
HGum: Messaging Framework for Hardware Accelerators

Background Framework Overview (cont.) Other Types of Messaging

Evaluation: Real Case Study

• Transfer Array and List of 128-bit element
• SW  HW  HW  SW
• 128-bit phit (network interface width)
• Achieve near-optimal throughput when Array/List is long

• HW-to-SW messaging: similar to SW-to-HW
• HW serializes Array/List length after elements
• SW deserializes from the end of the message

• HW-to-HW messaging
• Problem: List cannot be buffered on either side

-- Hard to know the number of elements in a List
• Solution: cut List into frames (frame size is bounded)
• HW serialization

-- Allocate on-chip buffer to store at least one frame
-- Each frame contains a header (frame size, …)
-- Each List is ended with an empty frame
-- Frame header contains the level of nested Lists

• HW deserialization: rely on frame header to determine
the next step in schema traversal

Contribution
• HGum: Messaging framework for HW accelerators

• User specifies message schema in an IDL (JSON)
• Support complex data types

-- Fixed-length data
-- Structure
-- Array (length known before generating elements)
-- List (length unknown until all elements are generated)
-- Arbitrary nesting of above types

• High throughput, high clock frequency, small area cost

Evaluation: Clock Frequency and Area
• Complex schema with 3 levels of nested Arrays and Lists
• Combination of SW-to-HW deserialization, HW-to-SW

serialization, and HW-to-HW serialization and deserialization
• Synthesized on Altera Stratix V D5 FPGA
• Clock frequency > 200MHz
• Area: 5.5% logic, and 0.2% BRAM

• Messaging between two SW programs on two machines
• Network transfer (e.g. Ethernet) is handled by libraries
• Still need to encode data structure into binary format
• Writing Ser/Des functions is tedious and error-prone

• Software messaging framework
• Describe message schema (format) in an Interface

Definition Language (IDL)
• Automatically generate Ser/Des functions

• Hardware accelerators: talk to SW host and other HW
• Microsoft Catapult: accelerate Bing Search with 7 FPGAs
• Also need a framework for generating Ser/Des functions

• Unique challenges for HW messaging frameworks
• What is the data structure for HW?
• Limited on-chip buffer: must stream data
• Ser/Des logic must be fast and small: never be bottleneck

Sizhuo Zhang (szzhang@mit.edu MIT), Hari Angepat (Hari.Angepat@microsoft.com Microsoft),
Derek Chiou (dechiou@microsoft.com Microsoft)

Sender
User Program
Data Structure
Serialization

Network Interface
……

Physical IO

Code
Generator

Message Schema
in IDL

Receiver
User Program
Data Structure
Deserialization

Network Interface
……

Physical IO

Motivation

Hardware (FPGA)
User Logic

Data Structure: Token Stream
Serialization/Deserialization

Network Interface: FIFO (to stream data)
……

Physical IO

Code
Generator

Message Schema
in IDL

Hardware
or

Software

• Deserialization: fixed-size data (phit) stream to token stream
• Token: lowest-level field of the message structure
• Output tokens are accompanied with user-specified tags

• Serialization: token (without tag) stream to phit stream
• Each message corresponds to a fixed token stream

• Example: List has 1 element and Array has 2 elements

Schema in C++ Schema in JSON Token Tags in JSON
struct Msg {
struct Tuple {
uint32_t x;
uint64_t y;

};
List<Array<Tuple>> a;
uint8_t b;

};

{"Msg":[
["a",["List",["Array",
["Struct","Tuple"]]]],

["b",["Bytes",1]]],
"Tuple":[

["x",["Bytes",4]],
["y",["Bytes",8]]] }

{"/a/start":"1",
"/a/elem/start":"2",
"/a/elem/elem/x":"3",
"/a/elem/elem/y":"4",
"/a/elem/end":"5",
"/a/end":"6",
"/b":"7"

}

32-bit phit stream Token stream

Deserialization0x1234

0xdeadbeef

0x5678

0xdeadbeef

0x5678

0x1234

Network
Interface

User
logic

Tags
Message schema

struct Msg {
uint16_t a, b;
uint32_t c;

};

c b a

2 13

Schema in C++ Token Stream
struct Msg {
struct Tuple {
uint32_t x;
uint64_t y;

};
List<Array<Tuple>> a;
uint8_t b;

};

SW-to-HW Messaging

Framework Overview

• Specify message schema and token tags in JSON

• SW serialization: the whole message is buffered
• Fixed-length data: directly encode it to binary
• Structure: encode each field in order
• Array/List: first encode the number of elements, then encode

all elements in order
• HW deserialization: stream processing

X Option 1: generate an FSM based on schema
-- Number of FSM states = number of fields in message

 Option 2: algorithmically traverse schema to generate tokens
-- The number of FSM states is fixed, irrelevant to schema

• HW deserialization by algorithmically traversing schema
• Schema can be represented by a tree (Structures are inlined)

-- Fixed length data: leaf nodes
-- Array/List: internal nodes

• Outputting tokens is similar to a pre-order traversal of the tree
-- Subtree of an internal node needs to be traversed multiple

times (= the number of elements in the Array/List)
• Tree traversal can be done using a stack and a fixed FSM

Root

ܽ (List) ܾ (Data)

ܽሾ݅ሿ (Array)

ܽ ݅ ݆ . ݔ (Data) ܽ ݅ ݆ . ݕ (Data)

END

Schema in C++ Schema Tree
struct Msg {
struct Tuple {
uint32_t x;
uint64_t y;

};
List<Array<Tuple>> a;
uint8_t b;

};

Control Stage

Data Stage

• HW deserialization microarchitecture: two stage pipeline
• Control stage: traverse schema to determine token type
• Data stage: consume phit stream
• Schema tree is encoded into a ROM (with user-tag info)

• Feature Extraction (FE): an important step of Bing Ranking
• Being accelerated by Microsoft Catapult FPGA
• Complex SW-to-HW message schema

• Ported FE to HGum framework ~ 1 man-week
• Reduce 73% hand-written code for HW deserialization

• 27% code is for adapting tokens to FE kernel interface
• Same clock frequency, almost the same area
• Measured performance using 3468 real requests

• FE is a blocking operation, so we measure latency
• Geometric mean of normalized latency: 1.05

Evaluation: Throughput

