HGum: Messaging Framework for Hardware Accelerators

Sizhuo Zhang (szzhang@mit.edu MIT), Hari Angepat (Hari.Angepat@microsoft.com Microsoft),
Derek Chiou (dechiou@microsoft.com Microsoft)

Background

Messaging between two SW programs on two machines
Network transfer (e.g. Ethernet) is handled by libraries
Still need to encode data structure into binary format
Writing Ser/Des functions is tedious and error-prone

Software messaging framework

Describe message schema (format) in an Interface
Definition Language (IDL)

Automatically generate Ser/Des functions

User Program
Data Structure

Serialization

Network Interface

v Physical IO

i

Message Schema
in IDL

Receiver

Code
Generator

B

User Program

Data Structure

Deserialization

Network Interface

> Physical 10

A

Framework Overview (cont.)

Serialization: token (without tag) stream to phit stream
Each message corresponds to a fixed token stream

Example: List has 1 element and Array has 2 elements

Schema in C++ Token Stream

struct Msg { (1) a.list_begin

struct Tuple { (2) a[@].array_length
uInt32_tx; (3) afe][e].x (4) a[e][e].y
HINEeR_t s (5) a[el[1].x (6) a[@][1].y
E% t<Array<Tuple>> a; (7) ale].array_end

uiitS t E¥ Upies2> s (8) a.list end

;oo (9) b

Specify message schema and token tags in JSON

Schema in C++

struct Msg {
struct Tuple {
uint32 t x;
uinted t y;
}s

Schema in JSON
{"msg": [
["a",["List",["Array",
["Struct","Tuple"]]]11,

[IIXII’ :llBytesll,4]],

Token Tags in JSON

{"/a/start":"1",
"/a/elem/start":"2",
"/a/elem/elem/x":"3"
"/a/elem/elem/y":"4"
"/a/elem/end":"5",
"/a/end":"6",

“/b": 7"

J
J

Other Types of Messaging

HW-to-SW messaging: similar to SW-to-HW
HW serializes Array/List length after elements

SW deserializes from the end of the message

HW-to-HW messaging

Problem: List cannot be buffered on either side
-- Hard to know the number of elements in a List

Solution: cut List into frames (frame size is bounded)

HW serialization

-- Allocate on-chip buffer to store at least one frame
-- Each frame contains a header (frame size, ...)

-- Each List is ended with an empty frame

-- Frame header contains the level of nested Lists

HW deserialization: rely on frame header to determine
the next step in schema traversal

Evaluation: Clock Frequency and Area

List<Array<Tuple>> a;
Motivation }u1nt8-t b;

Complex schema with 3 levels of nested Arrays and Lists

Combination of SW-to-HW deserialization, HW-to-SW
serialization, and HW-to-HW serialization and deserialization

Synthesized on Altera Stratix V D5 FPGA
Clock frequency > 200MHz
Area: 5.5% logic, and 0.2% BRAM

Evaluation: Throughput

["y", ["Bytes™,8]]1] } |,

Hardware accelerators: talk to SW host and other HW

Microsoft Catapult: accelerate Bing Search with 7 FPGAs SW-to-HW Messaging

Also need a framework for generating Ser/Des functions
Unique challenges for HW messaging frameworks

What is the data structure for HW?

Limited on-chip buffer: must stream data

Ser/Des logic must be fast and small: never be bottleneck

Hardware (FPGA)

SW serialization: the whole message is buffered
Fixed-length data: directly encode it to binary
Structure: encode each field in order

Array/List: first encode the number of elements, then encode
all elements in order

Transfer Array and List of 128-bit element
SW 2> HW - HW - SW

Message Schema HW deserialization: stream processing

- in IDL _
—— Utser '—?9;0 = : X Option 1: generate an FSM based on schema 128-bit phit (network interface width)
dla ructure. 1oken ream
Ser o Desera o > Ge?]‘;?aetor -- Number of FSM states = number of fields in message Achieve near-optimal throughput when Array/List is long
Network Interface: FIFO (to stream data) v Option 2: algorithmically traverse schema to generate tokens Normalized throughpuk for Array {—Normalized faroughput for List
Hardware -- The number of FSM states is fixed, irrelevant to schema T el
""" or L. o . = y Eos: yd
Physical 10 «—— Software HW deserialization by algorithmically traversing schema E08 E /
Q. Q i
Schema can be represented by a tree (Structures are inlined) 2 Che
" " o M go;
Contribution -- Fixed length data: leaf nodes = S04
HGum: Messaging framework for HW accelerators -- Array/List: internal nodes 204 Q020
User specifies message schema in an IDL (JSON) Outputting tokens is similar to a pre-order traversal of the tree ool L 1 1 | ol I R .
1 2 8 32 128 512 2048 8192 1 2 8 32 128 512 2048 8192

Support complex data types

-- Fixed-length data

-- Structure

-- Array (length known before generating elements)

-- Subtree of an internal node needs to be traversed multiple
times (= the number of elements in the Array/List)
Tree traversal can be done using a stack and a fixed FSM

Schema in C++ Schema Tree

Array length (number of array elements) List length (number of array elements)

Evaluation: Real Case Study

Feature Extraction (FE): an important step of Bing Ranking
Being accelerated by Microsoft Catapult FPGA

struct Msg {
struct Tuple {

-- List (length unknown until all elements are generated)
-- Arbitrary nesting of above types

Root
— Complex SW-to-HW message schema

uint32_ t x; P
: - a (List) -1 b (Data) -» END
High throughput, high clock frequency, small area cost }‘fl”t64_t Y (¢) (Data) Ported FE to HGum framework ~ 1 man-week
L15t<Appay<Tup1e>> a; }](% Reduce 73% hand-written code for HW deserialization
ramewor verview uint8_t b; a[i][j]. x (Data) |- a[i][j].y (Data) 27% code is for adapting tokens to FE kernel interface

}s
HW deserialization microarchitecture: two stage pipeline
Control stage: traverse schema to determine token type

Deserialization: fixed-size data (phit) stream to token stream
Token: lowest-level field of the message structure

Same clock frequency, almost the same area
Measured performance using 3468 real requests

Output tokens are accompanied with user-specified tags FE is a blocking operation, so we measure latency

Data stage: consume phit stream . .
Message schema T J | P | | | Geometric mean of normalized latency: 1.05
struct Msg { = Schema tree is encoded into a ROM (with user-tag info) _ l l l
uintize ta, b5 ™ raoaor>—3y e o 5
uint32 t c; 3| [2] |1 'r - I o 14 :
o LG Control Stage || Schema . Traversing | | Stack | 2
ol gL} 2 | Tree (ROM) [FSM : =
Network _>§ S 5 —lizati § g g | User - ﬁ 192"
Interface | |S||o w 1S3 logic Command FIFO s
D X D (00) AN -
Q11 @ Data StageI ——————————————— F———- S
£ | | Phit Token | | “ - ' ' '
L c b a Phit Stream | —+— Token Stream 0 1000 2000 3000 4000
32-bit phit stream Token stream | Buffer Assembler |, Request ID

