrated in Fig. 5.3.

This technique can be tailored to stochastic routing. Since the node may have routes available
through its other neighbours, it does not report the destination unreachable but only excludes

it from its advertisement. The cost that node ¢ advertises to node j is computed as follows:

d d
A= D kg P (Chg + Hik)
’L’
’ Dz Pl

(5.1)

Note, that, in the stable state of Wardrop equilibrium, this technique either does not affect the
marginal cost estimation (if multiple neighbours are used), or is equivalent to poison reverse in

the single-path case. Hence, the rate adaptation algorithm will not be skewed.

5.2.2 Link-state algorithm

Compared to the distance-vector approach, link-state algorithms are burdened with less severe
convergence issues. The relatively simple flooding algorithim does not use routes and hence
is loop-proof. As soon as the update is complete, the routing is guaranteed to be loop-free,

provided that the routing logic is proper.

28

Chapter 5. Joint Algorithm 5.2. Distributed cost estimation

Most improvements to the link-state approach aim to reduce the control overhead, i.e. the
amount of traffic due to flooded updates. For example, link-vector algorithm (LVA [GLAB95|)
reduces the scope of advertised topology to "preferred" links. When link-state information
needs to be updated, it is not flooded across the network, but instead the nodes only update
their neighbours if the link is a part of their routing source-tree, i.e. the node intends to use
it. Another approach, least-overhead routing reduces the number of updates by allowing stale
link-state, thus sacrificing optimality, but favouring small routing overhead.

Although link-state algorithms, due to their generally better convergence, have been more
successful than distance-vector algorithms in the area of intra-domain routing, some of their
features make them unsuitable for adaptive routing. Given the knowledge of full topology and
link metrics, the router may compute the lightest paths and decide unilaterally to use them for
routing. Yet, the hop-by-hop paradigm allows them to choose the first hop only.

The cost estimate is accurate only if all participants agree on the routes. The problem arises
from the load-dependence of the metric, which make such unilateral, fixed decisions undesirable,
however quick. Worst-case scenarios include indefinite oscillations. Ideally, the routes would
be adjusted in such steps that each slightly improved the overall performance. But this would
require the routers to maintain knowledge on the transient state and render the computed lightest
paths not immediately usable. Unfortunately, the transient state also comprises the currently
used routes, i.e. routing probabilities, which makes flooding it all impractical.

To sum up, link-state algorithms are poorly suited for adaptive stochastic routing. Distance-
vector approach gains its advantage from the fact that the nodes share pre-computed information
and do not need to share the details of their routing decisions. Further, when performing small
adaptation steps, distance-vector routers may reasonably assume that the impact of their local
decisions is as if they were taken unilaterally. We refer the reader to section 2.2.3 for reference

on non-cooperative routing.

5.2.3 Information propagation

The marginal link cost is load-dependent, and therefore highly dynamic when rerouting or
rate adjustment is performed. It is crucial for the adaptive algorithm to maintain up-to-date
information. In section 2.3.1, we discussed the differences between proactive and reactive update
schemes, which are distinguished by how they determine which routes are needed. In this

subsection, we discuss several update schemes defined by how the cost update is triggered.

Periodical updates

A purely proactive update algorithm is driven with periodical updates. The incurred overhead of
routing updates is stable and does not depend on the traffic and capacity dynamics. However,
the choice of the update period is essential and impacts the balance between stability and

optimality. If the period is too short, the overhead may be unacceptable, but the information is

29

Chapter 5. Joint Algorithm 5.2. Distributed cost estimation

very up-to-date and the adaptation algorithm may drive the system close to optimal. However,
if the updates are too frequent, and measurement is not sufficiently smoothened, the control
algorithm may have stability issues. Conversely, if the period is too long, then the updates
are cheap, but the adaptivity is hindered by out-of-date information. The inherent problem of

periodical updates is the appropriate choice of the update interval.

Triggered flooding

A different method defines thresholds for change of the monitored link cost, and initiates a flood
of updates when the threshold is passed. The advantage over the periodical scheme is that the
information is updated as frequently as needed to perform necessary adjustments. However,
such updates may be dangerous to stability unless dampened, i.e. slowed-down. Also, this
scheme is more prone to state corruption, if a node losses correct cost information, it will not be
updated until the triggering event occurs. Therefore, hybrid solutions driven with both timed

and triggered updates are most promising of the two schemes.

Packet-driven updates

Reinforcement learning methods described in section 4.2.3 uses a different approach. The up-
dates performed locally between neighbours are triggered by destination-oriented packets. In
the Q-routing algorithm, the node updates its neighbour whenever a packet for the particular
destination is received. In ant algorithms, the nodes are updated when visited by ants. Note
that the update-triggerring packets travel between the source and destination (or back as in the
case of backward ants). Therefore, such schemes are purely reactive. If there are no packets for
a particular destination, then the cost is not updated, and the costs to the destination are not
propagated to the areas of the network that host no sources addressing it. However, all rein-
forcement learning algorithms require a minimal level of probing to maintain their exploratory
properties.

Conceptually, the overhead of packet-driven updates is constant with respect to the amount
of user traffic, and does not depend on neither selected update period, nor the dynamics of the
cost. The design difficulty of such schemes is that the cost information needs to travel in the

opposite direction than the user flow.

Rate-implied feedback

An interesting approach to cost propagation was proposed by Kelly et al. |[KMT98, Kel03|.
The scheme is based on the current TCP behaviour. The TCP source either receives an ACK
or recognizes a loss. The frequency of the binary signal determines how fast the source increases
or decreases its rate. In case of TCP, the frequency strongly depends on the flow rate at source.
But in general such simple binary signal of variable rate could be used to drive the adaptation

procedure performing miniscule steps at each "tick".

60

Chapter 5. Joint Algorithm 5.2. Distributed cost estimation

Consider an idealization of such algorithm:

e cach resource (link) maintains its current cost estimate p
e 1 determines the rate of periodical ticks that are flooded across the network

e cach user observes the ticks and whenever it spots one from a resource it uses, it performs

an appropriate, tiny adaptation step

This rough concept is expensive and requires the sources to know the resources their flows use
and to what extent they use them (i.e. the flow part x, see Section 3.2.2). An optimized
variant would use the knowledge of routing variables to disseminate the ticks only in the regions
that contain interested sources.

Recall the cost estimation formula (3.8):

= Y g+
J
One idea the tick dissemination algorithm aims to exactly mimic that equation. For each link
(4,7) and for each destination d, ticks marked with d are generated with rate p; ; and sent to
i !. Furthermore, each node i on receiving a tick marked d from its neighbour j or link (4,),
drops it with probability pf’ ;- The ticks that remain are broadcast to all neighbours. Then the
rate of ticks marked with d observed at node i equals ¢ as desired.

This algorithm is simple, but it is not quite intuitive, since the ticks are replicated (broadcast)
by each node. A more sophisticated scheme basing on the observed rates would route the ticks
in the manner of stochastic routing, i.e. under flow rate conservation. For each link (i, j) and
for each destination d, ticks marked with d are generated at rate z; j ; j. Subsequently, each
node that receives the ticks can distribute the ticks among neighbours in accordance to known

composition of tf-l. The routing probabilities for the ticks would be:

d 4d
g = P tj
) d

ti
a _Ti
qz,z - td

Probability qgi denotes the proportion of ticks that is directed to the sources hosted at ¢ ad-
dressing d. Note that) j qg ; = 1. The tick rates from all resources add up at the sources and
represent accurate cost information. The main drawback of this algorithm is that it requires
knowledge (through monitoring) of t¢. However, this could be alleviated with a tick-for-packet
feedback scheme resembling the packet-driven update method described previously.

The general disadvantage of such tick-based methods is that the routing overhead depends
on the chosen base rate of ticks-to-cost. The impact of this choice is same as for update pe-
riod or change threshold discussed above. Note we mention these methods here as a possible

implementation concept but do not study them any further in this thesis.

! Actually, the node i would monitor the link (4, j) and generate the ticks.

61

Chapter 5. Joint Algorithm 5.3. Continuous adaptation algorithm

5.3 Continuous adaptation algorithm

Multiple algorithms have been proposed for both sub-problems as we have indicated in sec-
tion 5.1. We have discussed some of them in Chapter 4. In this thesis, we do not intend to
improve on these algorithms. Instead, we generalize and theoretically study the desired be-
haviour under idealized conditions and propose one possible variant. That variant shall be used

for experimental evaluation in Chapter 6.

5.3.1 Continuous model

In the description below, we assume that there are no information update delays in the system
whatsoever. The adjustments are made continuously and are driven with information that is al-
ways up-to-date, i.e. the estimate cld always represents the current marginal cost)\Zd. Conversely,
the effects of the adjustments are immediate.

This model seems highly unrealistic, since in a practical implementation we would need to

deal with inherent information update delays. These delays are comprised of:

e load propagation - the time needed for the effects of the adjustment decisions to be felt

at the resources

e cost measurement - the time needed to observe and estimate the current marginal cost

value

e metric propagation - the time needed to propagate the new metric information to the

decision-making nodes (see section 5.2.3)

e inter-adjustment intervals - the shortest time between subsequent discrete adjustment

steps

However, this model approximates an implementation where the individual adjustments have
negligibly small effect and are performed at a time-scale much larger than propagation delays.
Such model basically matches our simulation environment that shall be used in Chapter 6, and
also the model used for rate control algorithms described in section 4.3. Still, before we proceed

to the evaluation we shall discuss how the algorithm could be tailored to deal with update delays.

5.3.2 Rate control

General considerations

In the continuous model, the rate control algorithm is stated as the time-derivative of the vector

of flow rates defined as a function of current rates and cost estimates:

B (1) = rye), e(t)

62

Chapter 5. Joint Algorithm 5.3. Continuous adaptation algorithm

or better yet, using only local information:

dCZS = f, (ys, Cjﬁgj)

Note that the domain of rates is restricted, and therefore when ys = 0, we should also require
that dys/dt = fs(0,.) > 0. However, recall from Section 3.2.2 that thanks to the required

behaviour of Us(ys), the local optimum of rate control must be within ys > 0.

Theorem 5.1. A sufficient condition for the rate control algorithm to converge to local optimum

18:

fs(y, ©) (Uily) —¢) 20
fs(y,0)=0 & (Ué(y) —c) =0

Proof. Let us denote the global profit by « = Up — C7. We can observe that
du ou dys
dt ; Oys dt

B y dst(s) dst(s)
= Z (Us(ys) -)\src(s)) fs (ys’ CSTC(S))
. y dst(s) dst(s)
= Z (Us(ys) B Csrc(s)) fs <y5> CS”'C(S)>

since dUp /dys = U.(ys) and dCr/dys = A% and also as the model assumes that cd(t) = M(2).

sre(s)?
Using the condition, we obtain that all elements in the sum are non-negative, and thus:
au
—_— >
dt — 0
au ou
i 0 & Vi aye 0

so that the profit is always increasing with the adjustments, unless the condition for local

optimum given by Theorem 3.4 is reached. O

Therefore, the algorithm should aim to equalize the marginal utility and marginal cost by
increasing the rate whenever the marginal profit (i.e. the difference between marginal utility

and marginal cost) is positive, and decreasing when otherwise.

Algorithm

Let us now proceed to our algorithm. Inspired by Kelly and Voice [KV05], we propose that the

sources adapt their flow rates using the marginal cost estimate in the following manner:

dys . / dst(s)
i o (Us(ys) - csm(s)) (5.2)

for some a > 0. As desired, they aim to equalize marginal utility and marginal cost estimate.

Note that we do not need to consider the time derivative at ys = 0, due to the assumption that

63

Chapter 5. Joint Algorithm 5.3. Continuous adaptation algorithm

Us(ys) — —oo as ys — 0T, which implies that U(ys) — oo. Further, the marginal cost function
is positive and increasing with y,. This yields that dys/dt — oo, and hence ys is bounded away

from 0. Furthermore, observe that the algorithm:
fs(y,) = o (Uily) —¢)
satisfies the conditions of Theorem 5.1.
Corollary 5.1. The rate control algorithm (5.2) is converging to local optimum.

We should emphasize that the choice of gain factor « in the idealized continuous model is of
little significance beyond that the larger its value the faster the algorithm converges. However,
the factor becomes crucial for stability when propagation delays or discrete time-scale need to
be dealt with. Note that the idealistic model approximates the case when the changes of single
step are extremely small, and the adjustments are extremely rare. The time of convergence of
such scheme is likely impractical. We shall discuss these issues later in this section.

Before we proceed to the routing algorithm, let us point out that the algorithm (5.2) like all
gradient—driven optimization procedures suffers from a rapid reduction in speed of convergence
as it approaches the optimum. One way to alleviate this drawback is to scale the marginal profit
by current rate:

dys
dt

=« (ys + ymin) (U;(ys) - Cj:zgz;) (5.3)

The value ymin > 0 is used to prevent the algorithm from stopping at ys = 0. This formula will
be actually used in our evaluation in Chapter 6. Alternatively, we could forcibly bound ys by

introducing minimum allowed rate.

5.3.3 Routing

General considerations

Theorem 3.3 shows that the routing is optimal, if it is at the Wardrop equilibrium. Multiple
algorithms have been proposed for Wardrop routing, e.g. [Gal77, GK97, VGLA99, XQYZ04|.
Their design is mostly similar. The task is to increase the routing probabilities of the routes of
smaller marginal cost and decrease the probabilities of those with larger marginal cost. Suppose
the probabilities are updated continuously as in the idealized model described above. As in
section 4.2 we consider the adaptation at node ¢ towards destination d and drop these indices

in our considerations, i.e. use p; = p‘iij, etc. Also, let us define:

05 = pj + Aj
dp;
A, = 21
T dt

64

Chapter 5. Joint Algorithm 5.3. Continuous adaptation algorithm

In order to keep the probabilities in the simplex, any feasible algorithm must satisfy:

> A =0
J

ijO:>AjZO

Theorem 5.2. The sufficient condition for the route adaptation algorithm to converge to the

oplimum 1s:
> 60 <0
J

=A ifpj >0
Z&jA]’ZO =4 (5]' . ! <~ (5]2)\
j > A if p; =0
Proof. As in the proof of Theorem 5.1, we observe how the global profit U changes over time as

the routes are adjusted. We have that:

a _ _dCr _
dt dt
- -y OCr dpi; _
" _
iy oy
dp? .
— d L. d ¥
= _;ti zj:(/lm + A7) gt

If the condition of the theorem is satisfied, then we easily obtain that di//dt > 0 and dU/dt =0
if and only if the routing is at Wardrop equilibrium defined by (3.13) which is the necessary and

sufficient condition for optimum. O

Remark: We can observe that:

3V (0980 = Y 6A;<0
j

The value ¢ acts as the boundary between "good" and "bad" neighbours — those of cost higher
than ¢ should have their probabilities reduced and vice versa. Algorithms that boost only the

best neighbour can be seen as using such ¢ that cuts off only the single smallest 9.
Example: Consider a simple algorithm:

Aj =pj(A=9))

Since };p;d; = A and > ;p; = 1, we have >, A; = 0. Also p; = 0 implies A; = 0. Further-
more, A works as the boundary ¢ introduced in the remark above, and (6; — A)A; < 0. This
implies that Zj d; A; <0.

65

Chapter 5. Joint Algorithm 5.3. Continuous adaptation algorithm

This would suggest that this simple algorithm has all desirable properties. Unfortunately,

the algorithm stops whenever:
=\ if pj > 0
75 A if b; = 0

d;

even if A > 4, for some j. Therefore, it stops whenever all used routes are equally good even if
better unused routes exist. In fact, any algorithm that separates the neighbours into the "good"
and "bad" sets along A can stop at false equilibria, if proper care is not taken of such neighbours
that 6; = A\. However, we can preclude such spurious equilibria by ensuring that if A > §;, or
more generally when the system is not at Wardrop equilibrium (3.13), then A; > 0 for at least
one neighbour j. The algorithms based on the Gallager’s seminal paper assure this by always
boosting the best neighbour. The algorithms derived from Gupta and Kumar’s STARA assure
this by bounding the routing probability from 0 (for the purpose of exploratory probing) or by

using random noise that prevents getting stuck in spurious equilibria.

Algorithm

Let us now proceed to our algorithm. The main idea of the algorithm is to calculate the
adjustments A; in some proportion to (A — §;). For simplicity, we do not strive to define the
algorithm by proper A;, but rather resort to simple re-normalization procedure in order to keep
the routing variables within the probability simplex. Also, we scale the adjustments by the
current cost estimates to keep them in a steady range.
Although this is undesirable, we shall ignore temporary loops. Corollary 3.1 implies and the
results of our numerical evaluation confirm that all loops are eventually broken.
The continuous-time algorithm first computes:
A A—9;
Ai=057 5;

(5.4)

for some 8 > 0. Subsequently, simple re-normalization is performed. In the discrete domain, it

would be done as:

o max(0,p;)
Pi= > max(0, py) (5.5)

In the continuous domain, the algorithm computes:

A = [AJM — Dy Zk[Ak]Jr
’ 1+ 3, [A 4

Aj ifpj>00rAj>0

where [Aj]4 =
0 otherwise

Note that, the requirements on A; are satisfied. Also note that the normalization does not

change the order of adjustments, i.e. if Aj < Ay, then A; <Ay

66

Chapter 5. Joint Algorithm 5.3. Continuous adaptation algorithm

Theorem 5.3. The route adaptation algorithm (5.4) is converging to a Wardrop equilibrium.

Proof. We can observe that J; < 3 implies Aj > Ak, which in turn results in A; > Ay,
Therefore, >, d; A;j <0 unless A; = 0 for all j.

The algorithm stops only when p; 32, [Ar] = [A;]4 for all j. Let us show that this is only
possible if §; > A. Now, J; < A implies [Aj]+ > 0, and would yield p; > 0 in such a case. But
this is only possible if there existed some neighbour k, such that d; > A and py > 0. However,
d; > X\ implies Aj < 0, and for A; = 0 we would need p; = 0. We obtain a contradiction.

Therefore, the algorithm stops only at Wardop equilibrium, i.e. when §; > X. Consequently,

the algorithm satisfies the sufficient condition stated in Theorem 5.2. O

Example: Suppose that the node under consideration has a choice between the routes of its
four neighbours of marginal costs 1, 2, 3, 4, and current probabilities 0.2, 0.4, 0.4, 0. Assuming

that 8 = 1 the algorithm computes as follows:

j 1 2 3 4
5 1.0 20 3.0 4.0
D 02 04 04 00
A 2.0

A, 05 00 -025 -04
A1+ 05 00 -025 0.0
> i[A]+ 0.25

A 0.34 -0.08 -0.26 0.0

<

A 0.0
-0.6

<.

M
>

5.3.4 Joint operation

With the description of the adaptation components, we have shown that both algorithms con-
verge to local optima with respect to the two subproblems of the global objective (3.5). We can

now consider the two algorithms run in phases, that is let one converge before running the other.
Corollary 5.2. The joint phased algorithm is converging to the global optimum of (3.5).

This is a direct consequence of theorems 5.1 and 5.3. The joint algorithm converges to a local
optimum, and according to Theorem 3.1, the objective (3.5) is a convex optimization problem
and therefore local optima are global.

However, we have also shown that the algorithms improve on the goal at every instant unless

at the optimum. Therefore, we consider them run concurrently, in the same time frame.

67

Chapter 5. Joint Algorithm 5.4. Delayed adaptation

Corollary 5.3. The joint concurrent algorithm is improving on the goal at every instant and

thus converging to the global optimum of (3.5).

Obviously, this second scheme is much more practical for a distributed deployment, since it does
not require any synchronization of phases. Further, it yields a more steady improvement in total

profit, and faster convergence to a near-optimal state.

5.4 Delayed adaptation

In the previous section, we assumed a continuous model. The algorithms given there are only
viable in an idealized environment, where the marginal cost estimate is accurate at every instant,
i.e. updated continuously and without propagation delays. In this section, we discuss what the

impact of non-infinitesimal adjustments and propagation delays is.

5.4.1 Non-infinitesimal adjustments

The algorithm defined by a time-derivative is impractical and can be employed as an approxima-
tion at most. In practical implementation, any adaptive algorithm performs adjustment steps
periodically or in response to update events. Therefore, there is a non-zero time interval between
the subsequent adjustments and the effect of a single step is not negligible. The rate control

algorithm (5.2) becomes:
dst(s
ysln + 1] = max (o, ys[n] + @ (Ys[1] + Ymin) (U;(ys [n]) — 1) [n])) (5.6)
and the route control algorithm (5.4) becomes:

piln+1] = pj[n] + Aj[n] (5.7)

A~

[Aj]4 = max(—p;, A;)

As a result, the choice of gain factors a, 8 that are used to scale the adjustments becomes crucial
for convergence. If the gain factor is too large, then the optimal value may be easily overshot.

Gallager’s algorithm uses 3 ~ 1/ in order to maintain steady rate of adjustments [Gal77].

The approach taken by Bertsekas et al. in [BGG84| is to approximate the Newton’s optimization

method and adjust the gain factors in accordance to the current derivative of higher order.

We refer the reader to that work for an excellent analysis of discrete-step route adaptation

algorithms.

5.4.2 Update delays

Even if employing continuous-time adjustment (i.e. time derivatives) is acceptable one should
account for update delays. More to it, the effect of discrete-time procedure can be modelled

with update delays. An algorithm:

w(t +T) = a(t) + f (2(t), c(t))

68

Chapter 5. Joint Algorithm 5.4. Delayed adaptation

where T is the update period, can be approximated with:

dx

1
(=5 f (@t =T), c(t = T))

In their work, Kelly and Voice regarded a joint routing and rate control scheme that ac-
counted for the propagation delays [KVO05|. If we employed this concept in our rate control

algorithm, we would obtain:

ed(t) = N(t - T,)

(2

dys dst(s
~2(t) = a (Ulya(t = 1)) = elri))
L
« T

T, is the "age" of the cost estimate, i.e. the time delay it takes any change in y, to affect the cost
estimate at the node that hosts user s, i.e. src(s). Such algorithm is not only bound to converge,
but is also locally stable at the optimum, provided that the gain parameter « is tailored in accor-
dance to the steepness of utility and cost functions and 7;.. The original idea assumed that the
cost is obtained at the time-scale of round-trip time (RTT) (see Section 4.3.2). In section 5.2.3,
we discussed several schemes to compute the cost estimate can in a distributed fashion. If the
information is updated periodically, then the estimate’s worst-case age is determined by the
diameter of the network. If the information is flooded between neighbours, then the age is no
greater than the delay-diameter ' from the last flood. If the updates are packet-driven, then
the age of the cost estimates for the routes in use equals delay-diameter times the hop-distance.
This is due to the fact, that each packet moves the actual cost estimate one hop closer to the
source. We should point out, that under stochastic routing multiple routes are used, hence the
packets are subject to multiple RTTs. However, note that, if the cost function was chosen so
that routing was selfishly minimizing the latency, then at the optimum all routes in use would
have equal RTT.

Furthermore, we pointed out in section 5.1 that if the rate control algorithm is driven with
cost estimates used for routing, then no backstream of ACK packets is needed. Therefore,
the idea by Kelly and Voice to use the backstream as memory for ys(t — 7)) is no longer
applicable. Also, the backstream cannot be used to obtain RTT estimates. Instead, end-to-end
packet-driven updates could be employed. Whenever, a packet reaches destination, it induces
a backward flood of cost updates. This update could be timestamped in order to estimate the
"age" of the estimate.

In the end, in our simulation environment used in Chapter 6 to evaluate the presented
concepts update delays are ignored, but the issue remains open and deeper study is needed,

especially in the context of adaptive routing.

'Delay-diameter is the maximum end-to-end delay between any source and destination pair.

69

Chapter 6
Algorithm Evaluation

In this chapter, the algorithm proposed in Chapter 5 is subject to experimental evaluation.
The purpose of the experiments is to show how the joint algorithm performs under idealized
conditions. Therefore, we shall not perform any comparison between different algorithms, but

rather focus on the properties of the objective and the resulting optimum allocation.

6.1 Simulation methodology

In this evaluation, we simulate idealized conditions of negligible propagation delays. Alterna-
tively, this is equivalent to slow adaptation, in which the intervals between adjustment steps are
longer than the time needed for the network to stabilize.

In such environment, we can use fixpoint solutions obtained in section 3.3.2. Initially, the
routing probabilities are spread uniformly over all neighbours, and the source rates are set to a

small value. The simulation performs the following steps indefinitely:
1. compute stable state of link loads and marginal costs:

(a) compute rates r from y
(b) compute fixpoint node rates ¢ using r and probabilities p
(¢) compute link load z and marginal cost p

(d) compute fixpoint cost estimates c
2. perform adjustment step of routes and rates

The fixpoints are computed using the linear formulas (3.9) and (3.10). The adjustment pro-
cedures are those given in section 5.3 by formulas (5.3) and (5.4) tailored for discrete-time as
proposed in section 5.4. The gain factors a and 3 are chosen independently for each experiment

so that specific issues can be illustrated.

70

Chapter 6. Algorithm Evaluation 6.2. Scenario

We monitor the marginal and total costs, utilities and profits for each flow. Recall, the
marginal profit of user s is defined as:

/ _ dst(s)
Us(ys) Core(s)

and the total profit of user s is:

Us(ys) — Ys Cj;i((g

where C¢ is the average cost induced by flows going from i to d per unit flow. This value can
be estimated using the same fixpoint procedure as cf with the substitution of Ce(z¢)/ze for pe.
We also monitor the global (aggregate) cost, utility and profit, which are equivalent to Cr, Ur,
and Ur — Cr, respectively.

We need to emphasize that using this methodology we cannot simulate any packet-level
events, thus packet-driven algorithms, e.g. Q-routing could only be approximated. But as we
indicated, our intention is not to perform a comparative evaluation, but instead demonstrate

the feasibility and study the optimal state.

6.2 Scenario

A simulation scenario is defined by the network topology and user configuration. The topology
comprises the set of nodes and links, each described with a cost function C.. We use a common
cost function for all links, parametrized by the link’s bandwidth and latency. The user configu-
ration is just a set of source, destination, and utility function triples. We use a common utility
function for all users, which can be optionally weighted.

The network topologies for simulation are generated using Tiers [Doa96]. It is a structure-
based generator that is capable of generating 3-tier hierarchical networks (WAN/MAN/LAN).
However, for the purpose of this evaluation we generate flat networks (WAN-only) and choose
arbitrarily to use common bandwidth of 10kbps (1e4 bps) and latency of 10ms for all links. The
links are bidirectional. The topology used in the experiments is shown in Fig. 6.1.

For our evaluation, we choose the cost function to reflect experienced delays incurred by the
load. The cost function in use is based on M/M/1 model [Kle76]:

Ce(ze) = ze <1 + Lat(e))

Cap(e) — z
where Cap(e) is the capacity of link e interpreted as maximum allowed flow rate (i.e. available
bandwidth), and Lat(e) is the fixed latency component due to propagation delay. A plot of the
resulting cost function is shown on Fig. 6.2. Clearly, under low load stress, the cost is virtually
linear. Therefore, it is expected that, when user rates are low, the routing converges to cheapest
paths, which in our setting is equivalent to shortest hop—count.

As for the utility, logarithm function is employed in favour of proportional fairness. The

utility function in use is thus:

Us(ys) = w lg ys

71

Chapter 6. Algorithm Evaluation 6.2. Scenario

Figure 6.1: The flat network topology, generated using Tiers, used in the simulation.

All links are bidirectional of capacity 10kbps and propagation latency 10ms.

200
180
160
140
120
100

cost

80
60
40
20

0 2000 4000 6000 8000 10000
z [bps]

Figure 6.2: The plot of the link cost vs. load. Also plotted is the cost component

incurred by load-independent propagation latency, which is dominant until the load

approaches capacity.

72

Chapter 6. Algorithm Evaluation 6.3. Experiments

01l . | | | | hl
! | marg. cost
! | marg. utility, w=10 -----
| marg. utility, w=100 ------
0.08 -l‘ -
2
S 006 | -
@
o
o
= |
% 004 |\ -
g \
€
0.02 | -
0 it | ittt toooo oo I =
0 2000 4000 6000 8000 10000

y=2 [bps]

Figure 6.3: The marginal utility and cost in a single-user-single-resource (z = y)
configuration. The crossing point marks the optimal rate and zero marginal profit
U'(y) — C’'(z). The weight w controls how rewarding it is to increase the rate. Increas-

ing w drives the system towards higher rate.

The positive weight w is used to control the interest in high throughput vs. small cost. The
higher w is, the more rewarding it is to increase the rates. Figure 6.3 illustrates the impact of
w in a single-user-single-resource configuration. Hence, using w we can drive the system into
higher rates and toward saturation, which could be desiarble if capacity utilization was one of

the primary goals.

6.3 Experiments

The main purpose of the experiments is to illustrate the operation of the joint algorithm, and
the properties of the resulting allocation. The network topology used in simulations is illustrated
in Fig. 6.1. A configuration of streams (sources, destinations and weights) is selected to expose

the discussed concepts.

6.3.1 Phased vs. concurrent operation

First, we show how the algorithm converges to a global stable state when the two sub-procedures

are run jointly. In section 5.3.4, we consider two variants of joint operation:
e phased - let one procedure converge before running the other

e concurrent - run the procedures together, i.e. both perform adjustment steps in every

iteration

Since the algorithms are basically gradient—driven, it is reasonable to consider them as converged
for practical purposes when the individual adjustments yield unnoticeable improvement in the
global performance function. Recall that the flow rates are initialized to small values and the

routing is initialized to uniformly random. We start the phased algorithm with rate adaptation,

73

Chapter 6. Algorithm Evaluation 6.3. Experiments

although this seems less reasonable than to optimize the routing first, to enhance illustrational
value.

The utility /cost weight and adaptation gain factors are set to:

w 1.0
a | 20.0
B 1.0

and the configuration of streams for this particular experiment is:

src — dst
3 10
6 4
8 12
9 18

The results are plotted in Fig. 6.4. Certainly, under phased operation, when rates are
adjusted and increased, then the total cost, utility and profit increase as well. But when the
routes are adjusted, then the total cost drops, the utility remains unchanged (as the rates are
fixed), and the overall profit improves. This marks the phases on the plots. The phased algorithm
evidently needs to visit several local optima until it reaches the goal. In the next subsection, we
will explain the reasons behind that.

Under concurrent operation, all performance characteristics increase at a steady rate. Clearly,
both algorithms are converging to the same stable performance state. In fact, the resulting rate
allocations are also nearby. Obviously, the concurrent operation is both more practical and
advantageous than the phased method. These convergence results practically confirm our theo-

retical considerations in Chapter 5.

6.3.2 Optimal routing vs. demand

The phased algorithm visits several local optima before it can reach the goal. The reason behind
this is the fact that the optimal routing varies with the user demand. We first demonstrate this
behaviour and subsequently explain it.

Using the same topology as before, we set up a single user 19 — 18 which rate we control
manually. We set the rate to 1e2 and le4 and compute the optimal routing. Recall that the
capacity of each link is 1e4, thus it would be impossible to satisfy the high demand using a single
path within a finite cost. The results are shown in Fig. 6.5. Under the small load, the routing
is same as shortest path using equal-cost paths in equal proportions. Under the high load, the
flow is forked over a variety of paths including up to 5-hop detours.

In general, the higher the demand, the more likely the routing will span multiple paths. At
a small load, the cost function is basically linear as shown in Fig. 6.2. As expected, the optimal
routing collapses to cheapest paths with Lat as the link metric. Since Lat is equal for all links,
this actually gives shortest paths, but such that breaks ties in equal proportions. As the load
increases, it is more likely that a longer (in terms of total Lat or hop—count) but less loaded

path will offer smaller cost than a shorter one but congested.

74

Chapter 6. Algorithm Evaluation

6.3. Experiments

4r l l l l l l l l hl
phased ——
concurrent ------ _
@
2 -
o
1)
400 450
1 1 1 | A
phased
concurrent ------
2 -
5
10 -
5 = -
0 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450
iteration
+ + + + phased' i
concurrent ------
%
s
10 -
5 - -
0 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450

iteration

Figure 6.4: A comparison of phased and concurrent methods. From the top: total

cost, total utility and total profit. Distinct phases of the phased method are visible:

when rates are constant, only routes are adjusted. The two methods converge to the

same stable state.

75

Chapter 6. Algorithm Evaluation 6.3. Experiments

@3 @10

o7

@9

@016
®3

[]

@16
®3

Figure 6.5: The optimal routing of flow 19 — 18 at rate le2 (top) and le4 (bottom).
The labels and colour intensity show what fraction of the flow is routed across each

link. Unlabeled gray links are unused.

76

Chapter 6. Algorithm Evaluation 6.3. Experiments

This equal tie-breaking behaviour is due to the fact, that the cost function is strictly convex
though approximately linear. In section 2.2.2, we have discussed how strictly convex functions
are advantageous over linear functions for performance evaluation. In section 3.3.2, we have

shown that if the cost functions were linear, then ties would be broken in any proportion.

6.3.3 Fairness and load balancing

Fairness and load balancing are the principles that led us to the formulation of the objective
stated in Chapter 3. The utility and cost functions in our scenario are strictly concave/convex
which helps enforce the principles. We have already shown in the previous subsection how load
balancing is achieved. Now, we shall illustrate the quasi-proportional fairness that results from
the system objective.

The user setup consists of two flows: 8 — 2 and 16 — 1. The resulting optimal allocation
is shown in Fig. 6.6. Both flows have at least two equal-length sub-paths available, e.g. 8 — 14
through 17 or 15. However, due to the convexity of the cost function, the flows tend to separate
their paths.

Note that the flow rates are close but not the same. This is due to the fact that flow 16 — 1
has a little bit more resources available in the form of two path segments 2 — 1. Therefore, its
marginal cost is less and it can "afford" higher throughput. The two subject flows, when run
individually, achieve the rates of 1.37e3 and 1.2e3 respectively. Thus, the relative proportion
between them is somewhat preserved.

Introduction of another flow, 10 — 11, forces 16 — 1 into a single path via node 15, and
yields rates of 1.2e3, 1.09e3, 1.57e3 for 8 — 2, 16 — 1 and 10 — 11, respectively. This new flow
can use fewer links and therefore is priced less. This, however, costs the old flows some of their
allocation. In this way, the allocation that results from profit—driven performance optimization
is sensitive to the costs incurred by users (unlike absolute or max-min fairness), but at the same
time respects the concave utility functions that give revenue in reverse proportion to the benefits

already gained.

6.3.4 Utility vs. cost

Up to now, we used w = 1. In Fig. 6.2, it is illustrated how w can be used to drive a single-
user-single-resource system from underutilization to saturation. Now, we shall study it in a
multi-commodity network.

Using the same set of flows as in the previous section we set w to 1, 10, and 100, and observe
the load on the links. The results are shown in Fig. 6.7. As expected, the loads approach the
capacity as w is increased. Hence, manipulating the global weight w is a relatively simple way to
control the balance of preference of high throughput against low utilization. The main drawback
is that this weight is common for all users and resources, which reduces its potential, but we use

it here mainly for illustational purposes.

7

Chapter 6. Algorithm Evaluation 6.3. Experiments

®10
o13 N
®
ol
o
e
o138
1
o 2
3 ®10
Y%
®19
®
®
7
» o1
e
o138
CYH
pa .

Figure 6.6: The optimal routing of flow 8 — 2 at the rate of 1.3e3 (top) and flow
16 — 1 at the rate of 1.13e3. The labels and colour intensity show what fraction of
the flow is routed across each link. Unlabeled gray links are unused. Both fairness

and load balancing is exposed.

78

Chapter 6. Algorithm Evaluation 6.3. Experiments

®9

@3

®9

®3

®9

@3

Figure 6.7: Link loads under optimal routing of flows 8 — 2, 16 — 1 and 10 — 11,
using w =1 (top), w = 10 (middle), and w = 100 (bottom). The link capacity is led.
The labels and colour intensity show the link load (in bps). The maximum link load

in the three cases is 2.72e3, 5.67¢e3, and 8.27e3, respectively.

79

Chapter 6. Algorithm Evaluation 6.3. Experiments

6.3.5 Selfishness

Interestingly, in the experiment described above we observed that, under high demand the routes
have more in common than under low demand. As mentioned earlier, at w = 1 we had two
of the flows use single paths only, while at w = 100 we observe a large overlap between the
routes. See Fig. 6.8 for illustration. Let us point out, that since these flows have different
destinations, it would be possible to rearrange the routing to reduce the overlap yet maintain
the same incurred costs for each flow. However, this would be quite an unexpected behaviour
from non—cooperative routers. Recall from section 2.2.3 that the Wardrop equilibrium that is

aimed for, actually assumes, that no one else changes his decision in our favour.

6.3.6 Convergence issues

For the purpose of evaluation at w = 100 we had to reduce both gain factors, but mostly 3 that
controls route adaptation. Weighing the utility high directly effects the marginal utility and the
adjustment step size. If this size is larger than the remaining bandwidth, then the algorithm
may accidentally leave the allowed space of z. < Cap(e). Further, large gains may catch the
procedures in endless oscillations around the locally optimal value. This is certainly undesirable.
We discuss these issues here. Using the same topology and stream configuration as before, and
w = 10, we experiment with various settings of gain factors o and (.

First, we set a = 100 and # = 1, which we subsequently reduce to achieve convergence. The
resulting history of rates, costs, and total profit is shown in Fig. 6.9. Oscillations, especially
in costs, are visible, although the total profit exhibits changes of less than 2%. We eventually
achieve convergence for § = 0.3, but actually when we used § = 0.3 from the beginning,
the algorithm converged after the first 30 iterations. Also, reducing o would not prevent the
oscillations, as we observed them even at @ = 1. Furthermore, when we used w = 5 the
algorithm easily converged for 3 = 1, but as we pointed out earlier we change the resulting
optimal allocation when change w. We conclude that these oscillations are due to routing
adjustment procedure. However, when we applied 8 = 0.01, the algorithm fell into a different
kind of oscillations, illustrated in Fig. 6.10. The high variations occur initially, but later fade
out. These oscillations are due to the rate adjustment procedure driven with high gain. We can
observe them for low (3, because this slows the routing adaptation down. As the marginal costs
increase with iterations, the rate control algorithm uses smaller steps and eventually converges.

To sum up, the experiments reveal how setting the gain factors too high leads to two kinds
of oscillations, one due to zig—zagging routing algorithm and the other due to zig-zagging rate
control algorithm. To prevent these oscillations, we need to use moderate gain factors, bearing
in mind, that this slows convergence down. Reasoning from the research done by others, we
expect that the upper bound of values that guarantee convergence will be decreasing as update
delay increase [JT00,KV05]. The longer the delays, the larger the mis—estimation of a single

step can be.

80

Chapter 6. Algorithm Evaluation 6.3. Experiments

@9
[313
o3
o3 @10
@9
o3
®13
.U\)f‘f‘&fq
o >87r 82
@3
o7
®19 @4
@0
@9
[JI
s
@16 e17 o1
o3
13
o2

Figure 6.8: The optimal routing of flows 8 — 2, 16 — 1 and 10 — 11, using w = 100.
The flow rates are 8.2e3, 7.4e3, and 8.5e3 respectively The labels and colour intensity
show what fraction of the flow is routed across each link. Substantial overlap between
the routes of different flows can be observed. The flows have no strong incentive to

separate their routes when they are given the same choice of routes as others.

81

Chapter 6. Algorithm Evaluation 6.3. Experiments

70 [1 8>12 —
i i 1 16>1 -
6.5 10>11 --
6.0 [T
55 T
50 T
45 T
40 [T
c
035 4
S - -
t 3.0
257 T
20 T
15[T
10 T
05 [T
0.0 L 4
L L L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
iteration
x10°3
T T T T T T T T T T T T T T T T
8>12 —
55 4 16>1
10>11 --
50 T
45 1
40 [T
f
I35 1
o
w3.0 [4
r25[7
a
120 1
e
15[T
1.0 T
05 [4
0.0 L 4
L L L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
iteration
x102
250 F T T T T T T T T —
245]
240]
235 [1
(230 [1
0225 1
t - .
2220
215 1
p 210 1
"205 [1
o
f 2.00 [1
"195 1
t
1.90 [1
185 [1
1.80 [1
175 L 1 L L L | L L L -
0 10 20 30 40 50 60 70 80
iteration

Figure 6.9: Convergence for w = 10, a = 100. Initially, 8 = 1, after 30 iterations,
we set 3 = 0.5, and after another 30 iterations, we set S = 0.3. The smaller the

oscillations, the higher the rates and profit.

82

Chapter 6. Algorithm Evaluation

6.3. Experiments

18

16 [

14 r

127

~®n o o0

10

1 8>12 —
16>1 o
l10>11 --

15 20 25 30 35 40

iteration

8>12 —
16>1 o
110>11 --

15 20 25 30 35 40

iteration

Figure 6.10: Convergence of individual costs and flow rates for w = 10, o = 100,
(= 0.01. The initial oscillations fade out.

83

Chapter 7

Conclusion

This thesis is focused around the problem of resource sharing in packet networks. Our task is
to define a tunable, adaptive mechanism that deals with the dynamics of both user demand
and resource capacity, and improves the satisfaction of users from both quantity and quality of
service. The aim is to account for both fairness and load balancing, and employ both aspects
of resource sharing: dynamic routing and load control. It is postulated to overcome traditional
layer separation and define a global performance goal.

In the thesis we fulfil the tasks. We propose to use a global objective function, well-studied
in the context of both road traffic and network communications, that combines the features of
utility maximization and cost minimization. The benefits of using concave utility functions and

convex cost functions are two—fold:
e such functions improve the balance of user rates and resource loads

e the optimization problem is convex and can be solved with simple means including a

composition of well-known techniques

We show that such objective can be attained by a joint algorithm composed of stochastic
routing and rate control. The two sub-procedures are glued together using a common marginal
cost metric. This is an important result, because it suggests that a well-defined global perfor-
mance objective can be formulated, if the adaptive mechanisms already commonly implemented
in the IP stack shared the cost metric. Further, we show that these mechanisms, if properly
designed, will converge when run concurrently.

Aside from the theoretical analysis of the goals, we discuss several existing implementations
of the two sub-procedures, and also discuss implementation issues of a joint algorithm. Many
problems are briefly outlined, and some are left open. At this stage we focus on the pure concept
as a promising research direction.

Although run under idealized conditions, the numerical evaluation confirms our theoretical

analysis with respect to joint convergence and demonstrates that the chosen global objective

84

Chapter 7. Conclusion

is a versatile and tunable tool to ensure both fairness among users and load balancing across
resources.

Many issues connected to the proposed scheme remain open. Clearly, the proposed algo-
rithms need to be tailored for practical implementation. The chosen cost update method will
be essential to the performance of the algorithm in real-world deployment. Specifically, if the
algorithm converged slowly, then continuous loop-freedom would be desired. A comparative
performance evaluation of several schemes would aid the choice of the best fit methods.

Also, the joint algorithm needs to be enhanced to deal with propagation and update delays
omitted in the continuous model, but inherent to any practical update scheme. Theoretical
analysis and a more accurate evaluation using a discrete simulator like ns-2 [NS| is needed.

Further, concrete methods to obtain the marginal cost estimates from link load observation
need to be developed or selected from the existent solutions. However, these are very domain—
specific, and it is reasonable that they are left out of the scope of this thesis. For example, in
the quickly evolving area of stationary wireless mesh networks, where it might be beneficial to
employ our joint scheme, the cost due to load is associated with a collision domain that spans
multiple links. The links that are located within a single contention area, interfere with each
other and actually share the available bandwidth. We ought to bear in mind, however, that the
choice of the appropriate resource cost function is up to the network designer, and constitutes a

tool to regulate the flow behaviour.

85

Appendix A

Proofs for Chapter 3

Proof of Lemma 3.2. We show how to translate any feasible allocation zs. to one that yields
the same ys and z. but also conforms to (3.2) for some pg{j. The intuition for the translation
is that it does not really matter what route each user flow takes, but rather how the total load
incoming at a node is split among its outgoing links. In fact, the link load incurred by flows
addressed to a particular destination will also be preserved. Let us denote by z¢ the part of 2.

incurred by flows addressed to d, and state that:

d _
Zij = Z Ls,(i,5)

s:dst(s)=d

d
Zij = E Zi.j
d

We can apply to the per—flow allocation the notation introduced for stochastic routing (3.3)-
(3.4). Let us compute the total load that enters node ¢ and that node 7 needs to route to a

particular destination d:

Tzd = Z Ys

s:sre(s)=i,dst(s)=d

=" > wapn= %

s:dst(s)=d J J

Since we want to preserve the total load per-destination (r?,t%, 2¢), for the new allocation we
use the same y, for source rates and match the implied routing proportions by selecting:

d
Zij . Zs:dst(s):d Ls,(4,5)

tg - Zs:dst(s):d Zk Ts,(i,k)

d _
Pij =

The normalization conditions, p‘ij >0, pij =0 and Zj pgj = 1 hold. Using (3.1), we can write:
d d
Zij =) Dist
d

d d d d 4d d
t= zfi+ri= pfit]+ri
j j

86

Appendix A. Proofs for Chapter 3

It follows that the loads resulting from the stochastic allocation using p are given by the very

same equations and therefore they are the same. O

Proof of Theorem 3.2.

oCT
N =T =
! 37“?
0
FONIEE

= ZkCJ, Zjk) or dzpf,kfz
Js

ot

J
- Zujkpjka d
7,k

otd
— J d
=2 ord > Pikkip)
J vk
And we have obtained by (3.9):

d
ot

and by (3.10):
d d d
¢ = Z%j ij,kﬂj,k =
j k
d d
=D _di, ij,kﬂjvk =
J

otd
- Za d ijk'uﬂ»

O]

Proof of Theorem 3.4. Since the problem is convex, and the optimum cannot occur at ys; = 0,

the global objective is at optimum when

= o <ZU (ys) Zcecze)) -

SES eckE

aCr

= U;(Z/s) -
~ Ul - T~

(
B 2 _ydst(s)
- Us (ys) A)

87

Bibliography

[AA03]

[ABKMO1]

[Agn76]

[BGY2]

[BGGS4]

[BKO03]

[BL94]

[BMW356]

[BNOO3]

[Bra68]

[CABMO3]

E. Anderson and T. Anderson. On the stability of adaptive routing in the presence
of congestion control. In Proceedings of INFOCOM, San Fransisco, April 2003.

David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris.
Resilient overlay networks. In Symposium on Operating Systems Principles, pages
131-145, 2001.

C. Agnew. On quadratic adaptive routing algorithms. Communications of ACM,
19(1):18-22, 1976.

D. P. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 2nd edition, 1992.

D.P. Bertsekas, E.M. Gafni, and R.G. Gallager. Second derivative algorithms for
minimum delay distributed routing in networks. IEEE Transactions on Communi-

cations, 8:911-919, August 1984.

V. Borkar and P. Kumar. Dynamic cesaro-wardrop equilibration in networks. IEEE
Transactions on Automatic Control, 3(48):382-396, March 2003.

Justin A. Boyan and Michael L. Littman. Packet routing in dynamically changing
networks: A reinforcement learning approach. In Jack D. Cowan, Gerald Tesauro,
and Joshua Alspector, editors, Advances in Neural Information Processing Systems,

volume 6, pages 671-678. Morgan Kaufmann Publishers, Inc., 1994.

M. Beckmann, C.B. McGuire, and C.B. Winsten. Studies in the economics of trans-

portation. In Cowles Commission Monograph. Yale University Press, 1956.

Dimitri P. Bertsekas, Angelia Nedic, and Asuman E. Ozdaglar. Conver Analysis and
Optimization. Athena Scientific, April 2003.

D. Braess. Uber ein paradoxen der verkehrsplannung. Unternehmens-forschung,
12:258-268, 1968.

Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high-
throughput path metric for multi-hop wireless routing. In Proceedings of MobiCom,
pages 134-146, New York, NY, USA, 2003. ACM Press.

88

Bibliography Bibliography

[CAT90]

[CCS96]

[CD97|

[CDYS)

[CFSKO04|

[Chi04]

[CI89]

[Col9g]

[DHKO4]

[DKS89]

[Doa96]

[DPZ04]

[DS04]

[ELR 96|

C.G. Cassandras, M. V. Abidi, and D. Towsley. Distributed routing with on—line
marginal delay estimation. [EEE Transactions on Communications, 38(3), March
1990.

I. Castineyra, N. Chiappa, and M. Steenstrup. The nimrod routing architecture.
RFC1992, August 1996.

G. Di Caro and M. Dorigo. AntNet: a mobile agents approach to adaptive routing.
Technical Report IRIDIA /97-12, Université Libre de Bruxelles, Belgium, 1997.

Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic control for
communications networks. Journal of Artificial Intelligence Research, 9:317-365,
1998.

Byung-Gon Chun, Rodrigo Fonseca, lon Stoica, and John Kubiatowicz. Character-
izing selfishly constructed overlay networks. In Proceedings of (INFOCOM), Hong
Kong, 2004.

M. Chiang. To layer or not to layer: balancing transport and physical layers in
wireless multihop networks. In Proceedings of INFOCOM, Hong Kong, China, March
2004.

D.M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for con-
gestion avoidance in computer networks. Computer Networks and ISDN Systems,
17(1):1-14, June 1989.

A. Collins. The detour framework for packet rerouting. Master’s thesis, University
of Washington, October 1998.

Gareth Davies, Michael Hardt, and Frank Kelly. Network dimensioning, service

costing and pricing in a packet switched environment. Telecommunications Policy,

28:391-412, 2004.

A. Demers, S. Keshav, and S. Shenker. Analysis and similation of a fair queueing
algorithm. In Proceedings of SIGCOMM, volume 19, pages 1-12, September 1989.

B. Doar. A better model for generating test networks. In Proceedings of Global
Internet, November 1996.

R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh
network. In Proceedings of MOBICOM, 2004.

Marco Dorigo and Thomas Stiitzle. Ant Colony Optimization. MIT Press, 2004.

D. Estrin, T. Li, Y. Rekhter, K. Varadhan, and D. Zappala. Source demand routing.
RFC1940, May 1996.

89

Bibliography Bibliography

[FBRT04]

[Gal77]

[GK97]

[GK99]

[GLABYS|

[Gol80]

[GSK04]

[Hed88)

[HIB04]

[FIMS85]

[Jai90]

[TMBO1]

[JT00]

Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Kobus
van der Merwe. The Case for Separating Routing from Routers. In ACM SIG-
COMM Workshop on Future Directions in Network Architecture (FDNA), Portland,
OR, September 2004.

R.G. Gallager. A minimum delay routing algorithm using distributed computation.
IEEE Transactions on Communications, 1:73-85, October 1977.

P. Gupta and P. R. Kumar. A system and traffic dependent adaptive routing algo-
rithm for ad hoc networks. In Proceedings of IEEE Decision and Control, 1997.

R.J. Gibbens and F. Kelly. Resource pricing and the evolution of congestion control.
Automatica, 35:1969-1985, 1999.

J. Garcia-Luna-Aceves and J. Behrens. Distributed, scalable routing based on vectors
of link states. IEEE Journal on Selected Areas in Communications, 13(8):1383-1395,
October 1995.

S.J. Golestani. A unified theory of flow control and routing in data communication
networks. PhD thesis, MIT, Cambridge, MA, 1980.

Violeta Gambiroza, Bahareh Sadeghi, and Edward W. Knightly. End-to-end per-
formance and fairness in multihop wireless backhaul networks. In Proceedings of

MobiCom, pages 287-301, New York, NY, USA, 2004. ACM Press.

C.L. Hedrick. Routing Information Protocol. RFC 1058 (Historic), June 1988.
Updated by RFCs 1388, 1723.

Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating congestion in wireless
sensor networks. In SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 134-147, New York, NY, USA, 2004.
ACM Press.

A. Haurie and P. Marcotte. On the relationship between nash-cournot and wardrop
equilibria. Networks, 15:295-308, 1985.

Raj Jain. Congestion control in computer networks: issues and trends. IEEE Net-
work, pages 24-30, 1990.

D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source Routing Protocol
for Multihop Wireless Ad Hoc Networks, chapter 5, pages 139-172. Addison-Wesley,
2001.

Ramesh Johari and David Tan. End-to-end congestion control for the internet:
delays and stability. Technical Report 2000-2, Statistical Laboratory, University of
Cambridge, 2000.

90

Bibliography Bibliography

[Kel97]

[Kel03]

[Kes93]

[KESIT01]

[KHR02]

[Kle64]

[KleT6]

[KLMO96)

[KM97]

|[KMBL9

[KMTO8]

[KSTO1]

[KVO5]

[KVR95]|

F. Kelly. Charging and rate control for elastic traffic. Furopean Transactions on
Telecommunications, 8:33-37, 1997.

Frank Kelly. Fairness and stability of end-to-end congestion control. Furopean
Journal of Control, 9:159-176, 2003.

S. Keshav. A control-theoretic approach to flow control. Proceedings of the conference

on Communications architecture and protocols, pages 3-15, 1993.

I. Kassabalidis, M.A. El-Sharkawi, R.J. Marks II, P. Arabshahi, and A.A. Gray.

Swarm intelligence for routing in communication networks, November 2001.

Dina Katabi, Mark Handley, , and Charles Rohrs. Internet congestion control for
future high bandwidth-delay product environments. August 2002.

L. Kleinrock. Communication nets: stochastic message flow and delay. McGraw
Hill, 1964.

L. Kleinrock. Computer Applications, volume 2 of Queueing Systems. Wiley, 1976.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.

S. Kumar and R. Miikkulainen. Dual reinforcement g-routing: An on-line adaptive
routing algorithm. In Proceedings of the Artificial Neural Networks in Engineering
Conference, 1997.

Peter Key, Derek McAuley, Paul Barham, and Koenraad Lavens. Congestion pricing
for congestion avoidance. Technical Report MSR-TR-99-15, Microsoft Research, Feb
1999.

F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: Shadow
prices, proportional fairness and stability. Journal of the Operational Research So-
ciety, 49:237-252, 1998.

K. Kar, S. Sarkar, and L. Tassiulas. A simple rate control algorithm for maximizing
total user utility. In Proceedings of IEEE Conference on Computer Communications

(INFOCOM’01), 2001.

Frank Kelly and Thomas Voice. Stability of end-to-end algorithms for joint routing
and rate control. SIGCOMM Comput. Commun. Rev., 35(2):5-12, 2005.

Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. An efficient rate
allocation algorithm for ATM networks providing max-min fairness. In HPN, pages
143-154, 1995.

91

Bibliography Bibliography

[LA02

[LBBO4]

[LBS03)

[LOR*01]

[Mal9g]

[Mar03]

[Mas85]

[Moy89|

[MR99]

[Mye91]

[NS]
[Pig20]

[QYZS03]

[RB02]

[RBO3]

[RK04]

Richard J. La and Venkat Anantharam. Utility-based rate control in the internet
for elastic traffic. IEEE/ACM Transactions on Networking, 10(2):272-286, 2002.

S. Lee, S. Banerjee, and B. Bhattacharjee. The case for a multi-hop wireless local
area network. In Proceedings of INFOCOM, 2004.

S. Liu, T. Basar, and R. Srikant. Controlling the internet: A survey and some new

results. In Proceedings of IEEE Conference on Decision and Control, 2003.

Dean H. Lorenz, Ariel Orda, Danny Raz, , and Yuval Shavitt. How good can TP
routing be? Technical Report TR: 2001-17, DIMACS, 2001.

G. Malkin. RIP Version 2. RFC 2453 (Standard), November 1998.

Peter Markbach. Priority service and max-min fairness. IEEE/ACM Transactions
on Networking, 11, October 2003.

L. G. Mason. Equilibrium flows, routing patterns and algorithms for store-and-
forward networks. Large Scale Systems, 8:187-209, 1985.

J. Moy. OSPF specification. RFC 1131 (Proposed Standard), October 1989. Obso-
leted by RFC 1247.

Laurent Massoulie and James Roberts. Bandwidth sharing: Objectives and algo-
rithms. In Proceedings of IEEE INFOCOM (3), pages 1395-1403, March 1999.

Roger B. Myerson. Game theory: analysis of conflict. Harvard University Press,
1991.

The network simulator - ns-2. http://www.isi.edu/nsnam /ns.
A.C. Pigou. The economics of welfare. MacMillan, London, England, 1920.

Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On selfish routing
in internet-like environments. In Proceedings of SIGCOMM, All ACM Conferences,
pages 151-162, Karlsruhe, Germany, august 2003. ACM.

Bozidar Radunovic and Jean-Yves Le Boudec. A unified framework for max-min and
min-max fairness with applications. Technical report, I & C School of Computer and

Communication Sciences, 2002.

Bozidar Radunovic and Jean-Yves Le Boudec. Rate performance objectives of multi-
hop wireless networks. Technical report, I & C School of Computer and Communi-

cation Sciences, June 2003.

Vivek Raghunathan and P. R. Kumar. A wardrop routing protocol for wireless
networks. In Proceedings of IEEE CDC, 2004.

92

Bibliography Bibliography

[RMOS]

[Rou02]

[RT00]

[SBOS]

[SDC97]

[Seg77]

[SK91]

[TGSEO01]

[TKL*04]

[TS02]

[VGLA9)

[VGLAOI]

[Voi04]

[Wan03]

[War52]

J.W. Roberts and L. Massoulié. Bandwidth sharing and admission control for elastic
traffic. In Proceedings of ITC Specialist Seminar, Yokohama, October 1998.

T. Roughgarden. Selfish Routing. PhD thesis, Cornell University, May 2002.

Tim Roughgarden and Eva Tardos. How bad is selfish routing? In IEEE Symposium
on Foundations of Computer Science, pages 93-102, 2000.

R.S. Sutton and A.G. Barto. Reinforcement learning: an introduction. MIT Press,
March 1998.

Devika Subramanian, Peter Druschel, and Johnny Chen. Ants and reinforcement
learning: A case study in routing in dynamic networks. In IJCAI (2), pages 832—
839, 1997.

A. Segall. The modelling of adaptive routing in data—communication networks. IEEFE

Transactions on Communications, 1:85-95, October 1977.

T.J. Socolofsky and C.J. Kale. TCP/IP tutorial. RFC 1180 (Informational), January
1991.

Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and Deborah Estrin.
The impact of routing policy on internet paths. In Proceedings of INFOCOM, pages
736-742, 2001.

T.Guven, C. Kommareddy, R. La, M.A. Shayman, and B. Bhattacharjee. Measure-
ment based optimal multi-path routing. In Proceedings of INFOCOM, 2004.

L. Tassiulas and S. Sarkar. Maxmin fair scheduling in wireless networks. In Proceed-
ings of INFOCOM, volume 10, pages 320-328, June 2002.

Srinivas Vutukury and J. J. Garcia-Luna-Aceves. A simple approximation to
minimum-delay routing. In Proceedings of SIGCOMM, pages 227-238, 1999.

Srinivas Vutukury and J. J. Garcia-Luna-Aceves. MDVA: A distance-vector multi-
path routing protocol. In Proceedings of INFOCOM, pages 557-564, 2001.

Thomas Voice. A global stability result for primal-dual congestion control algorithms
with routing. ACM SIGCOMM, 34(3), July 2004.

Jun Wang. Load Balancing In Hop-By-Hop Routing With And Without Traffic Split-
ting. PhD thesis, University of Illinois at Urbana-Champaign, October 2003.

J.G. Wardrop. Some theoretical aspects of road traffic research. In Proceedings of

the Institution of Civil Engineers, volume 1, pages 325-378, 1952.

93

Bibliography Bibliography

[WC92] 7. Wang and J. Crowcroft. Analysis of shortest-path routing algorithms in a dynamic
network environment. ACM SIGCOMM CCR, 22, 2:63-71, 1992.

[WECO03] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T. Campbell. Coda: congestion
detection and avoidance in sensor networks. In SenSys ’03: Proceedings of the 1st
international conference on Embedded networked sensor systems, pages 266—279, New
York, NY, USA, 2003. ACM Press.

[XQYZ04] Haiyong Xie, Lili Qiu, Yang Richard Yang, and Yin Zhang. On self adaptive routing
in dynamic environments — an evaluation and design using a simple, probabilis-
tic scheme. Technical Report YALEU/DCS/TR1289, Computer Science Depart-
ment,Yale University, May 2004.

94

