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Abstract

We explore the problem of reconstructing an image from
a bag of square, non-overlapping image patches, the jigsaw
puzzle problem. Completing jigsaw puzzles is challenging
and requires expertise even for humans, and is known to be
NP-complete. We depart from previous methods that treat
the problem as a constraint satisfaction problem and de-
velop a graphical model to solve it. Each patch location is
a node and each patch is a label at nodes in the graph.

A graphical model requires a pairwise compatibility
term, which measures an affinity between two neighbor-
ing patches, and a local evidence term, which we lack.
This paper discusses ways to obtain these terms for the jig-
saw puzzle problem. We evaluate several patch compati-
bility metrics, including the natural image statistics mea-
sure, and experimentally show that the dissimilarity-based
compatibility – measuring the sum-of-squared color differ-
ence along the abutting boundary – gives the best results.
We compare two forms of local evidence for the graphical
model: a sparse-and-accurate evidence and a dense-and-
noisy evidence. We show that the sparse-and-accurate ev-
idence, fixing as few as4 − 6 patches at their correct lo-
cations, is enough to reconstruct images consisting of over
400 patches. To the best of our knowledge, this is the largest
puzzle solved in the literature. We also show that one can
coarsely estimate the low resolution image from a bag of
patches, suggesting that a bag of image patches encodes
some geometric information about the original image.

1. Introduction

We explore the problem of reconstructing an image from
a bag of square image patches, the jigsaw puzzle problem.
Given square, non-overlapping patches sampled from an
image grid, our goal is to reconstruct the original image
from them.

A jigsaw puzzle is an intellectually intriguing problem,
which is also provably technically challenging. Demaineet
al. [5] show that the jigsaw puzzle problem is NP-complete

when the pairwise affinity of jigsaw pieces is unreliable.
Despite the challenge, many scientific problems, includ-
ing speech descrambling [23], DNA / RNA modeling [14],
reassembling archeological relics [2] and document frag-
ments [24], can be modeled as jigsaw puzzles. The NP-
complete complexity of jigsaw puzzles has also been ex-
ploited in cryptography [3, 7].

In this paper, we focus on solving image jigsaw puz-
zles with square pieces. This type of puzzles, sometimes
called jig swap puzzles, is missing the shape information of
individual pieces, which is critical for evaluating pairwise
affinities among them. Therefore this problem formulation
is even more challenging than solving conventional jigsaw
puzzles. This, however, is a good framework for analyzing
structural regularities in natural images since it requires us
to focus on the image content to solve the puzzle.

This paper also lays groundwork for addressing the
patch-based image editing / image synthesis problems in
which the image layout is required, but is not readily ap-
parent. For example, in the patch transform image editing
scenario [4], one needs to know the image layout in order
to synthesize a visually pleasing image. However, in some
cases, – for instance, when we mix patches from multiple
images to synthesize a single image –, it’s unclear what the
image layout should be. This paper studies how well we can
recover the image layout and a natural looking image from
a bag of image patches. Such statistical characterization of
images is useful for image processing and image synthesis
tasks.

We use a graphical model to solve the jigsaw puzzle
problem: Each patch location is a node in the graph and
each patch is a label at each node. Hence, the problem is re-
duced to finding a patch configuration that is most likely on
the graph. Choet al. [4] solved this problem in their patch
transform work, but assumed access to a low-resolution ver-
sion of the original image, information not available for the
jigsaw puzzle problem. Nevertheless, we are assured that
we can solve the jigsaw puzzle problem if we can address
the simpler problem of the lack of a low resolution image.

We evaluate two methods to address this issue. The
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first approach estimates a low resolution image from a bag
of patches. The estimated low resolution image serves as
dense-and-noisy local evidence for the graphical model.
The second approach is to fix a small number of patches,
called anchor patches, at their correct locations. Anchor
patches serve as sparse-and-accurate local evidence. We
can view the anchor patches as injected geometric informa-
tion. We study how much geometric information is needed
to reliably reconstruct an image from its bag of patches.

We demonstrate successful image reconstructions of 20
test images. The results suggest that the spatial layout of
a bag of patches is quite constrained by the patches in the
bag, and that a simple bag of patches does not throw away
as much geometric information as might be thought.

Contribution We summarize our contributions as below:

• We explore a number of patch compatibility met-
rics for the graphical model. We show that the
dissimilarity-based compatibility – measuring the
sum-of-squared color difference along the abutting
boundary – is the most discriminative.

• We evaluate two strategies to model the evidence term
in the graphical model: dense-and-noisy evidence and
sparse-and-accurate evidence. The first approach esti-
mates the low resolution image from a bag of patches.
The second approach assumes that few patches, called
anchor patches, are fixed at their correct location in the
puzzle.

• We introduce three measures to evaluate the puzzle re-
construction accuracy, and show that our algorithm can
reconstruct real images reliably.

2. Background

Freeman and Gardner [8] were the first to propose
an algorithm for solving jigsaw puzzles. Many papers
[10, 11, 16, 21] assume using classic jigsaw pieces with dis-
tinct shapes, and focus on matching the shape of the pieces
to solve the puzzle. Kosibaet al. [12] considered both the
boundary shapeand the image contents, and many papers
[13, 15, 22] followed suit. Most algorithms solve the puz-
zle in two steps. The frame pieces are assembled first and
the interior is filled in with a greedy algorithm. To date, the
maximum number of jigsaw pieces completed by these al-
gorithms is 320 (16x20) [15], and most of them report the
reconstruction result on just one or few images. We present
a global optimization framework for solving the jigsaw puz-
zle problem, and show the effectiveness on multiple images.

We adopt the image model in Choet al. [4] to solve the
image jigsaw puzzle. The patch transform synthesizes an
image from a set of image patches. Lety be a low reso-
lution version of the original image,p(yi|xi) be the local
evidence term that steers the reconstructed imagex to have

a similar scene structure asy, and i be the index of the
patch locations. To reconstruct an image, the patch trans-
form maximizes the following probability:

P (x;y) =
1

Z

N
∏

i=1

∏

j∈N (i)

p(yi|xi)pi,j(xj |xi)p(xi)E(x)

(1)
wherepi,j(xj |xi) is the probability of placing a patchxj in
the neighborhood of another patchxi, N (i) is the Markov
blanket of a nodei, andE(x) is an exclusion term that dis-
courages patches from being used more than once. In con-
trast to Choet al. [4], we do not assume we know what the
low resolution imagey is.

We can interpret Eq. (1) as a graphical model, and find
the patch configurationx that maximizes the probability
Eq. (1) using loopy belief propagation. The message from
a nodej to a nodei is:

mji(xi) ∝
∑

xj

pi,j(xi|xj)p(yj |xj)
∏

l∈N (j)\i

mlj(xj) (2)

We can find the marginal probability at a nodei by gather-
ing all messages from its neighbors and the local evidence:

bi(xi) = p(yi|xi)
∏

j∈N (i)

mji(xi) (3)

E(x) is a factor node that gathers messages from all
nodes.E(x) suppresses the use of the patchl if any of the
other nodes already claimed the patchl with a high prob-
ability. In terms of message passing, the factorf sends a
messagemfi to a nodei:

mfi(xi = l) ≈
∏

t∈S\i

(1 − mtf (xt = l)) (4)

wheremtf is the marginal probability at nodet, andS is
the set of all image nodes. We use this model, which Choet
al. [4] used for image editing, to solve jigsaw puzzles.

3. Compatibility

The pair-wise patch compatibilityPi,j(xj |xi) tells us
how likely it is for a patchxj to appear next to another
patchxi. There are four types of compatibilities for each
pair of patches: the compatibility of placing the patchxj

to the left/right/top/bottom of the patchxi. If the pairwise
compatibility between patches is accurate, we can solve the
jigsaw puzzle in a polynomial time using a greedy algorithm
[5]. Given this importance, we carefully evaluate different
compatibility metrics.

We compare five types of compatibility measures: a
dissimilarity-based compatibility, a boosting-based compat-
ibility, a set-based compatibility, an image statistics-based
compatibility, and the combination of a dissimilarity-based
and image statistics-based compatibility as in Choet al. [4].



3.1. Compatibility metrics

Dissimilarity-based compatibility We compute the dis-
similarity between patchesxj , xi by summing the squared
color difference along the abutting boundaries. For exam-
ple, the left-right (LR) dissimilarity betweenxj , xi is

DLR(xj , xi) =

K
∑

k=1

3
∑

l=1

(xj(k, u, l) − xi(k, v, l))
2 (5)

where patchesxj , xi are regarded asK × K × 3 matri-
ces,u indexes the last column ofxj , andv indexes the first
column ofxi. We compute the color difference in the nor-
malized LAB color space, where chrominance components
are normalized to have the same variance as the luminance
component. We convert this squared difference to a proba-
bility by exponentiating the color difference D:

Pi,j(xj |xi) ∝ exp

(

−
D(xj , xi)

2σ2
c

)

(6)

whereσc is adaptively set as the difference between the
smallest and the second smallestD(xj , xi) among allxj .
Note that the dissimilarity is not a distance:D(xj , xi) 6=
D(xi, xj).

Boosting-based compatibility We train a boosting classi-
fier to identify matching edges by deriving a feature vector
from boundary pixels. Given patchesxi andxj , we take a
2-pixel band from each patch at the abutting boundary, and
sum the squared difference of all pairwise 2-pixel bands in
xi andxj . This captures the correlation between pixels at
the abutting boundary. When there areK pixels per col-
umn, the feature vector is3 × 4K2 dimensional (i.e. 3 for
the color channels). We train the classifiers using a Gen-
tle boost algorithm [9, 19], with 35200 true samples, and
35200 false samples. We use the classifier margin as the
compatibility.

Set-based compatibility The set-based compatibility is
inspired by the bidirectional similarity [18]. The set dissim-
ilarity is the minimum distance between theK × K patch
at the abutting boundary of two patchesxi, xj and all other
patches in the database. We use the sum of squared color
difference as the distance. We exponentiate the distance as
in Eq. (6) to convert it to a compatibility. Under this mea-
sure, a patch pair is compatible if their boundary region is
similar to one of the patches in the database. In our im-
plementation, we sample the boundary region half from the
left patch and the other half from the right patch, but other
ratios are possible as well.

Image statistics-based compatibility Weiss and Free-
man [20] present a set of filters that lies in the null space
of natural images. We convolve theK × K patch at the
abutting boundary of two patches with these filters. Patch
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Figure 1. We evaluate five compatibility metrics based on theclas-
sification criterion. For each image in the test set consisting of
20 images, we find the portion of correct patch pairs that received
the highest compatibility score among other candidates. Weshow
the average classification accuracy of 20 images. We observethat
a dissimilarity-based compatibility metric is the most discrimina-
tive.

pairs with a small filter response at the boundary are given
a high compatibility score as in [4, 20].

The compatiblity in Cho et al. [4] Cho et al. [4] com-
bines the dissimilarity-based compatibility and the image
statistics-based compatibility by multiplying the two.

3.2. Evaluation

Patch pairs that were adjacent in the original image
should receive the highest compatibility score among oth-
ers. We use this characteristic as a criterion for compar-
ing compatibility metrics. For each patchxi, we find the
matchxj with the highest compatibility, and compute for
what fraction of test patchesxi the compatibility metric as-
signs the highest compatibility to the correct neighbor. We
performed this test on 20 images. Figure1 shows the aver-
age classification accuracy for each compatibility metric.

Interestingly, the naive dissimilarity-based compatibil-
ity measure outperforms other sophisticated compatibility
measures under the classification criterion. We can attribute
this observation to the fact that the patch neighbor classifi-
cation problem is that of finding thebestmatch among the
set of patches from thesameimage, not that of finding a
patch boundary that looks as similar as possible to train-
ing images. Learning-based compatibility metrics measure
how natural the boundary regions are and do not necessarily
preserve the likeliness ranking. The compatibility metricin
Cho et al. [4] is useful for finding visually pleasing patch
matchesother than the correct match and is useful for im-
age editing purposes. However, for the purpose of solving
jigsaw puzzles, the dissimilarity metric is the most reliable,
giving the highest classification accuracy.

We also observe that the compatibility performance de-
pends on the image content. Images with high classification
accuracy tend to have more texture variations, whereas im-
ages with low classification accuracy lack details. To solve



the jigsaw puzzle, we use the dissimilarity-based compati-
bility.

4. Local evidence

The local evidence determines the image layout. With-
out it, the belief propagation algorithm in Section2 gener-
ates images that do not conform to standard image layouts.
In Cho et al. [4], the local evidence term at pixeli favors
patches with a similar mean RGB color as theith pixel in
the low resolution image:

p(yi|xi = l) ∝ exp

(

−
(yi − m(l))2

2σ2
e

)

(7)

wherem(l) is the mean color of patchl, i indexes pixels,
andσe = 0.4. In the jigsaw puzzle problem, however, we
do not have the low resolution imagey.

We explore two strategies to emulate a low resolution
image: dense-and-noisy local evidence and sparse-and-
accurate local evidence.

4.1. A dense-and-noisy local evidence

We estimate dense-and-noisy local evidence from a bag
of image patches. We represent a bag of image patches as
a patch histogram, and learn the correspondence between a
patch histogram and a low resolution image.

The patch histogram We create a patch vocabulary by
sampling patches from training images, and clustering
them. To have enough patches that are representative of var-
ious textures, we sample8, 500, 000 patches of size7 × 7
from15, 000 images taken from the LabelMe database [17].

We explore two types of patch representations for clus-
tering: color-based and gradient-based. The color-based
representation rasterizes a patch into a 147 (7x7x3) dimen-
sional feature vector. The gradient-based feature sums the
x,y gradient of a gray-scale patch along every row and col-
umn. We augment the 28-dimensional (7x2x2) gradient-
based feature with the mean RGB values, generating a 31
dimensional vector. The motivation behind this represen-
tation is that similar patches tend to have similar gradient
profiles. We reduce the dimensionality of these representa-
tions to retain 98% of the original signal variance through
Principal Component Analysis (PCA).

Clustering millions of high dimensional features is not a
trivial task. We cluster the patches in two steps. First, we
cluster patches sampled from the same image intoL clus-
ters. We compute the cluster center for each cluster by av-
eraging patches that belong to the same cluster. Then we
re-clusterL cluster centers from all images to find theN

global clusters. We used the fast K-means algorithm [6] for
clustering. In this paper,L = 20, N = 200.

Given theN cluster centers, we can associate each image
with a patch histogramh. Theith entry of a patch histogram

h counts the number of patches that belong to theith clus-
ter. The patch histogram is fairly sparse since each image
consists of432 patches.

The patches within boxes in Figure2 are the 20 most oc-
curring cluster centers when we represent patches using (a)
a gradient-based feature or (b) a color-based feature. The
gradient-based feature uses the gray level and the edge in-
formation, whereas the color-based feature uses the gray
level and the color information.

Properties of the patch clusters We can predict where
in the image each patch cluster is most likely to occur. To
do so, we back-project the patch cluster centers to training
images, and observe where in the image they occur most
frequently. We count the number of times a patch from a
certain cluster appears at each patch location. This is called
the patch cluster probability map. The patch cluster prob-
ability maps are shown in Figure2, pointed by the arrows
from the corresponding cluster centers.

Probability maps of the gradient-based patch represen-
tation show that clusters corresponding to edges tend to be
in the foreground, but do not have strong spatial constraints.
The clusters encoding intensity information carry more spa-
tial information: bright patches usually appear at the top
since objects near the sky (or the sky itself) are brighter than
other objects in the scene.

The clusters from the color-based patch representation
capture both intensity and color information. The patch
probability maps show that some colors correspond to nat-
ural lighting, background scenes, or vignetting effects, and
some other colors correspond to foreground objects. For ex-
ample, a blue patch predominantly occurs in the upper half
of the image, whereas brown and dark red colors most fre-
quently correspond to foreground objects. The patch maps
show a rich set of location constraints for different patch
classes. (We anticipate that other feature representations,
such as SIFT, would show similarly rich spatial localization
structure.) This structure allows us to very roughly place
each feature in the image, or to estimate a low-resolution
image from the bag of features.

A probability map can be used as a patch prior. If a clus-
ters appears often at nodei, patches that belong to the clus-
ters are given higher probability to appear at nodei.

Image estimation through regression We learn a linear
regression functionA that maps the patch histogramh to the
low resolution imagey, trainingA on images that were also
used to find cluster centers. We use the color-based patch
representation since it captures more spatial information.

Let columns ofH be the patch histograms of training
images, and columns ofY be the corresponding low resolu-
tion images. We learn the regression functionA as follows
[1]:

A = Y HT (HHT )−1 (8)
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Figure 2. The patches in rectangular boxes are the top 20 mostoccurring patch cluster centers when we use (a) a gradient-based / (b) a
color-based representation. Around the boxes are patch probability maps for a subset of cluster centers, pointed by thearrows from the
corresponding patch cluster.
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Figure 3. The patch histogram can be used to estimate a low res-
olution image. The regression function generates a low resolution
image that resembles the original image, but we can nonetheless
find examples that fail (the last row). The last column is a patch
rank map: At each node, we order patches based on the likelihood
given the estimated low resolution image, and show the rank of the
true patch. Most of the correct patch rankings score high using the
regression function – the ideal result is deep blue everywhere.

The size of the original image is roughly700×500, and the
estimated low resolution image is24 × 18.

Figure3 shows some experimental results. We observe
that the regression can coarsely predict the low resolution
image. This observation counters the intuition that the bag
of features does not encode any spatial information. One
possible explanation is that there are enough structural reg-
ularities in images so that a bag of features implicitly cap-
tures the geometric information. For example, when there
are many patches that belong to a blue cluster, it’s likely that

they constitute a blue sky. Of course, it is easy to find fail-
ure examples: the blue tone of snow is misclassified as sky
in the last example in Figure3. Nevertheless, the regres-
sion function learns important image regularities: some-
thing bright should be at the top, illuminating foreground
objects at the bottom.

We quantitatively evaluate the accuracy of the estimated
low resolution image using a patch rank map. At each node,
we order patches based on the likelihood given the esti-
mated low resolution image, and show the rank of the true
patch. Ideally, we want the true patch to have rank 1 at all
nodes. We observe from the last column in Figure3 that the
patch rank is quite low in most nodes, except for nodes that
correspond to foreground objects or the transition between
the background and the foreground. On average (across
all nodes and across 20 test images), the true patch has a
rank 151 among 432 patches. We used the linear regres-
sion model because the kernel regression did not noticeably
improve the quality of estimated low resolution images, yet
required much more computation.

4.2. A sparse-and-accurate local evidence

We explore another strategy to emulate the low resolu-
tion image in Eq. (7). We study a scenario where some
patches are associated with the correct positions in the puz-
zle. We name these patches theanchor patches. This is a
generalization of the puzzle solving strategy that first fixes
the four corner pieces and works its way inward. We show
that the puzzle solver accuracy improves as we add more
anchor patches and as the anchor patches are spread out uni-
formly across the image.

5. Solving the jigsaw puzzle

We reconstruct the jigsaw puzzle by maximizingp(x)
(Eq. (1)) using loopy belief propagation [4]. Since loopy
belief propagation can fall into a local minimum, we run
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Figure 4. The image reconstruction accuracy with the estimated
low resolution image for 20 different test images.

loopy belief propagation three times with random seeds and
pick the best reconstruction in terms of the reconstruction
accuracy. Each image is broken into 432 patches of size 28
x 28, which is down-sampled to 7 x 7 for low resolution
image estimation.

Performance metrics While there has been an extensive
work on solving jigsaw puzzles, there has not been any mea-
sure that evaluates the puzzle reconstruction performance
because the previous works treated the puzzle solving as a
binary problem. We propose three measures that gauge par-
tial puzzle reconstruction performance:

• Direct comparison: the inferred patch labels are com-
pared directly to the ground-truth patch labels. The re-
construction accuracy measures the fraction of nodes
for which the algorithm inferred the correct patch.

• Cluster comparison: the inferred patch labels are
mapped to clusters they belong to, and are compared
to the ground-truth cluster labels. The reconstruction
accuracy measures the fraction of nodes for which the
algorithm inferred the correct cluster.

• Neighbor comparison: for each assigned patch label,
we compute the fraction of four neighbor nodes that
the algorithm assigned the correct patch (i.e. patches
that were adjacent in the original image). The recon-
struction accuracy is the average fraction of correct
neighbor labels.

The direct comparison measure penalizes all patches that
are assigned to wrong nodes, but the cluster comparison
measure tolerates the assignment error as long as the as-
signed patch belong to the same cluster as the ground-truth
patch. The neighbor comparison measure does not care
about the exact patch assignment as long as patches that
were adjacent in the original image remain adjacent.

Original image Reconstructed image

(a)

(b)

Figure 5. Two examples ((a) image 8, (b) image 20) of recon-
structed images using the estimated local evidence.

5.1. Reconstruction with dense-and-noisy local evi-
dence

We use the estimated low resolution image and the patch
prior to solve the puzzle. The reconstruction accuracy for 20
test images is shown in Figure4. Clearly, the graph suggests
that it is hard to reconstruct the original image even given
the estimated low resolution image.

To better understand Figure4, we show two image re-
constructions in Figure5. The overall structure of recon-
structed images is similar to that of the original images.
Also, while parts of the image are not reconstructed prop-
erly, some regions are correctly assembled even though they
may be offset from the correct position. The tower in Fig-
ure 5 (a) and the car road Figure5 (b) have been laterally
shifted. This can be attributed to the fact that the estimated
low resolution image does not provide enough lateral infor-
mation. Such shifts in image regions are not tolerated by the
direct comparison measure and, possibly, the cluster com-
parison measure, but the neighbor comparison measure is
more generous in this regard. In fact, under the neighbor
comparison measure, the average reconstruction accuracy
is nearly 55%, suggesting that many regions are assembled
correctly but are slightly shifted.

5.2. Reconstruction with sparse-and-accurate local
evidence

We study the jigsaw puzzle reconstruction performance
with a sparse-and-accurate local evidence. In particular,we
want to study how the number of anchor patches affect the
image reconstruction accuracy. We run the image recon-
struction experiments for 0 to 10 anchor patches.

Figure 6 illustrates that the location of anchor patches
matters as well as the total number of anchor patches. If the
anchor patches are more spread out, the image reconstruc-
tion performance improves. Therefore, we predefined the



Original image Increasing the number of anchor patches

(a)

(b)

Figure 7. This figures shows two examples of reconstructed images with a sparse-and-accurate local evidence. As we increase the number
of anchor patches (shown red), the algorithm’s performanceimproves.

Figure 6. To improve the reconstruction accuracy, it’s better to
spread out the anchor patches (red) evenly across the image.

location of anchor patches such that they cover the image as
uniformly as possible. This has an important consequence
that even if we do not have anchor patches, we can loop over
(

432
k

)

patch combinations to find the correct anchor patches
at k predefined nodes. Figure7 shows some image recon-
struction results (see supplemental materials for more ex-
amples).

Figure8(a) shows the reconstruction accuracy, averaged
over the 20 test images. As expected, the average accu-
racy improves as we increase the number of anchor patches.
Anchor patches serve as the local evidence for neighboring
image nodes. As we add more anchor patches, more nodes
become closer to anchor patches, and thus more nodes can
reliably infer the correct patch label.

To calibrate the performance of the sparse-and-accurate
local evidence scheme, we run another set of experiments
with a quantized 6-bit true low resolution image. The re-
construction accuracy is overlaid on Figure8. The perfor-
mance of using a 6-bit true low resolution image is com-
parable to using6 − 10 anchor patches. This also suggests
that solving the puzzle with the estimated low resolution im-
age is extremely challenging. The estimated low resolution
image should be as accurate as a 6-bit true low resolution
image in order to perform comparably to using the sparse-
and-accurate local evidence.

We also compared the performance of using the sparse-
and-accurate local evidence to using a combination of an-
chor patches and the estimated low resolution image. The
reconstruction performance is shown with dotted lines in
Figure 8(a). When there are no anchor patches, the es-
timated low resolution image helps better reconstruct the
original image. However, as we introduce anchor patches,
on average, it is betternot to have any noisy local evidence

under all reconstruction measures. This is because the esti-
mated low resolution image is too noisy.

5.3. Solving a smaller jigsaw puzzle

We have performed the same set of experiments on a
smaller jigsaw puzzle. Each small jigsaw puzzle consists of
221 pieces. Figure8(b) shows the reconstruction accuracy.
The figure shows that we need fewer anchor patches to al-
most perfectly reconstruct images. In fact, we can perfectly
reconstruct 5 images, and the top 15 images have the recon-
struction accuracy higher than 90% under the most stringent
direct comparison measure. A few images are difficult to re-
construct because they contain a large, uniform region.

6. Conclusion

We introduce a probabilistic approach to solving jigsaw
puzzles. A puzzle is represented as a graphical model where
each node corresponds to a patch location and each label
corresponds to a patch. We use loopy belief propagation to
find the most likely configuration of patches on the graph.
While we focused on solving a jigsaw puzzle with square
pieces, we can easily augment the probabilistic framework
to handle pieces with distinct shapes. The shaped pieces
would improve the compatibility metric, improving the jig-
saw puzzle reconstruction accuracy.

We have studied to what extent a bag of square image
patches determines what images can be formed from edge-
compatible placements of the image patches. The restricted
class of images we can reconstruct from a histogram of im-
age patches tells us about the structural regularity of im-
ages. This more general problem, of inferring what images
are compatible with a given histogram of feature responses,
occurs frequently in object recognition. Our work suggests
an approach to try with more difficult sets of features such
as Gabor jet histograms for texture representation, or bags
of SIFT feature responses for object recognition.
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Figure 8. The image reconstruction accuracy for two local evidence scenarios, as we increase the number of anchor patches, (a) with 432
jigsaw pieces. (b) with 221 jigsaw pieces. This figure shows that the image reconstruction improves as we increase the number of anchor
patches, and that it’s hard to reconstruct the image using the estimated low resolution image: the estimated low resolution image should be
as accurate as a 6-bit true low resolution image to have comparable performance to using anchor patches.
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