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Abstract
Object movement during exposure generates blur. Remov-
ing blur is challenging because one has to estimate the mo-
tion blur, which can spatially vary over the image. Even
if the motion is successfully identified, blur removal can be
unstable because the blur kernel attenuates high frequency
image contents. We address the problem of removing blur
from objects moving at constant velocities in arbitrary 2D
directions. Our solution captures two images of the scene
with a parabolic motion in two orthogonal directions. We
show that our strategy near-optimally preserves image con-
tent, and allows for stable blur inversion. Taking two im-
ages of a scene helps us estimate spatially varying object
motions. We present a prototype camera and demonstrate
successful motion deblurring on real motions.

1. Introduction

Motion blur can severely limit image quality, and while blur
can be reduced using a shorter shutter speed, this comes with
an unavoidable tradeoff of increased noise. One source of
motion blur is camera shake. We can mitigate the camera
shake blur by using a mechanical motion stabilization sys-
tem or by placing the camera on a tripod. A second source
of blur is an object movement in the scene. This type of
blur is harder to control, and it is often desirable to remove
it computationally using deconvolution.

Motion deblurring is challenging in two aspects. First, one
needs to estimate the blur kernel, which depends on motion.
Since objects in the scene can move independently, the blur
kernel can vary over the image. While single-image based
blur estimation techniques have been proposed [7, 8, 11–

13, 19], they handle restricted motion types. Most recent
blind deconvolution techniques [8, 19] rely on a strong as-
sumption that the blur is spatially uniform over image. More
robust motion estimation algorithms often involve multiple
input images [5, 6, 18, 21], additional hardware [4, 14, 20],
or user assistance [10].

A second challenge in deblurring is inverting the blur given
the motion kernel. Typical motion blur kernels correspond
to box filters in the motion direction. They attenuate high
spatial frequencies and make the blur inversion ill-posed.
One technique addressing this issue is the flutter-shutter
camera [17]. By opening and closing the shutter during ex-
posure, one can significantly reduce the high frequency im-
age information loss. Levinet al. [14] propose a parabolic
motion camera to minimize the information loss for 1D con-
stant velocity motions, but the solution is invalid if 2D mo-
tion is present. Agrawal and Raskar [2] analyze the perfor-
mance of the flutter-shutter camera and the parabolic camera
and concludes that a flutter shutter camera performs better
than a parabolic camera for a 2D constant velocity motion.
Agrawal et al. [3] take multiple shots of a moving object,
each with different exposures, and deconvolves the moving
object using all the shots. This strategy is beneficial because
the information lost in one of the shots is acquired by an-
other. However, we show that their strategy does not offer
guarantees on the worst-case performance.

We present an imaging technique that near optimally cap-
tures image information of objects moving at a constant
velocity in 2D directions. We derive the optimal spectral
bound for 2D constant velocity motions and introduce a new
camera that captures two images using successive parabolic



motions in orthogonal directions. The joint spectrum of
the two image captures approaches the 2D optimal spectral
bound up to a constant multiplicative factor of 2−1.5, and it is
the first known imaging technique to guarantee this bound.
We recover a sharp image from the captured images using a
multi-image deconvolution algorithm.

2. Sensor motion design and analysis

Consider an object moving at a constant velocity and let
sx,y = [sx,sy] be its 2D velocity vector. Suppose we capture
J imagesB1, ..BJ of this object usingJ translating cameras.
Locally, the blur process is a convolution:

B j = φ j
sx,y

⊗ I +n j (1)

whereI is an ideal sharp image,n j imaging noise, andφ j
sx,y

the blur kernel (point spread function, PSF).φ j
sx,y depends

on the motion between the sensor and the scene. The con-
volution is a multiplication in the frequency domain:

B̂ j(ωx,y) = φ̂ j
sx,y

(ωx,y)Î(ωx,y)+ n̂ j(ωx,y) (2)

whereωx,y = [ωx,ωy] is a 2D spatial frequency, and theˆde-
notes the Fourier transform. Eq2 shows that when̂φ(ωx,y)
is small, the signal-to-noise ratio drops. One can show that
the success in deblurring depends on the spectral power of
the blur kernels‖φ̂ j

sx,y(ωx,y)‖2 by examining the expected re-
construction error, which can be computed in a closed form
given a Gaussian prior on gradients [9]. The reconstruction
quality is inversely related to the summed spectra:

‖ ˜̂φsx,y
(ωx,y)‖2 = ∑

j
‖φ̂ j

sx,y
(ωx,y)‖2 (3)

The goal of the camera motion design is as follows:

Find a set of J camera motions that maximizes the summed

power spectrum‖ ˜̂φsx,y
(ωx,y)‖2 for every spatial frequency

ωx,y and every motion vector‖sx,y‖ < Sob j.

2.1. Background on motion blur in the space-time
volume

We represent light received by the sensor as a 3Dx,y,t
space-time volumeL(x,y, t). That is,L(x,y, t) denotes the
color of the light ray hitting thex,y coordinate of a static
detector at time instancet. A static camera forms an image
by integrating the light rays in the space-time volume over a
finite exposure timeT:

B(x,y) =

∫ T
2

− T
2

L(x,y, t)dt (4)

Assume the camera is translating during exposure on thexy
plane, and letf be its displacement path:

{

f : [x,y, t] = [ fx(t), fy(t), t]
}

(5)

Rays hitting the detector are shifted, and the recorded image
is

B(x,y) =
∫ T

2

− T
2

L(x+ fx(t),y+ fy(t),t)dt+n (6)

wheren is an imaging noise. We can represent the integra-
tion curvef as a 3D integration kernelk:

k(x,y,t) = δ (x− fx(t))·δ (y− fy(t)) (7)

whereδ is a delta function. We show the integration kernel
k for several camera motions in the first row of Figure1.

If the object motion is locally constant, we can express the
integrated image as a convolution of a sharp image at one
time instance with a point spread functionφsx,y. The PSF
φsx,y of a constant velocity motionsx,y = [sx,sy] is a sheared
projection of the 3D integration kernelk [14]:

φsx,y(x,y) =

∫

t
k(x−sxt,y−syt,t)dt (8)

Some PSFs of different integration kernels are shown in the
second row of Figure1.

The Fourier transform̂φsx,y of the PSFφsx,y is a slice from
the Fourier transform̂k of the integration kernelk [14, 15]:

φ̂sx,y(ωx,ωy) = k̂(ωx,ωy,sxωx +syωy) (9)

The Fourier transform̂φsx,y for different integration kernels
k are shown in the bottom row of Figure1. 2D Fourier slices
corresponding to all motion directions‖sx,y‖< Sob j lie in the
complementary volume of an inverted double cone. There-
fore, k̂ occupies this volume. We refer to this volume asthe
wedge of revolution, defined as the set:

C≡ {(ωx,ωy,ωt)|ωt < Sob j‖ωx,y‖} (10)

This relationship holds since the Fourier transform of a PSF
is a slice fromk̂ at ωt = sxωx + syωy, and if ‖sx,y‖ ≤ Sob j,
sxωx +syωy ≤ Sob j‖ωx,y‖.

The optimal spectral bound We extend the spectral
bound for 1D linear motions in [14] to 2D linear motions,
and show that spectral power ink̂ cannot become arbitrarily

high. Suppose we captureJ images and let‖ ˜̂k‖2 be the joint

motion spectrum‖ ˜̂k(ωx,ωy,ωt)‖2 = ∑ j ‖k̂ j(ωx,ωy,ωt)‖2.
We can derive an upper bound on the worst-case joint spec-

trum ‖ ˜̂k‖2. The amount of energy collected by the camera
within a fixed exposure timeT is bounded. Levinet al. [14]
use the Parseval theorem to show that the collected energy is
preserved in the frequency domain and as a result, the norm

of everyωx0,y0 slice of ˜̂k (i.e. ˜̂k(ωx0,ωy0,ωt)) is bounded:
∫

‖ ˜̂k(ωx0,ωy0,ωt)‖2dωt ≤ T (11)
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Figure 1: The integration curves k (a-e), the point spread functionsφsx,y (f-j) and their log-power spectra (k-o) for a few
cameras. In (f-o), the outer axes correspond to x,y directional speed. In (f-j), the inner axes correspond to x,y, and in the
spectra plots (k-o), the inner axes correspond toωx,ωy. All spectra plots are normalized to the same scale.

Every ωx0,y0-slice intersects the wedge of revolution for a
segment of length 2Sob j‖ωx0,y0‖. An optimal camera should
spread the captured energy equally in this intersection to
maximize the worst-case spectral value. Therefore:

min
ωt

‖ ˜̂k(ωx0,ωy0,ωt)‖2 ≤ T
2Sob j‖ωx0,y0‖

. (12)

Since the PSFs spectraφ̂ j
sx,y are slices througĥk j , this bound

also applies for the PSFs’ spectral power:

min
sx,y

‖ ˜̂φsx,y
(ωx0,ωy0)‖2 ≤ T

2Sob j‖ωx0,y0‖
. (13)

2.2. Orthogonal parabolic motions

We seek a motion path whose spectrum covers the wedge of
revolution and approaches the bound in Eq12. Our solution
captures two images with two orthogonal parabolic motions.
We show that the orthogonal parabolic camera captures the
desired spectrum with the worst-case spectral power of at
least a factor 2−1.5 of the upper bound.

2.2.1 Camera motion

Let k1,k2 be the 3D integration kernels of x and y parabolic
camera motions. The kernels are defined by the integration
curvesf1, f2:

f1(t) = [ax(t +T/4)2,0,t], t = [−T/2...0]

f2(t) = [0,ay(t −T/4)2,t], t = [0...T/2]
(14)

At time t, the derivative of the x-parabolic camera’s move-
ment is 2ax(t −T/4), and the camera is essentially tracking
an object with velocity 2ax(t −T/4) along thex axis. For a
reason to be clarified below, we set

ax = ay =
2
√

2Sob j

T
(15)

The maximal sensor velocity becomesSsens=
√

2Sob j. Fig-
ure 1(i-j) show PSFs of different motions captured by the
orthogonal parabolic camera. The PSFs are truncated and
sheared parabolas that depend on the object speed.

2.2.2 Optimality

The spectrum of an x-parabolic motion is approximately a
double wedge in the 2Dωx,ωt frequency space [14]. Since
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Figure 2: (a) The spectrum̂k1 captured by a x-parabolic
camera. (b) The spectrum̂k2 captured by a y-parabolic cam-
era. (c) The sum of̂k1 and k̂2 approximates the wedge of
revolution.

an x-parabolic motionk1 is Dirac delta along they axis, the
3D spectrum‖k̂1‖2 is constant along theωy axis and‖k̂1‖2

spreads energy in a 3D double wedge (Figure2(a)). The y-
parabolic motion spreads energy on the orthogonal 3D dou-
ble wedge (Figure2(b)). Mathematically speaking,

‖k̂1(ωx,ωy,ωt)‖2 ≈ T
4Ssens‖ωx‖

H(Ssens‖ωx‖−‖ωt‖)

‖k̂2(ωx,ωy,ωt)‖2 ≈ T
4Ssens‖ωy‖

H(Ssens‖ωy‖−‖ωt‖)

(16)

whereH(·) is a Heaviside step function.

The 2D PSF spectra are slices from the 3D double wedge
spectra of‖k̂ j‖2. Figure1 (n-o) show the log-spectrum of
PSFsφ̂ j

s for parabolic exposures as we sweep the object ve-
locity. For x-directional motions (sy = 0), the x-parabolic
camera covers all spatial frequencies without zeros. On
the other hand, as y-directional motion increases, the x-
parabolic camera fails to capture frequencies near theωy

axis. The y-parabolic camera, however, covers the frequen-
cies missed by the x-parabolic camera, thus thesumof these
two spectra eliminates zeros in all the spatial frequencies.
Therefore, by taking two images of a scene using orthogo-
nal parabolic cameras, we can stably invert the blur for all
2D object motions.

Figure2(c) visualizes the joint spectrum covered by the or-
thogonal parabolic motions, suggesting that the sum of or-
thogonal 3D wedges is an approximation to the wedge of
revolution that we aim to capture. We can show that if the
maximal sensor speedSsensis set to

√
2Sob j, the sum of dou-

ble wedges subsumes the wedge of revolution.

Claim 1 Let Ssens be the maximum sensor speed of the
parabolic camera, and Sob j the maximum object speed in
image space. If Ssens≥

√
2Sob j, the joint motion spec-

trum‖ ˜̂k‖2 of an orthogonal parabolic camera subsumes the
wedge of revolution. When Ssens=

√
2Sob j, the worst-case

spectral power of an orthogonal parabolic camera, at any
frequency, is at least1

2
√

2
of the optimal bound.

Proof: The joint motion spectrum of the orthogonal
parabolic camera is non-zero in the set{(ωx,ωy,ωt)|ωt ≤
Ssensmax(‖ωx‖,‖ωy‖)}. If (ωx,ωy,ωt) lies in the wedge
of revolution, thenωt ≤ Sob j‖ωx,y‖. Since ‖ωx,y‖2 ≤
2max(‖ωx‖2,‖ωy‖2),

ωt ≤ Sob j‖ωx,y‖
≤

√
2Sob j max(‖ωx‖,‖ωy‖)

≤ Ssensmax(‖ωx‖,‖ωy‖) (17)

In other words, the joint motion spectrum of the orthogonal
parabolic cameras subsumes the wedge of revolution.

In the joint motion spectrum, the spectral content at

(ωx,ωy,ωt) is at least min
(

T
4Ssens‖ωx‖ + T

4Ssens‖ωy‖

)

. Since

‖ωx,y‖ ≥ max(‖ωx‖,‖ωy‖),

min

(

T
4Ssens‖ωx‖

+
T

4Ssens‖ωy‖

)

≥ T
4Ssens‖ωx,y‖

=
T

4
√

2Sob j‖ωx,y‖

(18)

The minimum spectral content of the orthogonal parabolic
camera is at least 2−1.5 of the optimum.

2.3. Discussion of other cameras

A static camera: The integration curve of a static camera
(Figure1 first column) isks(t) = [0,0,t], t ∈ [−T/2...T/2].
The power spectrum is constant alongωx andωy:

‖k̂s(ωx,ωy,ωt)‖2 = T2sinc2(ωtT) (19)

The Fourier transform of the PSF is a slice of the motion
spectrum̂k, and is a sinc whose width depends on the object
velocity‖φ̂s

sx,y
‖2 = T2sinc2((sxωx+syωy)T). For fast object

motions, this sinc attenuates high frequencies. Similarly, by
linearly moving the camera during exposure (Figure1(c)),
we can track the object that moves at the camera’s speed, but
objects whose velocity is different from the camera’s veloc-
ity still suffer from the sinc fall-off.

A flutter shutter camera: In a flutter shutter cam-
era [17] (Figure1 second column), the motion spectrum
k f is constant alongωx,ωy and is modulated alongωt :
‖k̂ f (ωx,ωy,ωt)‖2 = ‖m̂(ωt)‖2, wherem̂ is the Fourier trans-
form of the shutter code. We can design the code to be
more broadband than that of a static camera. Yet, the spec-
trum is constant alongωx,ωy, thus mins‖φ̂ f

s (ωx,ωy)‖2 ≤
T/(2Sob jΩ) for all (ωx,ωy) [14], whereΩ is the spatial
bandwidth of the camera. As a result, at low-to-mid fre-
quencies the spectral power does not reach the upper bound.

Two shots: Taking two images with a static camera, a lin-
early moving camera, or a flutter shutter camera can im-



prove the kernel estimation accuracy, but it does not sub-
stantially change the spectral coverage. Optimizing the ex-
posure lengths of each shot [3], and in the case of a flutter
shutter camera also optimizing the random codes in each
shot, do not eliminate their fundamental limitations: their
power spectra are constant alongωx,y and hence spend the
energy budget outside the wedge of revolution.

Synthetic simulation: We compare the deblurring per-
formance of a pair of static cameras, a pair of flutter shut-
ter cameras, a single parabolic camera and an orthogonal
parabolic camera through synthetic experiments. The or-
thogonal parabolic camera is designed to deblur 2D constant
velocity motions with speed less thanSob j. The deblurring
performance is compared for motions within the velocity
range of interest. To be more in favor of previous solutions,
we have optimized their parameters for each motion inde-
pendently. For a pair of static camera, we use the optimal
split of the exposure timeT into two shots, optimized for
eachobject motion independently. For a pair of flutter shut-
ter camera, we use the optimal split of the exposure timeT
and the optimal combination of codes, optimized foreach
object motion independently. In a realistic scenario we can-
not optimize the split of the exposure timeT or the codes
because the object motion is not known a priori.

We render images of a moving object seen by these cam-
eras. We add zero-mean Gaussian noise with standard de-
viation η = 0.01 to the images. We deblur the images with
the known blur kernels using Wiener deconvolution. In all
experiments, we fix the total exposure timeT.

Figure3 shows the deconvolution results and its peak signal-
to-noise ratio (PSNR) for different object velocities. Each
row corresponds to a different object velocity. When the ob-
ject is static, a pair of static camera generates visually the
most pleasing image. For moving objects, however, a pair
of orthogonal parabolic camera generates visually the most
pleasing image. This visual result agrees with the theoreti-
cal prediction: the deconvolution quality is better when the
spectral power of the PSF is higher.

We put the synthetic experiment results in the context of pre-
vious blur removal techniques. The performance of previ-
ous two-image motion deblurring techniques, such as [5, 6,
18, 21], can be approximated by the deconvolution result of
the static camera pair in Figure3. Even if these solutions
correctly estimate the motion kernels, inverting the kernel is
still hard since high frequencies are attenuated. Blind mo-
tion deblurring solutions, such as [8, 19], attempt to solvean
even harder problem, since they try to estimate the blur ker-
nel from a single image. Yet they only address the problem
of kernel estimation and do not optimize the deconvolution
quality given the correct kernel.

3. Image reconstruction

Subject motions cause spatially variant blur that should be
estimated and removed locally. We adapt the Bayesian
framework for image deconvolution and kernel estimation
to locally estimate the motion blur within a small window.
We employ a multi-scale technique to reduce the computa-
tional cost.

3.1. Non-blind deconvolution

Let B̄, φ̄ be B̄ = [B1,B2], φ̄ = [φ1,φ2]. We recover the blur-
free image by maximizing the posterior probabilityĨ =
argmaxp(I |B̄, φ̄ ). Using Bayes rule,

p(I |B̄, φ̄ ) ∝ p(I , B̄|φ̄) = p(I)
2

∏
j=1

p(B j |φ j , I) (20)

− logp(B j |φ j , I) = |B j −φ j ⊗ I |2/η2 +C1 (21)

− logp(I) = β ∑
i

ρ(|gx,i(I)|)+ ρ(|gy,i(I)|)+C2 (22)

whereC1,C2 are constants,gx,i ,gy,i arex,y gradient opera-
tors at pixeli, β = 0.002 determines the variance of the gra-
dient profile, andρ(z) = zα is a robust norm. Whenα = 2,
we impose a Gaussian prior on image gradients, and when
α ≤ 1, we impose a sparse prior. Whenα = 2, we can effi-
ciently deconvolve the image in the frequency domain using
the Wiener filter (e.g. [9]). We use a Gaussian prior for ker-
nel estimation, and a sparse prior for deconvolution.

Eq 20 is a joint deconvolution model, stating that we seek
an imagẽI fitting the convolution constraints of both B1 and
B2. The deconvolved imagẽI should be able to regenerate
the input imagesB1 andB2 using the kernel pair that gen-
eratedĨ . Rav-Acha and Peleg [18] essentially deblurs two
input images by maximizing the likelihood term (Eq21),
and Chenet al. [5] and Agrawalet al. [3] augment it with
the prior term (Eq22).

3.2. Kernel estimation

A critical step in motion deblurring is estimating the correct
kernel pairφ̄ . For that we seek:

φ̄ = argmaxp(φ̄ |B̄) = argmaxp(B̄|φ̄ )p(φ̄) (23)

where p(φ̄) is a prior on motion kernels (uniform in this
work) andp(B̄|φ̄ ) is obtained by marginalizing over all la-
tent imagesI , p(B̄|φ̄ ) =

∫

p(B̄, I |φ̄)dI, wherep(B̄, I |φ̄ ) is
given by Eq21,22. If the prior p(I) is Gaussian,p(B̄|φ̄ ) is
Gaussian as well and we can derive it in a closed form.

Alternatively, we can solve for the latent imageI using the
Wiener filter (Eq20) and expressp(B̄|φ̄) as follows:

logp(B̄|φ̄) = logp(Ĩ , B̄|φ̄)+ Ψ̃+C4 (24)
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Figure 3: Synthetic visualizations of the reconstruction quality. We optimized the exposure lengths of each camera. First
column: The object motion during the exposure. The green disc denotes the velocity range covered by the orthogonal parabolic
camera, and the red arrow denotes the object velocity. Othercolumns show the Wiener deconvolution results using the true
PSFs. The orthogonal parabolic camera outperforms other optimized solutions in deblurring moving objects.

where C4 is a constant,Ψ̃ = ∑ω logΨω , and Ψω =
1

η2 ∑ j ‖φ̂ j
ω‖2 + σ−2

ω is the variance ofp( ¯̂Bω | ¯̂φω ). This ex-
pression is more useful because it allows us to compute
p(B̄|φ̄ ) in local image windows.

We estimateφ̄ by evaluating the log likelihood Eq24 on
a set of PSF pairs that correspond to discretized 2D linear
motions, and choosing the pair with the highest value.

Local kernel estimation: If there are multiple motions in
the scene, we need to locally estimate the blur. LetĨs be
images generated by deconvolvinḡB with motion kernels
φ̄s, and letB̃s = φ j

s ⊗ Ĩs be the reconvolved image. Using
Eq24, we can approximate the scorep(B̄|φ̄s) locally:

logp(B̄(i)|φ̄s) ≈− 1
η2 ∑

j
∑

k∈N(i)

|B j(k)− B̃ j
s(k)|2

−ρ(gx,i(Ĩs))−ρ(gy,i(Ĩs))+
1
N

Ψ̃
(25)

whereN = 15×15 is the window size andN(i) is the win-
dow around the pixeli.

Handling motion boundaries : There are regions next to
motion boundaries that are visible in one image but not in
the other. The observation model (Eq21) is inconsistent in
such regions and the joint deconvolution leads to artifacts.
We use the image deblurred using only one of the two in-
put images to fill in the motion boundary. We automatically

detect the motion boundary by also considering kernel can-
didates with a single image observation (i.e.B2 = 0,φ2 = 0
in the log-likelihood (Eq21)). We add a fixed penalty (set
to 0.15 for all experiments) to using a single image solution.
Otherwise, the log-likelihood (Eq25) always favors a single
image solution. Note that the high frequency content may
not be well maintained in such regions.

Multi-scale PSF estimation : The blur-free image quality
depends on how finely we sample the 2D linear motions.
We resort to a coarse-to-fine strategy to search over linear
motions. We discretize 2D linear motions into 4500 sam-
ples at the finest resolution. We down-sample input images
B̄ by a factor of 4 to reduce the number of pixels and the
motion search space: blur kernels from adjacent velocity
samples look identical in a down-sampled image. At the
coarsest scale, we search 2× 4500/(42) velocity samples
(single-image explanations incur the factor 2) for the kernel
estimate. We propagate the estimates to a finer resolution
to refine the estimates. At each spatial scale, we regularize
the estimate using a Markov random field. Each node corre-
sponds to a pixel, and the states at each node are the kernel
pairs, with the local evidence Eq25. The potential between
nodes is designed to favor the same states in the neighboring
node, and favor the state transition where the image gradient
between the deblurred images is small [1, 13].

We use the regularized kernel map to reconstruct the sharp
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Figure 4: (a) A diagram of our prototype. (b) A photograph
of the actuators and the sensor.

image Ĩ . We deconvolve input images̄B with all possible
kernelsφ̄sx,y and generate a set of deconvolved imagesĨsx,y.
We reconstruct̃I from Ĩsx,y by selecting the pixel value from
image deblurred with the estimated kernel at each pixel. We
blend different layers using the Poisson blending method
[16] to reduce artifacts at abutting motion layers.

4. Experiments

4.1. Prototype camera

We built a prototype camera, different from Levinet al.
[14], consisting of a sensor, two motion stages and their
controllers. We mounted a light-weight camera sensor on
two motion stages, where each can move the camera sensor
along orthogonal axes (See Figure4(a)). In each image cap-
ture, one of the motion stages undergoes parabolic motion,
approximated with 19 segments of constant velocity due to
control constraints. In practice, we could replace the motion
stages with the image stabilization hardware. The camera
lens is affixed to the camera lid, and does not move during
exposure. The total exposure time for taking two images is
500ms: 200ms for each image, with a delay of 100ms be-
tween exposures. We incur a 100ms delay for switching the
control from one motion stage to another, which can be re-
duced by using an improved hardware.

4.2. Results

Figure5 illustrates the deblurring pipeline. First, we cap-
ture two images with the detector undergoing a parabolic
motion in orthogonal directions. From the two images, we
estimate a motion map, shown colored using the velocity
coding scheme of the inset. We use the motion map to re-
construct the image. For reference we show an image taken
with a static camera with 500ms exposure, synchronized to
the first shot of the orthogonal parabolic camera. The refer-
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Figure 6: Images taken with a synchronized static camera
and deblurred images from the orthogonal parabolic cam-
era. Images from a static camera with 500ms exposure are
shown for reference. Arrows on reference images show the
direction and magnitude of motion.

ence image reveals the object motion during the orthogonal
parabolic camera’s image capture.

We present more deblurring results on natural motions in
Figure6, using parabolic exposure to capture the motions in
generic, non-horizontal directions. Images from the static
camera (500ms exposure) reveal the motions, shown by red
arrows. Some artifacts can be seen at motion boundaries but
in general the reconstructions are visually plausible. In the
second column of Figure6, we show a deblurring result for a
perspective motion blur. While the perspective motion does
not conform to the constant object velocity motion model,
our system still recovers a reasonably sharp image.

5. Discussions and conclusions

We present a two-exposure solution to removing spatially
variant 2D constant velocity motion blur. We show that the
union of PSFs corresponding to 2D linear motions occupy a
wedge of revolution in Fourier domain, and that the orthog-
onal parabolic motion paths approach the optimal bound up
to a multiplicative constant.

We assume that objects move at a constant velocity within
the exposure time, which is a limitation shared by most pre-
vious work that deals with object motion. Camera shake,
which typically exhibits complex kernels, needs to be han-
dled separately. Our camera captures image information al-



x-parabolic camera y-parabolic camera

Input images Estimated motion Deblurred image From a static camera

sx

sy

Figure 5: The deblurring process pipeline: two images taken with the orthogonal parabolic cameras are used to locally
estimate the motion. The motion estimate is presented with the color coding scheme in the inset, and pixels taken from images
deblurred with a single input image are within black bounding boxes. The image pair is deconvolved using the estimated
motion map. The image taken with a synchronized static camera with 500ms exposure is shown for reference.

most optimally, but does not provide guarantees for the ker-
nel estimation performance. While taking two images cer-
tainly helps the kernel estimation, designing a sensor motion
that optimizes both kernel estimation and information cap-
ture is an open problem. Our image reconstruction takes
into account occlusions by allowing some pixels to be re-
constructed from a single image, but a full treatment of oc-
clusion for deconvolution remains an open challenge. Our
solution uses two exposures in order to cover the full veloc-
ity range while minimizing the number of shots to reduce
the time overhead and additive noise penalty. The compre-
hensive study of solutions relying on an arbitrary number of
exposures is, however, an important open question which re-
quires careful modeling of the noise characteristics and the
per-shot time overhead.
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