

The patch transform and its applications to image editing

Taeg Sang Cho¹, Moshe Butman², Shai Avidan³, William Freeman^{1,3} CSAIL-MIT¹, Bar-Ilan Univ². Adobe Inc.³

Motivation

From a set of non-overlapping patches from an image, can we reconstruct the image?

Solving jigsaw puzzle is NPcomplete! The image model

- · Adjacent patches should plausibly fit next to each other.
- Each patch should not be used more than once (we name it the **exclusivity term**.)
- The image structure and user's constraints should be maintained.

The inverse patch transform

Belief propagation is used to solve for patch assignments

Pair-wise compatibility

Computing L-R natural image filter energy

 $\psi_{i,j}^{A}(k,l) = \frac{1}{Z} \prod \sum_{l}^{J} \left\{ \frac{\pi_{q}}{\sigma_{a}} exp(-w_{l}^{T} x_{m}(k,l)) \right\}$

Exclusivity term

$$m_{fi}(x_i = l) \approx \prod_{t \in S \setminus i} \sum_{x_t = 1}^{M} \psi_{F_t}(x_t | x_i = l) m_{tf}(x_t)$$
$$= \prod_{t \in S \setminus i} (1 - m_{tf}(x_t = l))$$

The factor node tells others not to use the patch already claimed by another node.

Image editing applications

Subject reorganization

Texture control

Image retargetting

Output

Photomontage

Extensions

The patch transform using overlapping patches can reduce artifacts.

Seam-based compatibility measure

Object Removal

User input

Reconstructed image

Multiscale Patch Transform

The reconstructed image using coarse patches is refined with smaller patches.