
HGum: Messaging Framework for Hardware Accelerators

Background Framework Overview (cont.) Other Types of Messaging

Evaluation: Real Case Study

• Transfer Array and List of 128-bit element
• SW  HW  HW  SW 
• 128-bit phit (network interface width)
• Achieve near-optimal throughput when Array/List is long

• HW-to-SW messaging: similar to SW-to-HW
• HW serializes Array/List length after elements
• SW deserializes from the end of the message

• HW-to-HW messaging
• Problem: List cannot be buffered on either side

-- Hard to know the number of elements in a List
• Solution: cut List into frames (frame size is bounded)
• HW serialization

-- Allocate on-chip buffer to store at least one frame
-- Each frame contains a header (frame size, …)
-- Each List is ended with an empty frame
-- Frame header contains the level of nested Lists

• HW deserialization: rely on frame header to determine 
the next step in schema traversal

Contribution
• HGum: Messaging framework for HW accelerators

• User specifies message schema in an IDL (JSON)
• Support complex data types

-- Fixed-length data
-- Structure
-- Array (length known before generating elements)
-- List (length unknown until all elements are generated)
-- Arbitrary nesting of above types

• High throughput, high clock frequency, small area cost

Evaluation: Clock Frequency and Area
• Complex schema with 3 levels of nested Arrays and Lists
• Combination of SW-to-HW deserialization, HW-to-SW 

serialization, and HW-to-HW serialization and deserialization
• Synthesized on Altera Stratix V D5 FPGA
• Clock frequency > 200MHz
• Area: 5.5% logic, and 0.2% BRAM

• Messaging between two SW programs on two machines
• Network transfer (e.g. Ethernet) is handled by libraries
• Still need to encode data structure into binary format
• Writing Ser/Des functions is tedious and error-prone

• Software messaging framework
• Describe message schema (format) in an Interface 

Definition Language (IDL)
• Automatically generate Ser/Des functions

• Hardware accelerators: talk to SW host and other HW
• Microsoft Catapult: accelerate Bing Search with 7 FPGAs
• Also need a framework for generating Ser/Des functions

• Unique challenges for HW messaging frameworks
• What is the data structure for HW?
• Limited on-chip buffer: must stream data
• Ser/Des logic must be fast and small: never be bottleneck
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• Deserialization: fixed-size data (phit) stream to token stream
• Token: lowest-level field of the message structure
• Output tokens are accompanied with user-specified tags

• Serialization: token (without tag) stream to phit stream
• Each message corresponds to a fixed token stream

• Example: List has 1 element and Array has 2 elements

Schema in C++ Schema in JSON Token Tags in JSON
struct Msg {
struct Tuple {
uint32_t x;
uint64_t y;

};
List<Array<Tuple>> a;
uint8_t b;

};

{"Msg":[
["a",["List",["Array",
["Struct","Tuple"]]]],

["b",["Bytes",1]]],
"Tuple":[

["x",["Bytes",4]],
["y",["Bytes",8]]] }

{"/a/start":"1",
"/a/elem/start":"2",
"/a/elem/elem/x":"3",
"/a/elem/elem/y":"4",
"/a/elem/end":"5",
"/a/end":"6",
"/b":"7" 

}
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struct Msg {
uint16_t a, b;
uint32_t c; 

};
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2 13

Schema in C++ Token Stream
struct Msg {
struct Tuple {
uint32_t x;
uint64_t y;

};
List<Array<Tuple>> a;
uint8_t b;

};

SW-to-HW Messaging

Framework Overview

• Specify message schema and token tags in JSON

• SW serialization: the whole message is buffered
• Fixed-length data: directly encode it to binary
• Structure: encode each field in order
• Array/List: first encode the number of elements, then encode 

all elements in order
• HW deserialization: stream processing

X Option 1: generate an FSM based on schema
-- Number of FSM states = number of fields in message

 Option 2: algorithmically traverse schema to generate tokens
-- The number of FSM states is fixed, irrelevant to schema

• HW deserialization by algorithmically traversing schema
• Schema can be represented by a tree (Structures are inlined)

-- Fixed length data: leaf nodes
-- Array/List: internal nodes

• Outputting tokens is similar to a pre-order traversal of the tree
-- Subtree of an internal node needs to be traversed multiple

times (= the number of elements in the Array/List)
• Tree traversal can be done using a stack and a fixed FSM

Root

ܽ (List) ܾ (Data)

ܽሾ݅ሿ (Array)

ܽ ݅ ݆ . ݔ (Data) ܽ ݅ ݆ . ݕ (Data)

END

Schema in C++ Schema Tree
struct Msg {
struct Tuple {
uint32_t x;
uint64_t y;

};
List<Array<Tuple>> a;
uint8_t b;

};

Control Stage

Data Stage

• HW deserialization microarchitecture: two stage pipeline
• Control stage:  traverse schema to determine token type
• Data stage: consume phit stream
• Schema tree is encoded into a ROM (with user-tag info)

• Feature Extraction (FE): an important step of Bing Ranking
• Being accelerated by Microsoft Catapult FPGA
• Complex SW-to-HW message schema

• Ported FE to HGum framework ~ 1 man-week
• Reduce 73% hand-written code for HW deserialization

• 27% code is for adapting tokens to FE kernel interface
• Same clock frequency, almost the same area
• Measured performance using 3468 real requests

• FE is a blocking operation, so we measure latency
• Geometric mean of normalized latency: 1.05

Evaluation: Throughput


