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Abstract

This paper presents a novel framework to automati-
cally detect and label moles on skin images in the pres-
ence of clutters, occlusions, and varying imaging condi-
tions. The input image is processed with cascaded blocks
to successively discard non-mole pixels. Our method first
searches the entire input image for skin regions using a non-
parametric skin detection scheme, and the detected skin re-
gions are further processed using a difference of Gaussian
(DoG) filter to find possible mole candidates of varying
sizes. Mole candidates are classified as moles in the final
stage using a trained support vector machine. To increase
the mole classification accuracy, hair is removed if present
on the skin image using steerable filters and a graphical
model. Experimental results demonstrate a successful mole
localization in varying imaging conditions.

1. Introduction
An emerging application of computer vision is to assist

medical experts. A potential application ranges from a med-
ical image database management system to an automatic
disease diagnosis system [3, 5]. In this paper, a computer
vision-based mole localization system is introduced, which
can potentially be used in registering mole pattern changes
automatically.

Mole pattern changes are important cues in detecting
early signs of melanoma, a deadly skin cancer [5]. How-
ever, a principled system to count moles and record their
patterns is lacking at the present. In fact, a daily routine of
many dermatologists is to count moles and record changes
for every patient, which can be both time-consuming and
non-productive. The goal of the proposed system is to au-
tomate such routines to aid dermatologists.

While image processing techniques are extensively used
in classifying moles as either malignant or benign [16, 21],
quantifying mole patterns in a larger skin image has re-
ceived less attention [9, 15]. In Lee et al. [9], moles from
back torso images, taken under constrained imaging condi-
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Figure 1. Left: A skin region is detected from the input image to
reduce the computation and increase the reliability of the system.
If any hair is present in the detected skin region, steerable filters
are used to eliminate hair patterns. The hair removed image is fur-
ther processed with the mole detection block to localize the moles.
Right: Input - output image pair of the proposed system.

tions, are localized using meanshift clustering and heuris-
tic classification schemes. A related work by Pierrard and
Vetter [12] is aimed at detecting skin irregularities, such as
moles, for face recognition. Pierrard and Vetter modeled
moles as black dots (Laplacian of Gaussian) on the skin
surface, and classified the mole candidates using normal-
ized cross correlation and the proposed saliency measure.
While their approach is similar to ours in using scale-space
filters to locate mole candidates, they capture only salient
skin irregularities that are isolated from other irregularities.
This aspect differs from our goal in that we are to locate all
moles present in the image, not only the salient ones.

Our work extends upon Lee et al. to detect moles in skin
images other than that of back torso under varying imaging
conditions. A rich descriptor is used to classify moles using
a support vector machine. To enhance the performance of
the system, the input image is preprocessed to locate skin
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Figure 2. Skin color can be compactly localized in YCbCr color
space [7]. This figure shows the skin and non-skin color distribu-
tion in CbCr space; the distributions shown serve as prior informa-
tion about skin and non-skin pixels.

regions, and to remove hair if present in the detected skin
region. Section 2 describes the developed system, and the
purpose of each blocks.

2. Proposed System
Figure 1 shows a block diagram of the designed system.

The system is comprised of three blocks: a skin detection
block, a hair removal block, and a mole detection block.
Since the input image can contain objects other than the
skin surface, skin is detected to focus further image pro-
cessing only on skin regions. If the detected skin region
has hair patterns (user-specified), oriented filters are used to
eliminate the hair patterns. The skin detection and hair re-
moval steps reduce the computation and improve the mole
detection performance. The hair removed images are used
to locate possible mole candidates of different sizes using
difference-of-Gaussian (DoG) filters [11]. Mole candidates
are further classified as moles and non-moles using a trained
support vector machine (SVM). Figure 1 shows an input-
output pair of the skin image processed by the designed
system.

3. Non-parametric skin region detection
Many successful skin region detection schemes have

been proposed in literature [7, 8]; Vezhnevets et al. [18]
provides an excellent review on methods using skin color
as cues. However, many constraints are needed to use color
as a reliable information source. For example, skin color
can vary among races, and could vary even within the same
person depending on the skin region of interest and light-
ing conditions. Also note the fact that the false positive rate
could be high since many materials can have skin-like col-
ors.

Fortunately, an exact segmentation of skin is not needed
for our application: the subsequent image processing stages
can be used to discard data from non-skin regions. Thus,

our goal is to roughly estimate the skin area with small true
negatives. Among many proposed skin detection methods,
a non-parametric approach is taken since it’s hard to find
an adequate parametric representation of skin color data.
YCbCr color space is used to represent skin colors since
it’s known that CbCr space localizes skin colors [7]. Figure
2 shows the distribution of skin color in our dataset, along
with non-skin colors: skin color is confined in an elliptical
distribution. The color distribution from the dataset is used
as a prior skin color distribution. Note that it’s important to
have a representative skin dataset: we collected skin images
from the web to capture different skin colors under varying
lighting conditions. This tends to broaden the skin color
distribution (Figure 2) compared with that in [7].

The skin pixel classification is carried out using a
Neyman-Pearson hypothesis test: for a given pixel value
x and a threshold λ, classify the pixel as skin if the ratio
of probability being skin to probability being non-skin is
greater than λ. In equation,

PX/H1(x/H1)
PX/H0(x/H0)

≥ λ (1)

where H1 is a hypothesis that the pixel is skin and H0

is a hypothesis that the pixel is non-skin. Notice that
PX/H1(x/H1) and PX/H0(x/H0) are the color distribu-
tions from the dataset. λ can be used to vary the operating
point on the receiver operating characteristics (ROC) curve,
and in this implementation, λ is fixed to be 1.

Artifacts of using only the pixel values, and no regional
information, are salt-and-pepper type non-skin islands on
inferred skin regions. These are removed by applying me-
dian filters on the detected skin regions, which results in a
smooth skin mask. Another possible approach to remove
non-skin islands is to adaptively change lambda by look-
ing at neighboring pixels. The threshold can be reduced if
the neighboring pixels are classified as skin pixels and in-
creased if the neighboring pixels are classified as non-skin
pixels. However, the proposed adaptive scheme was not im-
plemented for simplicity. Figure 3 shows some skin detec-
tion results: note that false alarms exist.

4. Hair removal using steerable filters and a
graphical model

Hair can hinder a reliable mole detection, but we cannot
ask users to shave hair before using the mole localization
system. In this section, an image processing technique to re-
move hair patterns on skin images is described. There have
been a number of successful attempts to remove hair pat-
terns using a morphological erosion operator [10, 13], but
these algorithms require that the hair patterns are in-focus,
and the number of hair threads is small. Such constraints
are not suited for our application since input images will be
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Figure 3. The skin region is detected using the skin color density distribution in Figure 2. Note that skin is not perfectly segmented, but
this can be taken care of by the subsequent image processing stages.
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Figure 4. (a) Main idea behind the proposed hair removal scheme.
Hair structures have a high derivative response at a direction nor-
mal to the hair orientation. Therefore, oriented filters can be used
to extract out long hair-like structures. (b) The designed hair re-
moval system. Hair is removed by thresholding the maximum
magnitude of oriented derivative filters, and the skin image is re-
constructed using a graphical model.

of larger skin regions with many hair threads. The proposed
hair removal scheme solves this problem by using simple
oriented filter operations.

The basic observation behind the hair removal scheme
is that hair patterns have high frequency components nor-
mal to the orientation (Figure 4 (a).) Since hair patterns
can be oriented arbitrarily, a large number of oriented fil-
ters would be required to search for the maximum normal
derivative response at a given position. Once the maximum
derivative response is calculated across the whole image,

pixels with normal derivative magnitude greater than a cer-
tain threshold are classified as hair, and are discarded. The
mathmatical expression of the proposed operation is given
as the following:

log(max
φ

(Fφ(x))) ≥ ζ(im) (2)

where x is the intensity of the pixel, and Fφ is the magnitude
response of derivative filter with orientation φ. Note that ζ
is a function of the input image, and this will be explained
more in depth.

In our implementation, a steerable filter [4] is used to re-
duce the number of oriented filters to 3. Filters introduced
in [4] calculates the maximum derivative magnitude, as well
as the direction (φ) that gives the largest magnitude. To
enhance the distriminative power, the input image is adap-
tively histogram-equalized to accentuate the high frequency
component of the input image.

The log of the derivative filter response at direction nor-
mal to hair orientation is rasterized into a histogram, de-
noted H(x). This histogram apparently exhibits a normal
distribution, so ζ in (2) is determined by the first and sec-
ond order statistics of H(x).

ζ(im) = mean(H(x))− α× std(H(x)) (3)

Note that ζ is input image dependent. α is set to be 1 in this
implementation, but can be adjusted automatically using
machine learning techniques to account for the amount of
hair present. The thresholded image will be missing many
pixels: missing pixels are recovered by using a graphical
model with a smoothness prior.

A graphical model is a compact representation of how
multiple random variables interact with one another. If
we assume that the underlying statistical process is Marko-
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Figure 5. Only a windowed patch of J matrix is inverted for infer-
ence to reduce computational complexity. The blocky artifact of
the proposed scheme is suppressed by using only the center por-
tion of the interpolated patches.

vian and Gaussian, the graphical model is called a Gauss-
Markov Random Field (GMRF) model. In GMRF, the max-
imum aposteriori (MAP) estimates and Bayes’ least squares
estimates equal E[x|y]. Assuming that x is a vector of un-
derlying states, and y is a vector of observations through a
noisy channel such that y = Cx + v, where v ∼ N (0, R)
and C is the selection matrix,

x̂MAP = arg max p(x|y) = J−1h (4)

where J is an information matrix and h is a mean inverse
of the gaussian process. J and h encode how the state
of a given node behaves as its neighbors and its measure-
ment change, respectively. In this implementation, a thin-
membrane model [2] is used as a smoothness prior for J
matrix, which is given by (5).

p(x) ∝ exp(−α2

∑

i∈V

(xi − 1
|N (xi)|

∑

j∈N (xi)

xj)2)

≡ exp(−xT Jpriorx)

(5)

A thin membrane model minimizes the difference of neigh-
boring node values.

In this implementation, every pixel is modeled as a node,
and the whole image is represented as a mesh of nodes at
the pixel level. Since the size of J matrix is the same as
that of image, inverting J can be computationally expen-
sive. While successful inference algorithms exist to solve
the matrix inversion problem using belief propagation [19,
20], they often lead to inaccurate inference results for our
graphical model.

In this work, an assumption is made that the potential
of a given node will only depend on how the neighboring
nodes behave: this is a Markovian property imposed the
patch-level. This assumption can be justified in case of skin
images since the skin surface does not contain a lot of high
frequency components. Therefore, we can crop the image

DOG Maximum

Figure 8. The hair removed image is run through a difference-of-
Gaussian (DoG) filter in the scale-space. The maxima of the DoG
filter output are considered possible mole candidates. The possible
mole candidates are further classified into moles with a trained
SVM classifier.

into smaller patches, as shown in Figure 5, and compute the
inverse J matrix of the cropped window. Since the cropped
patch is much smaller than the input image, it’s computa-
tionally cheaper to invert the J matrix. The fact that we are
doing the inference on blocks of image patches (i.e. ignor-
ing pixels outside of window), the interpolated image will
have blocky artifacts. Therefore, a window larger than the
interpolated patch is used to calculate J−1, and used only
the center portion of the J−1 matrix, as shown in Figure 5.

Figure 6 shows how the image changes as it goes down
the system pipeline, and Figure 7 shows the result of
the proposed hair-removal scheme. The proposed scheme
leaves moles in tact, while removing the hair pattern. Note
that the hair removed image Figure 7 b) retains high fre-
quency textures present in the input image. The size of
moles may become a bit smaller as an artifact of using
derivative filters. This can be somewhat relieved by using
a smoothness prior in the inference stage. The performance
of the proposed hair removal scheme is compared with that
of Dull Razor ([10]). Since Dull Razor is to remove hair
in high resolution, in-focus images with less hair threads,
it performs poorly on our input image. In fact, Dull Razor
misinterpretes moles as hair, and removes moles (Figure 7
c).

5. Mole localization using DoG filters and a
support vector machine

The block diagram representation of the mole localiza-
tion stage is shown in Figure 8. In this section, DoG
scale-space filters and the designed support vector machine
(SVM) classifier will be introduced.
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Figure 6. (a) The output of the image after adaptive histogram equalization. Note that the high frequency components are accentuated.
(b) The thresholding operation removes long trails of hair patterns, while leaving the mole patterns in tact. (c) A graphical model is used
to interpolate the missing pixel values. To reduce the computational complexity of graphical model inference, a patch-wise Markovian
property is assumed.
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Figure 7. The input and output of the proposed system (a, b). The performance of the proposed scheme is compared with that of DullRazor
[10].

Since the size of moles can vary, moles should be
searched in a multi-scale fashion. SIFT feature detection
scheme [11] solves the scale problem by using difference-
of-Gaussian (DoG) filters in the scale-space. The same idea
is used here: the DoG filter is applied to RGB color chan-
nels separately, and the set union of the output maxima
in each channels are considered possible mole candidates.
When combining the DoG maxima, any mole candidates
occuring within a radius of another mole candidate is elim-
inated. Once mole candidates are localized, regions around
mole candidates are cropped from the hair-removed image.
The width of mole candidate patches is 2 × √

2 times the
radius of each DoG maximum.

Cropped mole candidates are classified as moles using
a support vector machine (SVM) classifier. An SVM is a
powerful tool to both generalize and classify objects: LIB-
SVM [1] is used to build the SVM classifier. The feature
vector to train the SVM closely resembles that of Antonio
Torralba et al. [17], and the procedure is delineated in Fig-
ure 9. A mole candidate patch is first resized to 32 x 32
using a bicubic interpolation scheme, and is converted into
a LA*B* color representation. LA*B* components are then
normalized as in (6) to increase the SVM classification per-

formance.

LNorm =
L

100

ANorm =
A

256

BNorm =
B

256

(6)

The L component of the input patch is steerable filtered
into a 2-scale steerable pyramid using MatPyrTools [14]:
each scale consists of 6 different oriented filter outputs.
There are 16 images at hand (12 filtered images, the low and
high frequency residue of L, and A, B components of the
input image), and they are each gridded into 4× 4 squares.
The values within the grid are averaged, and form an entry
in the feature vector (i.e. each image generates 16 entries).
The 16-entry vector from 16 images are rasterized into a sin-
gle feature vector with 256 elements (Figure 9.) 132 mole
patches and 447 non-mole patches are in the training set,
and each mole patch is represented with a 256-entry feature
vector described above. All mole patches come from hair-
removed images, thus mole patches in the training set don’t
have any hair. Non-mole patches in the training set consist
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Figure 9. The mole candidate is resized into 32x32 patch image;
the resized image is steerable filtered, and is represented as a 256-
entry feature vector.

of non-mole mole candidates from the DoG filters.
A standard dimensionality reduction scheme called Prin-

cipal Component Analysis (PCA) is used to reduce the di-
mensionality of feature vectors. The number of principal
components are chosen such that 98.5% of the data variance
is conserved: 12 dimensions are sufficient with our dataset.
The SVM training procedure is 10-fold cross-validated [6]
to determine the optimal γ and C, which are two parameters
of radial basis function-based SVM classifier.

6. Experimental results
To analyze how the hair removal scheme impacts the

overall system performance, two sets of experiments are
performed. In the first experiment, DoG filtering is applied
to both the input image and the hair removed image. Ex-
periments show that the hair removal scheme reduces the
number of false mole candidates. Figure 10 shows the max-
ima of DoG filter outputs when hair is present and removed,
respectively. The DoG filter in SIFT [11] discards maxima
smaller than a certain threshold β. β is adjusted in both test
cases to get least number of DoG maxima while retaining
all moles. It’s evident in this example that the hair removed
image has fewer false mole candidates. Also, in other im-
ages, moles can be heavily occluded by hair such that the
DoG cannot detect the mole pattern. In such cases, the hair
removal scheme can help locate mole that would have been
undetected otherwise.

In the second experiment, another type of SVM (called
SVM 1 from here) is trained to quantify whether the hair re-
moval scheme improves classification performance. SVM
1 is trained with mole patches that come from skin surface

Figure 10. Hair removal scheme reduces the number of false mole
candidates. The threshold of DoG response is adjusted in both
images to get fewest DoG maxima while still retaining all moles.
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Hair removed Image
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Mole Candidate Locations

Figure 11. Another type of SVM is trained to verify the effective-
ness of hair removal block in the system. While the mole candi-
date coordinates are the same for both SVMs, the SVM 1 crops
the mole candidate patch from the hair removed image, while the
SVM 2 crops the mole candidate patch from the original input im-
age.

before hair removal. Thus, the mole patches in this training
set have hair on them. This differs from our original SVM
(called SVM 2 from here) in that SVM 2 is trained with
hair-removed mole patches. The experiment architecture is
shown in Figure 11. Inputs to both SVMs are the list of
mole candidate locations, and the image to crop the mole
patches from. SVM 2 crops the mole candidate patches
from the hair removed image, whereas SVM 1 crops the
mole candidate patches from the original image. Then, the
output of each SVMs are compared to characterize the clas-
sification performance.

Figure 12 shows the result of the experiment. As can
be seen, the designed system works well in the presence of
varying arm orientations, poses and mole sizes. Although
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Figure 12. This figure shows the result of the experiment described in Figure 11. Notice that although the skin detection is not robust to
objects with skin-like colors, the mole localization performance is quite robust. Interestingly, the mole localization performance in both
SVMs are comparable, and the hair removal scheme doesn not drastically enhance the mole detection accuracy.

the skin detection method is not robust to objects with skin-
like colors, subsequent stages can localize the moles reli-
ably (i.e. at low false alarm rate) as long as skin regions are
not discarded as non-skin region. From Figure 12, we can
see that the hair removal scheme doesn’t drastically enhance
the mole detection accuracy. In some cases, SVM 1 does a
better job in localizing moles, whereas in other cases, SVM
2 does a better job. To quantify the mole detection perfor-
mance, two SVMs are tested with 10 different images. The
detection result is summarized in Table 1.

In general, SVM 2 is more conservative than SVM 1.
While SVM 1 has many false positives, it’s detection rate
is correspondingly higher than that of SVM 2. This can be
due to two parameters of C-SVM (i.e. γ and C). From
the experiment, we can safely infer that the hair removal
doesn’t drastically improve SVM’s mole classification per-
formance.

While both SVMs work well for most images, the sys-
tem fails for image 7 and 8, shown in Figure 13. The high
misclassification rate can be attributed to the fact that image
7 and 8 are somewhat blurry, and the moles on the skin sur-
face are deformed due to affine transform. To increase the
reliability, the input image should be in-focus, and moles
should not be too deformed by affine transform.

Table 1. A table comparing the performance of SVM 1 and SVM 2
(TM: Total number of Moles in the image, TP: True Positive, FP:
False Positive)

Image No. TM SVM 1 SVM 2
TP FP TP FP

1 2 2 0 2 0
2 1 1 0 0 0
3 1 0 1 0 0
4 8 8 2 8 0
5 16 12 1 12 0
6 12 12 0 11 1
7 14 5 2 2 1
8 10 1 0 0 0
9 13 12 0 10 0
10 6 4 0 4 0

7. Conclusion

This paper presented a novel mole localization scheme
that makes use of multiple cascaded filters. The explicit
description of mole appearance using an introduced fea-
ture vector allows us to increase the mole detection accu-
racy at low false alarm rate. The failure modes can be cir-
cumvented by dealing only with focused images with small
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Figure 13. These two example images show the failure mode of
the designed system. When mole patches are blurred, and moles
are deformed by an affine transform, SVM cannot recognize them
as moles. Therefore, input images should be in-focus, with small
affine deformation.

depth changes (i.e., affine deformation) along the skin sur-
face. Future work will focus on characterizing the local-
izer’s performance on a larger dataset, and develop methods
to use the moles patterns to match skin images in an image
retrieval system.
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