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Abstract

Multi-camera systems have evolved greatly over time and have been used to solve a variety of problems in
computer vision that are intractable using a single camera. However, properly using the additional informa-
tion gained from multiple views poses many challenges. In this dissertation, we explore novel methodologies
for solving classic and innovative tasks in computer vision, using multiple cameras under different setups.

We consider first the use of dedicated, controlled, multi-camera systems for analyzing and visualizing
the 3D content of a scene. In particular, we address the fundamental problem of accurately reconstructing
the structure and 3D motion of a dynamic scene. Our main contributions in these studies are novel 3D for-
mulations which allows which allow an efficient fusion and analysis of spatial-temporal information gained
by multiple cameras. We demonstrate that the proposed methods overcome significant challenges such as
occlusions and discontinuities in both time and space.

On the visualization side, we introduce the problem of stereo retargeting, i.e., changing the aspect ratio
of a pair of stereo images. We present a novel method that takes advantage of both appearance and depth
cues and can deal with scenes that are more difficult to deal with using single-image seam carving. A key
property of our method is that it guarantees that the retargeted pair is geometrically consistent with a feasible
3D scene, similar to the original one. Hence, the retargeted stereo pair can be viewed on a stereoscopic
display or further processed by any computer vision algorithm that makes use of a stereo pair.

Finally, motivated by the increasing popularity of cellphone cameras, we consider a new type of a multi-
camera system that consists of a set of cellphone cameras held by a group of freely moving people. Such
a setup, which we term CrowdCam (a crowd-based camera), is emerging as the most popular means of
casually capturing dynamic events. As CrowdCam is operated by uncooperative photographers, there is no
coordination in the capturing time as there would be in traditional multi-camera systems, and there is no
continuity between the images as there would be in a video. Moreover, the data obtained by CrowdCam
lacks accurate temporal information since the cameras cannot be assumed to be calibrated or synchronized.
A first step toward developing tools that analyze, explore and visualize CrowdCam images is to recover the
temporal order of the images. We term this problem photo-sequencing and present novel geometry-based
solutions to it.
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Chapter 1

Introduction

The use of multi-camera systems dates back to the early 19th century, when stereo photography was very
much in fashion (Fig. 1.1(a)). Since the first stereo cameras, the technology has developed tremendously
and new forms of multi-camera systems that contain from dozens up to thousands of lenses have become
available. But, why do we need more than one camera?

A single camera provides only limited information of the entire scene due to its restricted field of view,
occlusions in the scene, and loss of information when projecting the 3D world onto 2D images. The addi-
tional information gained by multiple cameras allows us to overcome these limitations and to address novel
challenging tasks that are intractable using a single camera. Such tasks include 3D scene reconstruction
(e.g., [83, 86]), 3D motion estimation, high-performance imaging (e.g., [106]), tracking (e.g., [46, 31]),
autonomous robot navigation, and virtual-reality applications (e.g., [75]). Yet, using the information from
multiple cameras poses new challenges that call for new models and algorithms. This dissertation focuses on
the use of multi-camera systems under different configurations to solve classic and novel tasks in computer
vision.

Nowadays, multi-camera systems in a variety of configurations are becoming increasingly prevalent.
Typical setups (see examples in Fig. 1.1) range from a set of standard digital cameras connected to a shared
platform, e.g., surveillance cameras or cellphone cameras, to built-in platforms such as camera arrays (e.g.,
ProFusion 25) or light-field (plenoptic) cameras (e.g., Lytro). The choice of setup depends on the task to be
performed and the type of data we wish to obtain.

Dedicated Controlled Setups: Existing multi-camera based methods often use dedicated setups that are
designed to meet specific requirements such as coverage of the scene or baseline between the cameras. For
example, tracking methods typically place the cameras to maximize the coverage of the scene and to reduce
target occlusion. In multi-view stereo [82], where the goal is to obtain a complete 3D reconstruction of an
object, the cameras are usually placed to cover 360◦ of the object, e.g., they are placed on a sphere centered
at the object. Most of the methods also rely on full calibration and synchronization of the cameras: their
location, viewing direction, internal parameters and the capturing time are known and are fully controlled.
This allows for geometric as well as temporal constraints between the cameras to be imposed, and hence
facilitates the integration and analysis of the data.

This dissertation addresses, first, the fundamental problem of accurately reconstructing the 3D structure
and 3D motion of a dynamic scene using dedicated, controlled multi-camera systems. Solving this problem
is crucial to various applications such as motion analysis from moving platforms, or 3D television. We have
developed new methodologies that demonstrate how efficient fusion and analysis of the spatial and temporal
information from multiple cameras overcomes significant challenges such as occlusions, and discontinuities
in both time and space.

In addition to analyzing the data provided by multiple cameras, we are also interested in visualizing it.

1
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a b

Figure 1.1: Multi-camera systems under different configurations

In particular, we address the problem of stereo retargeting, i.e., changing the aspect ratio of a pair of stereo
images. Our method guarantees, as we formally prove, that the retargeted pair is geometrically consistent
with a feasible 3D scene, similar to the original one. Hence, the retargeted stereo pair can be viewed on a
stereoscopic display or further processed by any computer vision algorithm that makes use of a stereo pair.

Uncontrolled Setups: Despite the demonstrated benefits, dedicated fully controlled setups are impractical
in many real-life scenarios due to the difficulty in deploying and operating them. This generated our interest
in considering a new multi-camera setup that consists of a set of cellphone cameras held by a group of freely
moving people. Such a setup, which we term CrowdCam (a crowd-based camera), is emerging as the most
popular means of casually capturing dynamic events such as sport events, concerts, and family gatherings.
As CrowdCam is operated by moving, uncooperative photographers, each image is generally captured from
a different location at a different time. Thus, there is no coordination in the capturing time as there would
be in traditional multi-camera systems, and there is no continuity between the images as there would be in
a video. That is, the set of images can be regarded as a sparse, non-uniform, sampling of multiple videos
taken by freely moving cameras. How can this new and important source of information about our dynamic
world be used? Is it possible to explore, visualize and analyze the dynamic content of the scene using the set
of still images obtained by a CrowdCam?

A first essential step towards answering these questions is recovering the temporal order of the images.
Clearly, temporal order is available when all images are taken from the same camera, as in a video sequence.
In CrowdCam, however, the only temporal information is that given by the inaccurate phone clocks. This
led us to define a novel problem termed photo-sequencing – recovering the temporal order of a set of still
images of an event taken at roughly the same time. We have developed novel geometric-based solutions to
photo-sequencing that were successfully tested on challenging synthetic as well as real-world datasets.

We next elaborate on each of the problems addressed in this dissertation and outline our solution.

1.1 Accurate Scene Flow and Structure Estimation

In our studies [27, 28, 23], the primary objective is to accurately recover both the 3D structure and the 3D
motion field of a dynamic scene captured with a calibrated and synchronized multi-camera system. In the
scope of this dissertation, the 3D motion is regarded as a dense 3D field of a non-rigid 3D scene, also known
as scene flow (Vedula et al. [98]). It follows directly from this definition that 3D recovery of the surface
must be an essential part of scene flow algorithms, unless it is given a priori.

Solving the joint problem of 3D structure and scene flow estimation requires matching pixels or regions
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Figure 1.2: CrowdCam

of the same scene taken from different views at different time steps. Establishing correspondence raises
several classic challenges. The first is the variations between corresponding pixels in time and space, mainly
due to dissimilar appearance of the scene when captured from different points of view. Ambiguities in
low-texture regions is another challenge that must be dealt with. Finally, occlusions, that is, regions that
are visible in one image but have no counterparts in all other images, are present in both space and time
domains. Occluded regions usually do not comply with the imposed assumptions for solving correspondence
and should be integrally handled as part of the solution.

One of the first and crucial questions is how to represent the problem. This can be done either in 2D
or in 3D. Most of the existing methods use 2D parametrization, i.e., they estimate the optical flow and
disparity fields (which are the projection of the 3D structure and scene flow onto the image plane). The main
advantage of using 2D parametrization is that the image data is directly related to the recovered 2D unknown.
However, representing the problem in 3D makes it possible to impose smoothness assumptions directly on
the 3D unknowns prior to their projection. Moreover, the number of unknowns remains minimal, regardless
of the number of views. Hence, it allows direct extension to multiple views, without changing the problem’s
dimension.

Another important factor is the number of cameras used. A minimum of two cameras is obligatory, yet,
additional cameras can provide valuable information that can be used to reduce ambiguities and improve the
robustness to noise. In addition, configuration of the cameras (i.e., location, baseline, etc.) have impact and
the solution and should be taken into consideration.

In both our studies [27, 28] and [23], we chose to represent the problem in 3D using multiple cameras
under different configurations. We next describe the outline and main contributions of each of the methods.

1.1.1 A View Centered Variational Approach

Most existing methods decouple the structure and scene flow estimation, and solve each of the problems
independently. As a result, the available spatio-temporal information is not fully utilized. Moreover, relying
on previous solutions of the other problems (e.g., structure from motion), may lead to error accumulation.
In our study [28], we suggest a new method that unifies these problems and simultaneously computes both
the 3D structure and the scene-flow. We propose a new 3D point cloud parametrization that allows us to
directly estimate the desired 3D unknowns and integrate the information from multiple views. We define
a unified global energy functional that enforces multi-view geometric consistency and imposes brightness
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constancy and piecewise smoothness assumptions directly on the 3D unknowns. It inherently handles the
challenges of discontinuities, occlusions, and large displacements. This functional results in a non-convex
minimization problem that is solved using an advanced variational method. Combining our 3D representation
in that variational framework allows us to advantageously bind the 3D unknowns in time and space. In
contrast to optical flow and disparity, the proposed method results in a nonlinear mapping between the
images’ coordinates, thus giving rise to additional challenges in the optimization process. Our experiments
on synthetic and real data demonstrate that the proposed method successfully recovers the 3D structure and
scene flow despite the complicated nonconvex optimization problem.

1.1.2 Scene Registration

In concept, the more cameras we use, the more information we have about the 3D scene. However, each
view increases the prevalence of occluded regions. Occluded regions usually do not comply with the im-
posed photo-consistency assumptions for solving correspondence, and hence can have a crucial influence
on the final results. Most existing methods for scene-flow or multi-view reconstruction explicitly handle
the occlusion problem by defining a visibility model, to determine the occlusion relationship between the
recovered 3D points. The visibility model determines which images should participate in the estimation of
the photo-consistency measure. The photo-consistency measure and the visibility model interfere with each
other because errors in the photo-consistency measure affect the visibility modeling and vice versa. Thus,
despite many advances in recent years handling occlusions and the resulting discontinuities is still an open
research problem.

In our study [23], we sidestep the need to recover or handle occlusions and do not require explicit
reasoning about discontinuities, a requirement that adversely affects scene flow methods. We use a dense,
calibrated and synchronized multi-camera array to capture a dynamic nonrigid 3D scene at two time steps.
The key idea of our method is to convert the input sets of images into a novel volumetric space. In this
volume both real scene points and points in free space are represented by a scalar value and a confidence
measure. With this representation, the problem of 3D structure and 3D motion estimation of a scene is
reduced to a nonrigid registration of two volumes – hence the term Scene Registration. Registering two
dense 3D scalar volumes does not require recovering the 3D structure of the scene as a pre-processing step,
nor does it require explicit reasoning about occlusions. From this nonrigid registration we accurately extract
the 3D scene flow and the 3D structure of the scene, and successfully recover the sharp discontinuities in
both time and space. We demonstrate the advantages of our method on a number of challenging synthetic
and real data sets.

1.2 Geometrically Consistent Stereo Seam Carving

So far, we have discussed our methods for analyzing a scene captured by multiple cameras. In our work
[24, 25], we focus on the visualization of data obtained by a stereo camera. Nowadays, the rapid pace of
technology makes it possible to view 3D content on a large range of devices, each of which might require
a different aspect ratio, e.g., cellphones equipped with a stereo camera and 3D display or large TV screens.
In addition, stereophotography is becoming increasingly popular, with a large number of stereo images
appearing online. This was the main motivation for this study, in which we propose a novel method for
retargeting a pair of stereo images, i.e., adapting the content of stereo images to different screens.

Image retargeting of a single image or video has been extensively studied in recent years. Existing
algorithms attempt to change the aspect ratio of an image or a video in a way that does not distort the
proportions of the important objects in the image. A naive extension of single-image retargeting to stereo
images is to independently retarget each of the images. This approach disregards the geometry and thus
distorts the geometric structure and impairs the perception of the 3D structure of the scene. We show how
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to generalize the single-image seam carving algorithm to work on a pair of images. Seam carving is a
well-established algorithm that works by iteratively computing a seam, i.e., a connected path in the images,
with minimal visual distortion in the image and removing it. Our method minimizes the visual distortion in
each of the images as well as the depth distortion. A key property of the proposed method is that it takes
into account the visibility relations between pixels in the image pair (occluded and occluding pixels). As
a result, our method guarantees, as we formally prove, that the retargeted pair is geometrically consistent
with a feasible 3D scene, similar to the original one. Hence, the retargeted stereo pair can be viewed on a
stereoscopic display or further processed by any computer vision algorithm that makes use of a stereo pair
(e.g., cosegmentation or tracking). We demonstrate the advantages of our method on several challenging
stereo images and compare it to current state-of-the-art stereo retargeting methods.

1.3 Photo Sequencing

A group of people taking pictures of a dynamic event with their mobile phones is a popular sight. The set
of still images obtained this way is rich in dynamic content but lacks accurate temporal information. This
led us to define a novel problem termed photo-sequencing – temporally ordering a set of still images taken
asynchronously by a set of uncalibrated cameras [10, 26]. Solving this problem is a first, crucial step in
analyzing (or visualizing) the dynamic content of the scene captured by a large number of freely moving
spectators.

In our studies [10, 26, 11], we suggest two novel 2D geometric based solutions to the photo-sequencing
problem that can be roughly divided into three main steps. In the first step, we detect sets of corresponding
static and dynamic feature points across the input images. The static features are used to determine the
epipolar geometry between pairs of images, whereas the dynamic features provide the temporal information.
In the second step, each set of corresponding dynamic features is used to compute the temporal order of
the images in which it appears. The partial orders provided by the dynamic features are not necessarily
consistent due to matching errors and noise. Hence, in the final step, we combine them into a globally
consistent temporal order of images using rank aggregation.

The main difference between the proposed methods [26] and [11] is in the non-trivial step of determin-
ing the partial order from a single set of corresponding dynamic features. What makes this problem so
challenging is the uncertainty both in time and space. That is, each feature set contains the projections of a
3D dynamic point onto different viewpoints at a different time instance. In [26], we rely on the assumption
that two of the images are captured from the same location (i.e., by a static camera). Under linear motion of
each of the dynamic features, this assumption allows us to eliminate the uncertainty in space and to compute
a unique ordering by mapping all the features to the same reference image. However, such a pair must be
detected automatically, which is not a trivial task. More disturbing is the fact that all feature points must
appear and be matched to features in the static pair. This complicates the correspondence problem and limits
the spatio-temporal extent of the event that can be captured.

To overcome these limitations, we propose in [11] to trade spatial certainty for temporal certainty. In
particular, we drop the static-camera assumption and replace it with temporal information available from
images taken from the same (moving) camera. We show that, using both the spatial and the temporal con-
straints, a small number of temporal orders can be determined from each feature set. This approach allows
us to sidestep the need to establish correspondence w.r.t. a specific image. As a result, it scales better than
the previous solution when the distance between the cameras, or the time interval within which the images
are taken, grows.



Chapter 2

Multi-View Scene Flow Estimation: A View
Centered Variational Approach

2.1 Introduction

The structure and motion of objects in a 3D space is an important characteristic of dynamic scenes. Reliable
3D motion maps can be utilized in many applications, such as surveillance, tracking, dynamic 3D scene
analysis, autonomous robot navigation, 3D display devices, or virtual reality. In the last decade, an emerging
field of research has addressed the problem of scene flow computation. Scene flow is defined as a dense
3D motion field of a nonrigid 3D scene (Vedula et al. [98]). It follows directly from this definition that 3D
surface recovery must be an essential part of any scene flow algorithm, unless it is given a priori. Our objec-
tive is to simultaneously compute the 3D structure and scene flow from a multi-camera system. The system
consists of N calibrated and synchronized cameras with overlapping fields of view. A unified variational
framework is proposed to incorporate the information from the available sequences and simultaneously re-
cover both depth and scene flow. To describe our method, we next elaborate on the parametrization of the
problem, the integration of the spatial and temporal information from the set of sequences, and the setting of
a global energy functional together with the variational framework used for solving it.

Most existing methods for scene flow and surface estimation parameterize the problem in 2D rather
than 3D (e.g., [118, 119, 99, 44, 60, 43, 103, 54, 66]). That is, they compute disparity (stereo), which
is the projection of the desired 3D shape, and the optical flow, which is the projection of the 3D motion
(Figure 2.1b). The relation between the scene flow and its projection is presented in Figure 2.1a. Assuming
that reliable and consistent solutions of both stereo and optical flow are given, the scene flow and the 3D
structure can be directly computed. This can be done, for example, by obtaining the 3D shape from the
stereo in two time steps and deriving the scene flow from the optical flow in one of the images.

We propose a 3D point cloud parametrization of the 3D structure and 3D motion, with respect to a
reference view (often referred as 2.5D parameterization). That is, for each pixel in a reference view, a
depth value, P, and a 3D motion vector, V, are computed (see Figure 2.1a). A similar parametrization
for only 3D reconstruction was used by Robert & Deriche [72]. The advantage of using 3D rather than
2D parametrization is that it allows primary assumptions to be imposed on the unknowns prior to their
projection. For example, a constant 3D motion field of a scene may project to a discontinuous 2D field
(Figure 2.2). Hence, in this example, smoothness assumptions hold for 3D parametrization but not for 2D.
In addition, 3D parametrization allows direct extension to multiple views, without changing the problem’s
dimension. That is, the number of unknowns remains minimal, regardless of the number of views. This is
in contrast to 2D parameterization where each additional view requires an additional set of parameters (e.g.,

This work was published in CVPR 2010 [27], and IJCV 2013 [28].
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(a) (b)

Figure 2.1: (a) The point P is projected to pixels p0 and p1 on cameras C0 and C1, respectively. The new 3D location
at t+ 1 is given by P̂ = P + V and it is projected to p̂0 and p̂1. In this example, V is the 3D motion while v = p̂0−p0

is the optical flow. (b) The 2D relation between corresponding points in two views at two time steps (optical flow and
disparity fields).

disparity or optical flow maps).
We suggest coupling the spatio-temporal information by simultaneously recovering the scene flow and

3D structure. This approach is in contrast with previous approaches that decouple the scene flow and 3D
structure problems (e.g., [98, 99, 118, 119, 19, 67, 103]). When the scene flow and 3D structure are de-
coupled, the two problems are solved sequentially. As a result, the spatio-temporal information is not fully
utilized. In Vedula et al. [99], for example, the optical flow field is computed independently for each cam-
era without imposing consistency between the flow fields. Another example of the limitations of decou-
pling is the study by Wedel et al. [103], where consistency is enforced on the stereo and motion solutions.
Since the disparity map is computed separately, the results are still sensitive to its errors. Previous ap-
proaches for simultaneous recovery of scene flow and 3D structure help overcome these limitations (e.g.,
[97, 44, 60, 43, 61]) but most rely on and hence suffer from the limitations of 2D parametrization; in partic-
ular, they are limited to two views. Our method simultaneously utilizes the multi-view information using 3D
representation to improve the stability of the results and reduce possible ambiguities. (We extend on other
methods that couple the multi-view information using 3D representation in Section 2.1.1).

The 3D parametrization and the spatio-temporal information from the set of sequences are used to define
a global energy functional. The energy functional incorporates the multi-view geometry with a brightness
constancy (BC) assumption (data term). Regularization is imposed by assuming piecewise smoothness di-
rectly on the 3D motion and depth. We avoid the linearization of the data term constraints to allow large
displacements between frames. Moreover, discontinuities in both 3D motion and depth are preserved by
using nonquadratic cost functions. This approach is motivated by the state-of-the-art optical flow variational
approach of Brox et al. [18]. Our method is the first to extend it to multiple views and 3D parametriza-
tion. The minimization of the resulting nonconvex functional is obtained by solving the associated Euler-
Lagrange equations. We follow a multi-resolution approach coupled with an image-warping strategy.

We tested our method on challenging real and synthetic data. When ground truth is available, we propose
a new evaluation of scene flow based on the 3D errors rather than the conventional 2D error. We argue that
the 2D errors traditionally used for evaluating stereo and optical flow algorithms do not necessarily correlate
with the 3D errors. In particular, we show that the ranking of stereo algorithms (e.g., [79]) may change when
the 3D errors are considered.

The main contribution of this paper is to combine a novel 3D formulation with an accurate global energy
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functional that explicitly describes the desired assumptions on the 3D structure and scene flow. The func-
tional inherently handles the challenges of discontinuities, occlusions, and large displacements. Combining
our 3D representation in that variational framework leads to a better constraint problem that directly utilizes
the information from multi-view sequences. As demonstrated in our experiments, we successfully recover
the 3D structure and scene flow despite the challenging nonconvex optimization problem.

The rest of the paper is organized as follows. We begin with reviewing related studies in Section 2.1.1.
Section 2.2 describes our method. Section 2.3 provides insight into our quantitative 3D evaluation measures.
In Section 5.4 we present the experimental results. We conclude in Section 5.5.

2.1.1 Related Work

To the best of our knowledge, our view-centered 3D point cloud representation has not been previously
considered for the scene flow recovery problem. Other 3D parameterizations, that are not view dependent,
were studied: 3D array of voxels, Vedula et al. [98], various mesh representations [33, 22, 61] and dynamic
surfels [19]. In contrast to our method, each of these 3D representations can provide a complete, view-
independent 3D description of the scene. However, the scene that can be considered is often limited by the
representation (e.g., a single moving object) and a large number of cameras is required in order to benefit
from their choice of parametrization. In addition, in these representations, the discretization of the 3D space
is often independent of the actual 2D resolution of the available information from the images.

The studies most closely related to ours in the sense of numeric similarity are [43, 103]. Huguet &
Devernay [43] proposed to simultaneously compute the optical flow field and two disparity maps (in suc-
cessive time steps), while Wedel et al. [103] decoupled the disparity at the first time step from the rest of
the computation. Both extend the variational framework of Brox et al. [103] for solving for scene flow
and structure estimation. In these studies regularization is imposed on the disparity and optical flow (2D
formulation), while our assumptions refer directly to the 3D unknowns. Nor were these methods extended
to multiple views.

A multi-view energy minimization framework was presented by Zhang & Kambhamettu [118]. A hi-
erarchical rule-based stereo algorithm was used for initialization. Their method imposed optical flow and
stereo constraints while preserving discontinuities using image segmentation information. Each view results
in an additional set of unknowns, and the setup is restricted to a parallel camera array. Another multi-view
method was suggested by Pons et al. [67]. They use a 3D variational formulation in which the prediction
error of the shape and motion is minimized by using a level-set framework. However, the shape and motion
are sequentially computed.

There are only a few multi-view methods that use 3D representations and simultaneously solve the 3D
surface and motion. Neumann & Aloimonos [61] modeled the object by a time-varying subdivision hierar-
chy of triangle meshes, optimizing the position of its control points. However, their method was applied
only to scenes which consist of one connected object. Furukawa & Ponce [33] constructed an initial polyhe-
dral mesh at the first frame. It is tracked assuming locally rigid motion and globally nonrigid deformation.
Courchay et al. [22] represented the 3D shape as an animated mesh. The shape and motion are recovered by
optimizing the positions of its vertices under the assumption of photo-consistency and smoothness of both
the surface and 3D motion. Nevertheless, both methods Courchay et al. [22] and Furukawa & Ponce [33]
are limited due to the fixed mesh topology.

2.2 The Method

Our goal is to simultaneously reconstruct the 3D surface of a 3D scene and its scene flow (3D motion)
fromN static cameras. The cameras are assumed to be calibrated and synchronized, each providing a pair of
successive frames of the scene. We assume brightness constancy (BC) in both spatial (different viewpoints)
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(a) (b)

Figure 2.2: (a) The Middlebury stereo dataset, Cones. The scene flow, V, is constant for all image points since only
the camera translates. (b) The horizontal component of the projected scene flow, the optical flow. It depends on the 3D
point location.

and temporal (3D motion) domains. We formulate an energy functional which we minimize in a variational
framework by solving the associated Euler-Lagrange equations.

2.2.1 System Parameters and Notations

Consider a set of N calibrated and synchronized cameras, {Ci}N−1
i=0 . Let Ii(x, y, t) : Ω ⊂ R3 → R3, be the

sequence taken by camera Ci. Let M i be the 3 × 4 projection matrix of camera Ci. The projection of a 3D
surface point P = (X,Y, Z)T onto an image of the ith sequence at time t is given by:

pi =

(
xi
yi

)
=

[M i]1,2[P 1]T

[M i]3[P 1]T
, (2.1)

where [M i]1,2 is the 2× 4 matrix which contains the first two rows of M i and [M i]3 is the third row of M i.
Let V = (u, v, w)T be the 3D displacement vector of the 3D point P (in our notation bold characters

represent vectors). The new location of a 3D point P after the displacement V is denoted by P̂ = P + V. Its
projection onto the ith image at time t+ 1 is denoted by p̂i (see Figure 2.1a).

Assume without loss of generality that the 3D points are given in the coordinate system of the reference
camera, C0. In this case, the X and Y coordinates are functions of Z and are given by the back projection:(

X
Y

)
= Z

(
x/sx
y/sy

)
− Z

(
ox/sx
oy/sy

)
, (2.2)

where sx and sy are the scaled focal lengths, (ox, oy) is the principal point, and (x, y)T are the reference
image coordinates. We directly parameterize the 3D surface and scene flow with respect to (x, y) and t. In
particular, given the time step, t, the surface and scene flow are represented as the 3D functions, P(x, y, t) :
Ω ⊂ R3 → R3 and V(x, y, t) : Ω ⊂ R3 → R3, respectively. That is,

P(x, y, t) = (X(x, y, t), Y (x, y, t), Z(x, y, t))T , (2.3)

V(x, y, t) = (u(x, y, t), v(x, y, t), w(x, y, t))T . (2.4)

Note that P(x, y, t + 1) is the 3D surface point which is projected to pixel p = (x, y)T at time t + 1.
Obviously, it is different from P̂, which is projected to a different image pixel p̂ (unless there is no motion).
From this point, we will refer to P and V at a fixed time step, t. Hence, the temporal dependency of P and V
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Figure 2.3: Two adjacent pixels in camera C0 correspond to two distance pixels in camera, C1. Hence, the gradient of
pixel p0 in C0 is generally different from the gradient of its corresponding pixel, p1 in C1.

will be disregarded.
For each image point in the reference camera, (x, y), and a single time step, there are six unknowns:

three for P and three for V. However, since X and Y can be determined by Eq. 2.2 as functions of Z and
(x, y), there are only four unknowns for each image pixel. In particular, the 3D point P is given by:

P(x, y) =

 X
Y
Z

 = Z(x, y)

 x/sx − ox/sx
y/sy − oy/sy

1

 . (2.5)

We aim to recover Z and V as functions of (x, y), using the N pairs of images.
In this representation, the number of unknowns is independent of the number of cameras. Hence, a multi-

view system can be efficiently used without changing the dimensions of the problem. This is in contrast to
previous methods that use 2D parametrization, e.g., [43, 103, 54, 88], where additional cameras require
additional sets of unknowns (e.g., optical flow or disparity field). Moreover, our representation does not
require image rectification.

2.2.2 The Energy Functional

The total energy functional we aim to minimize is a sum of two terms:

E(Z,V) = EData + αESmooth. (2.6)

The data term Edata expresses the fidelity of the result to the model. Recovering the surface and scene flow
by the minimization of Edata alone is an ill-posed problem. Hence, regularization is used, mainly to deal
with ambiguities (low texture regions) and image noise. In addition, the regularization is used to obtain
solutions for occluded pixels (see Section 2.2.4). The relative impact of each of the terms is controlled by
the regularization parameter α > 0. Next, we elaborate on each of these terms.

Data Term:: The data term imposes the brightness constancy assumption in both spatial and temporal
domains. That is, the intensity of a 3D point’s projection onto different images before and after the 3D
displacement does not change. Additionally, our 3D parametrization forces the solution to be consistent with
the 3D geometry of the scene and the camera parameters. In particular, the epipolar constraints are satisfied.

The brightness constancy assumption is generalized for all N cameras and for both time steps. The
data term is obtained by integrating the sum of three penalizers over the reference image domain. BCm
penalizes deviation from the brightness constancy assumption before and after 3D displacement; BCs1 and
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BCs2 penalize deviation from the brightness constancy assumption between the reference view and each of
the other views at time t and t+ 1, respectively. Formally the penalizers for each pixel are defined by:

BCm(Z,V) = ∑N−1
i=0 cimΨ(|Ii(pi, t)− Ii(p̂i, t+ 1)|2),

BCs1(Z) =∑N−1
i=1 cis1Ψ(|I0(p0, t)− Ii(pi, t)|2),

BCs2(Z,V) = ∑N−1
i=1 cis2Ψ(|I0(p̂0, t+ 1)− Ii(p̂i, t+ 1)|2),

(2.7)

where Ψ(s2) is a chosen cost function and ci∗ is a binary mask that omits occluded pixels from the compu-
tation, since they are not expected to satisfy the brightness constancy assumption (see Section 2.2.4). We
use a nonquadratic robust cost function Ψ(s2) =

√
s2 + ε2, (ε = 0.0001), which is a smooth approximation

of L1 (see [18]), for reducing the influence of outliers on the functional. The outliers are pixels that do not
comply with the model due to noise, lighting changes, reflections or occlusions. In this formulation, no linear
approximations are made; hence large displacements between frames are allowed.

The parameterization used by our method (defined in Section 2.2.1) leads to nonlinear mappings between
the images’ coordinate systems to the reference image coordinate system. We extend on these mappings in
Appendix A. Observe that when 2D parameterization is considered, namely optical flow and disparity, the
mappings between the images’ coordinates are given by adding to those coordinates the optical flow and/or
the disparity fields to images’ coordinates. This simple mapping is probably one of the reasons that 2D
parameterization is often chosen to parametrize the scene flow.

In natural scenes the BC assumption does not necessarily hold for all pixels in all frames, in particular
when considering wide baseline setup. To overcome this problem, previous studies for estimating optical
flow (e.g., [18]) or scene flow (e.g.,[43]) imposed an additional gradient constancy assumption in order
to allow deviation in the gray value. Nevertheless, since the gradient is viewpoint dependent (due to the
foreshortening effect), this assumption does not hold in the spatial domain (See Figure 2.3). Hence, we chose
not to impose the additional gradient constancy assumption. The robustness of our method to deviation from
the BC assumption is obtained by using multiple views. That is, since the data term is given by integrating
the deviation from the BC assumption over all views, each view has a relative impact on the total deviation
from the BC assumption.

Smoothness Term:: We assume that both the 3D motion field and surface are changing piecewise smoothly
w.r.t reference camera. Deviations from this model are usually penalized by using a total variation regularizer,
which is generally the L1 norm of the field derivatives. Here we use the same robust function Ψ(s2) for
preserving discontinuities in both the scene flow and depth. Using the notation, ∇ = (∂x, ∂y)

T , this can be
expressed as:

Sm(V) = Ψ(|∇u(x, y)|2 + |∇v(x, y)|2 + |∇w(x, y)|2),

Ss(Z) = Ψ(|∇Z(x, y)|2),
(2.8)

where Sm and Ss are the penalizeres of deviation from the motion and shape (piecewise) smoothness as-
sumption, respectively. Note that the first order regularizer gives priority to fronto-parallel solutions. In
future work we intend to explore a general smoothness constraint that is unbiased to a particular direction.
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For example, a second order smoothness prior [110] might be more suitable in our framework. In addition,
the current regulazier depends on the depth range in the scene. Therefore, a normalization that takes into
account the depth values in each pixel may be desirable.

The total energy function is obtained by integrating the penalty (Eq. 2.7-2.8) over all pixels in the refer-
ence camera, Ω:

E(Z,V) =

∫
Ω

[BCm +BCs︸ ︷︷ ︸
Data

+α (Sm + µSs)︸ ︷︷ ︸
Smooth

]dxdy, (2.9)

where BCs = BCs1 +BCs2 , and µ > 0 is a parameter used to balance the motion and the surface smooth-
ness.

2.2.3 Optimization

We wish to find the functions Z,V that minimize our functional (Eq. 2.9) by means of calculus of variations.
Calculus of variations supplies a necessary condition to achieve a minimum of a given functional, which is
essentially the vanishing of its first variation. This leads to a set of partial differential equations (PDEs) called
Euler-Lagrange equations. In our case the associated Euler-Lagrange equations can generally be written as:(

∂E

∂Z
,
∂E

∂u
,
∂E

∂v
,
∂E

∂w

)T
= 0. (2.10)

Euler-Lagrange Equations

Consider the points P, P̂, their sets of projected points {pi}N−1
i=0 , {p̂i}N−1

i=0 , and the sequences {Ii}N−1
i=0 . We

use the following abbreviations for the difference in intensities between corresponding pixels in time and
space:

∆i = Ii(pi, t)− I0(p0, t),

∆̂i = Ii(p̂i, t+ 1)− I0(p̂0, t+ 1),

∆t
i = Ii(p̂i, t+ 1)− Ii(pi, t).

(2.11)

We use subscripts to denote the image derivatives. Using the aforementioned notations, the nonvanishing
terms of the equations with respect to Z and u result in:

0 =
∑N−1

i=0 Ψ′((∆t
i)

2)∆t
i · (∆t

i)Z+∑N
i=1 Ψ′((∆i)

2)∆i · (∆i)Z+∑N−1
i=1 Ψ′((∆̂i)

2)∆̂i · (∆̂i)Z − αµ · div(Ψ′(|∇Z|2)∇Z),

(2.12)

0 =
∑N−1

i=0 Ψ′((∆t
i)

2)∆t
i · (∆t

i)u+∑N
i=1 Ψ′((∆̂i)

2)∆̂i · (∆̂i)u

−α · div(Ψ′(|∇u|2 + |∇v|2 + |∇w|2)∇u),

(2.13)

with the Neumann boundary condition: ∂nZ = ∂nu = ∂nv = ∂nw = 0, where n is the normal to the image
boundary. The Euler-Lagrange equations with respect to v and w are similar to Eq. 2.13. Observe that the
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Figure 2.4: Illustration of the difference between the disparity errors originating from the opposite sign of the 3D error:
the green line represents the ground truth depth Z; the blue and orange lines represent positive and negative erroneous
depths, respectively; and p1 and q2 are their projection onto camera C1, which results in different absolute values of
the disparity error.

first variation of the functional with respect to Z involves computing the derivatives of all images (none of
them vanish). This enforces the desired synergy of the data from all sequences.

At this point, it is worth noting that the pixels are nonlinear functions of the 3D unknowns due to per-
spective projection. As a result, the computation of image derivatives with respect to Z and V requires using
the chain rule, often in a nontrivial manner (see Appendices, A-B).

Numerics

Our parametrization and functional represent precisely the desired model (no approximations are made),
resulting in a complicated minimization problem. In particular, the use of nonlinearized data terms and
nonquadratic penalizers yields a nonlinear system in the four unknown functions Z and V (e.g., Eq. 2.12-
2.13). Therefore, one has to deal with the problem of multiple local minima as a result of the nonconvex
functional. In our method, the derivation and discretization of the equations results in additional complexity
since the perspective projection is nonlinear in the unknowns Z and V (see Appendices, A-B).

We cope with these challenges by using a multi-resolution warping method coupled with two nested
fixed point iterations as previously suggested by [18]. The multi-resolution approach is employed by down-
sampling each input image to an image pyramid with a scale factor η. The original projection matrices are
modified to suit each level by scaling the intrinsic parameters of the cameras. The amplitude of our 3D
unknowns remains fixed regardless to the pyramid level used. (Note that the amplitude of the optical flow
and the disparity is scaled according to the pyramid level.) Starting from the coarsest level, the solution is
computed at each level and then utilized to initiate the lower (finer) level. This justifies the assumption of
small changes in the solution between consecutive levels. Thus, the equations can be partially linearized by
Taylor expansion. Furthermore, the effect of “smoothing” the functional in the “coarse to fine” approach
increases the chance of converging to the global minimum. We wish to avoid oversmoothing at the low res-
olution levels by keeping the relative impact of the smoothness term the same in all levels. This is obtained
by scaling the smoothness term α` = α · η` with respect to the pyramid level, `. The required resolution of
the coarsest level depends on the quality of the initial depth or flow maps. However, if the resolution is too
low, small objects might be oversmoothed. We discuss this issue in Section 5.4.

The solution in a given pyramid level is obtained from two nested fixed point iterations that are respon-
sible for removing the nonlinearity in the equations. The outer iteration is responsible for the linearizion of
the expressions given in Eq. 2.11 using the first order Taylor expansion. At each outer iteration, k, small
increments in the solutions, dZk and dVk = (duk, dvk, dwk)T , are estimated. Next, the total solution is up-
dated using Zk+1 = Zk + dZk and Vk+1 = Vk + dVk, the images are rewarped accordingly, and the image
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derivatives are recomputed (see Appendix, B). The inner loop is responsible for removing the nonlinearity
that resulted from the use of the function Ψ. At each inner iteration a final linear system of equations is
obtained by keeping Ψ

′
expressions fixed (see Appendix C.). The final linear system is solved by applying

the successive overrelaxation (SOR) method [113].

2.2.4 Occlusions

Scene points viewed by the reference camera at time t, may be occluded in one or more of the other images,
taken from a different viewpoint or at different time steps. Our method defines the correspondence between
pixels in two images using the projection of a 3D point to each of the images. Hence, when a point is
occluded in one image, its computed correspondence is incorrect. In particular, the brightness constancy
assumption is not satisfied in this case.

The use of a multi-view system in our method increases the chances of a point to be occluded in at least
one of the images, especially those taken from different distant viewpoints. Therefore, the occluded pixels
cannot be negligible or treated as outliers. To overcome this problem, the associated component of occluded
pixels should be omitted from the relevant data term. This is accomplished by computing for each view
(other than the reference) three occlusion maps, ci∗. Each map corresponds to the relevant penalizer in the
data term (Eq. 2.7). The computed maps are used as 2D binary masks on each of the data term components.
Since we use multiple views, each scene point viewed by the reference camera is expected to be visible in at
least one more view. If a point is visible only in the reference view, its solution would be determined by the
smoothness term.

It is important to consider how the occluded pixels are determined. One approach can be to directly
consider it as a part of the minimization problem (e.g., [12, 6]). For example, for computing the occluded
pixels in optical flow, the optimization may include searching for a minimal sparse set of pixels that do not
satisfy the brightness constancy assumption, [6]. However, such methods do not take into account the scene
geometry. When scene geometry and the camera parameters are known, the occluded pixels are uniquely
determined; hence, the occluded pixels cannot be added as an additional set of unknowns.

We use the computed 3D shape and motion in a given iteration for determining the visibility of each
3D surface point in each of the cameras at each time step. (A similar approach was used in [43, 102].) A

Algorithm 1 Calculate occlusion map, cis1: zero value for occluded

S ← 0 {S- source map of reference image coordinates}
cis1 ← 1 {cis1- occlusion map}
{Going over all 3D points w.r.t. the reference view}
for each 3D point P(p0) do

pi = proj(M i,P(p0)) {M i- the projection matrix}
if S(pi) == 0 then
S(pi) = p0 {pi is approached for the first time}

else
q = S(pi)
if ||P(p0)− P(q)|| > th then
{p0 and q are different 3D points}
if ||P(p0)− COPi|| < ||P(q)− COPi|| then
S(pi) = p0 {saving closest point origin}
cis1(q) = 0 {pi is the occluded}

else
cis1(p0) = 0 {pi is occluded}

end if
end if

end if
end for



CHAPTER 2. MULTI-VIEW SCENE FLOW ESTIMATION: A VIEW CENTERED VARIATIONAL APPROACH15

Figure 2.5: Comparison between the ranking order in 2D and 3D: the computed average RMS error of each algorithm
(numbered from one to ten) in 2D vs. 3D. The resulting nonmonotonic graph demonstrates the changes in the ranking

modified Z-buffering is applied for directly computing the occlusion maps. These maps are computed w.r.t
the reference image. For example, the map cis1 is computed by testing, for each pixel from camera i at time t,
its origin in the reference image. When two pixels from the reference image are mapped to the same pixel in
frame i, one of them is occluded. The occluded pixel is determined by the distances between the associated
3D points from the center of projection of camera i. The pseudocode of this algorithm is given in Alg. 1.
The other occlusion maps are computed in a similar manner. The maps are updated at each outer iteration in
order to include the increments of the unknowns in the computation.

2.3 A Note on Error Evaluation

We evaluate scene flow in 3D rather than in 2D. That is, the error is defined by the deviation of the estimated
3D point, P(x, y), and 3D motion, V(x,y), from their corresponding ground truth values,Po(x, y) and
Vo(x,y). Various statistics over these errors can then be chosen. We use the normalized root mean square
(NRMS) error, which is the percentage of the RMS error from the range of the observed values. The NRMSP
is defined by:

NRMSP =

√
1
N

∑
Ω
||P(x,y)T−Po(x,y)T ||2

max(||Po(x,y)||)−min(||Po(x,y)||) ,
(2.14)

where Ω denotes the integration domain (e.g., nonoccluded areas) and N is the number of pixels. Note that
this measure is independent of the units of Z. Similarly, the NRMSV error is computed for the 3D motion
vector V. In addition, the scene flow angular error is evaluated by computing the absolute angular error
(AAE), for the vector V.

Conventionally, evaluations of stereo, optical flow, and scene flow algorithms are performed in the image
plane. That is, the computed error is the deviation of the projection of the erroneous values in 3D from their
2D ground truth (error of the disparity or the optical flow). The proposed 3D evaluation is motivated by
the observation that the errors in 2D (in the image plane) do not necessarily approximate well nor correlate
with the errors in 3D. In particular, the 2D error at a given pixel depends not only on the magnitude of the
3D error but also on the 3D error sign (toward or away from the camera). A simple example in Figure 2.4
demonstrates how the sign of the 3D error affects the size of the 2D error. Furthermore, the 3D errors strongly
depend on the depth of the point, Z(x, y), as well as on the location within the image, (x, y). In particular,
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(a) (b) (c)

Figure 2.6: (a) Illustration of the rotation axes. The sphere is rotating around the green axis and the plane around the
blue one. (b) With texture. (c) The reference view before rotation.

using Eq. 2.2 it can be shown that Eq. 2.14 can be written as:

NRMSE3D =

√
1
N

∑
Ω

(Z(x,y)−Zo(x,y))2·w(x,y)

max(|Z(x,y)·
√
w(x,y)|)−min(|Z(x,y)·

√
w(x,y)|)

, (2.15)

where
w(x, y) = (

x− ox
sx

)2 + (
y − oy
sy

)2 + 1. (2.16)

The 3D error’s dependence on w(x, y) and on Z(x, y) is not taken into account by 2D error evaluation.
Hence the correlation between the two types of evaluation can be weak. Thus, when comparing the results
of 3D reconstruction or scene flow algorithms, the 3D evaluation may result in different ranking than the 2D.

To practically test this observation, we evaluated the results of the top ten ranked stereo algorithms in the
Middlebury stereo evaluation [78] using 2D and 3D errors. We chose to compare the ranking using the RMS
measure (since it does not require any error tolerance setting).

The errors were computed for three of the Middlebury stereo datasets, Cones, Teddy and V enus [80],
over three domains: all pixels, nonoccluded regions, and only discontinuous regions. The intrinsic param-
eters of the camera were set as explain in Section 2.4.1. Figure 2.5 shows, for each algorithm, the average
RMS error (over the three datasets and the three domains) in 2D, versus the average RMS error in 3D. As
expected, the results demonstrate that changes in the ranking indeed occur when RMS is considered. For
example, the second and third ranked algorithm in 3D RMS are ranked as the tenth and the seventh in 2D
RMS.

2.4 Results

Our algorithm was implemented in C using the OpenCV library1. Like all variational methods, our method
requires initial depth and 3D motion maps. In general, any stereo algorithm can be used for obtaining an
initial depth map. In all experiments the 3D motion field was simply initiated to zero. It is possible to
improve the trivial motion initialization, by first fixing the initial depth at the coarser levels of the pyramid
and optimizing only for U, V and W . The full optimization on both flow and depth can then start only from

1The source code is publicly available.
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Z u v w

Figure 2.7: The top figure represents, from left to right, the ground truth for the depth Z and the 3D motion u, v and
w. The bottom figure shows these results computed by our method.

an intermediate level. However, the results next presented were obtained directly with the trivial motion
initialization.

In the first two experiments, where the input images were rectified, we used the stereo algorithm proposed
in [32]. In the third experiment, to avoid rectification of the input images, we used a naive initialization of
two parallel planes. This initialization is very far from the real depth and scene flow, but as shown, is
sufficient to converge to the correct solution. Clearly, using a more sophisticated initialization can improve
the convergence time.

The running time of our method is the same order of magnitude as that of Huguet & Devernay [43].
In addition, one should consider the running time of the chosen stereo algorithm used for initialization.
The code can probably be significantly accelerated by implementation on parallel architecture (e.g., GPU),
however, it is not the focus of our method and is left for future research. We next elaborate on each of the
experiments.

2.4.1 Egomotion Using Stereo Datasets

This experiment consists of a real 3D rigid translating scene viewed by two, three and four cameras. This
scenario can also be regarded as a static scene viewed by a translating camera array where our method
computes the egomotion of the cameras. The Middlebury stereo datasets, Cones, Teddy and V enus [80],
were used for generating the data (as in Huguet & Devernay [43]).

Each dataset consists of 9 rectified images taken from equally spaced viewpoints. Eight of the images
were considered as taken by four cameras at two time steps. Due to the camera setup, both the 2D and the
3D motion are purely horizontal. Still, while the 3D motion is constant over the entire scene, the 2D motion
is generally different for each pixel. We do not make use of this knowledge when testing our algorithm (see
Figure 2.2).

Our method requires full calibration, which, however, is not available for these datasets. We set the pro-
jection matrix of each camera up to two degrees of freedom by using the known relative cameras’ positions.
One of the cameras is taken as the reference camera. Accordingly, the others cameras’ extrinsic parame-
ters are set as only translation along the horizontal axis with respect to the reference camera. The cameras’
intrinsic parameters are computed by defining the viewing angle (chosen to be 30o), and the scaled focal



CHAPTER 2. MULTI-VIEW SCENE FLOW ESTIMATION: A VIEW CENTERED VARIATIONAL APPROACH18

Rotating Sphere from [43] Disparity at t Disparity at t+ 1 Optical Flow - u Optical Flow - v
(a) (b)

Figure 2.8: (a) Illustration of the scene motion on top and the reference view below. (b) The top figure represents,
from left to right, the ground truth for the disparity at time t, disparity at time t+ 1 and the optical flow, horizontal and
vertical components. The bottom figure shows these results computed by our method.

lengths are uniquely determined by the image size. Note that this arbitrary choice of parameters may impair
the quality of our results.

For comparison with the results of the scene flow algorithm proposed by Huguet et al.[43], we project
our results for V and Z onto the images. To evaluate the results, we compute the absolute angular error
(AAE) for the optical flow and the root mean square error (RMS) for the optical flow and each of the disparity
fields at time t and time t+ 1. These measurements are given in Table. 2.1. We achieved significantly better
results for the optical flow and disparity at time t + 1 and similar results for the disparity at time t. There
is an improvement of 46%-54% in the RMS error of the optical flow and 28%-58% in the RMS error of the
disparity t+ 1. Furthermore, the advantage of using more than two views is demonstrated. As expected, the
use of more than two views leads to better results for all the unknowns.

RMS AAE
O.F. disp. at t disp. at t+ 1 (deg)

4 Views 0.25 2.36 2.36 0.12
Cones 2 Views 0.58 2.48 2.49 0.39

[43] 1.1 2.11 5.24 0.69
4 Views 0.51 2.47 2.47 0.22

Teddy 2 Views 0.57 2.83 2.86 1.01
[43] 1.25 2.27 6.93 0.51

4 Views 0.13 0.9 0.9 1.09
Venus 2 Views 0.16 1.06 1.06 1.58

[43] 0.31 0.97 1.48 0.98

Table 2.1: The evaluated errors (w.r.t. the ground truth) of the projection of our scene flow and structure compared
with the 2D results of Huguet et al.[43]. RMS error in the optical flow (O.F.), disparity at time t, and the disparity at
time t+ 1. Also shown is the absolute angular error (AAE) corresponding to the optical flow.
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2.4.2 Synthetic Data

Multi-View Rotating Sphere

We tested our method on a challenging synthetic scene viewed by five calibrated cameras. This sequence
was generated in OpenGL and consists of a rotating sphere placed in front of a rotating plane. The plane
is placed at Z = 700 (the units are arbitrary) and the center of the sphere at Z = 500 with radius of
200. Both plane and sphere are rotated, each around different 3D axes with different angles (see Figure 2.6).
Therefore, occlusions and large discontinuities in both motion and depth must be dealt with. The accuracy of
the computed depth and 3D motion is demonstrated in Figure 2.7 by comparing them with the ground truth.
The results are quantitatively evaluated by computing the NRMSP, NRMSV errors and the AAEV (defined in
Section 2.3). Table 2.2 summarizes the computed errors over three domains: all pixels, nonoccluded regions,
and only continuous regions (namely, removing regions corresponding to discontinuities of the surface). An
analysis of our results clearly shows that oversmoothing in the discontinuous areas accounts for most of the
errors.

Orthographic Rotating Sphere

We tested our method on the Rotating Sphere dataset from Huguet & Devernay [43]. The scene represents
a rotating textured sphere, where its two hemispheres rotate separately in opposite directions (see Figure
2.8). The input images were generated as taken under orthographic projection, by two cameras related by
rotation. However, our method assumes a perspective camera model. Hence, we interpreted the input images
as taken by a parallel pair of cameras under perspective projection. The parameters of the cameras were
chosen arbitrarily to be sx = sy = 200 (scaled focal length) and T = 20 (baseline). Such interpretation
results in a different 3D scene (a distorted ball) and 3D motion; this is illustrated in longitudinal sections in
Figure 2.9. The background, where the initial disparity was set to zero, was treated as an occluded region in
our implementation (since otherwise the depth would need to be set to infinity).

Figure 2.9 shows the recovered depth compared to the ground truth of the object along longitudinal
sections. The recovered depth is almost perfect except in regions which have very large depth change (close
to the boundaries). These significantly large gradients in depth are due to our perspective interpretation and
correlate with the regions in which the RMS, as we next describe, is relatively high.

For comparison with the results of the scene flow algorithms proposed by Huguet & Devernay [43], and
Wedel et al. [103, 102], we project our 3D results, Z, and V, to compute the optical flow and the disparity
maps. Despite the differences in the recovered 3D structure and scene flow, which depend on the projection
model, the projection of our results should be the same as the given ground truth values for the orthographic
projection. However, it is important to note that the resulting errors in our computed optical flow are affected
not only by the error in V, but also by the error in Z. Therefore, this comparison is suboptimal for our
method.

The results of the disparity and the optical flow are compared with the ground truth values in Fig-
ure 2.8(b). As can be seen, most of our errors are close to the ball boundary. These errors are probably
due to occlusions, large changes in the depth range, and several outliers resulting from error projection.

% NRMSP % NRMSV AAEV (deg)
w/o Discontinuities 0.65 2.94 1.32

w/o Occlusions 1.99 5.63 2.09
All pixels 4.39 9.71 3.39

Table 2.2: Multi-View Rotating Sphere: The evaluated errors of our computed scene flow and structure over three
domains: the continuous regions, the nonoccluded regions, and over all pixels.
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Algorithm RMSd
Without Occluded Regions With Occluded Regions

RMSOF RMSOF+d′ AAEOF RMSOF RMSOF+d′ AAEOF

Huguet & Devernay [43] 3.8 0.37 0.83 1.24 0.69 2.51 1.75
Wedel et al. [102] using SGM 2.9 0.34 0.63 1.04 0.66 2.45 1.50

Our method 1.24 0.32 0.55 1.98 0.43 1.44 2.28

Table 2.3: The evaluated errors (w.r.t. the ground truth) of the projection of our scene flow and structure compared
with the 2D results of Huguet & Devernay [43] and Wedel et al. [103, 102] as reported in [102]. RMS (pixels) error in
the disparity, optical flow (OF), and optical flow together with the disparity change. Also shown is the absolute angular
error (AAE) for the optical flow.

For quantitative comparisons, we compute the absolute angular error for the optical flow (AAEOF ), the
RMS for the disparity (RMSd), the optical flow, (RMSOF ), and for the optical flow together with the change in
the disparity (RMSOF+d′). The errors were computed over two domains: the whole sphere and nonoccluded
pixels. The computed errors are summarized in Table 2.3.

The initial disparity map computed by [32] was significantly improved by our method (RMSd decreased
from 3.3 to 1.3). This demonstrates the advantages of our method in using the full spatio-temporal informa-
tion.

To conclude, our results are similar to results obtained by the state-of-the-art methods on this dataset.
Our method is designed to cope with a larger number of views. The results of our method would probably
improve if additional views were available.

2.4.3 Real Data

In this set of experiments we used real-world sequences of a moving scene. These sequences were captured
by three USB cameras (IDS uEye UI-1545LE-C). The cameras were calibrated using the MATLAB Calibra-
tion Toolbox. The location of the cameras was fixed for all datasets. All test sequences were taken with an
image size of 1280 X 1024 and then downsampled by half. In all datasets, the depth was initialized to two
planes that are parallel to the reference view, located in Z = 2 · 103mm and 103mm. We next discuss our
results on three datasets.

The first dataset (Figure 2.10) involves the rigid 3D motion of a small object (car), in a static scene.

Figure 2.9: The blue plots are the ground truth shape along longitudinal sections A and B, marked on the disparity
map. The green plots is the results of the recovered depth along these sections. Note that due to the perspective
projection interpretation of the images, the object shape is not a ball.
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Figure 2.10: Cars Dataset: (a), the reference view at time t; (b), the depth map masked with the computed occlusion
maps; (c), the magnitude of the computed scene flow (mm); (d), zoom in at time t; (e), the corresponding warped
image; and (f), zoom in at time t + 1; (g), the projection of the computed scene flow. Occluded pixels are colored in
red.

The second dataset (Figure 2.11) exemplifies a larger motion, mostly in depth direction. The object is low
in texture and is moving piecewise rigidly (due to the rotation of the back part of the object). The third
experiment consists of a rotating face (Figure 2.12). In that case, the 3D motion is generally different for
each 3D point. In addition, the motion of the hair is nonrigid. In all three datasets, large occlusions exist due
to the notable dissimilarity between the frames.

We present our results in Figures 2.10-2.12. For each dataset we display the magnitude of the estimated
scene-flow and the resulting projection of our scene flow onto the reference view. The motion of pixels that
are occluded in at least one of the images is indicated by red arrows. Note that most of the errors are found in
the computed occluded regions and in the depth discontinuities. In addition, we present the estimated depth
masked with the occlusion maps. In order to visually validate our results, we present images warped to the
reference view. As can be seen in all the experiments, our method successfully recovers the scene flow and
depth. It can be observed that the warped images are very similar to the reference view.

2.5 Discussion and Conclusions

In this paper, we proposed a variational approach for simultaneously estimating the scene flow and structure
from multi-view sequences. The novel 3D point cloud representation, used to directly model the desired 3D
unknowns, allows smoothness assumptions to be imposed directly on the scene flow and structure. In addi-
tion, the desired synergy between the 3D unknowns is obtained by imposing the spatio-temporal brightness
constancy assumption. Our energy functional explicitly expresses the smoothness and brightness constancy
assumptions while enforcing geometric consistency between the views. The redundant information from
multiple views adds supplementary constraints that reduce ambiguities and improve stability.

The combination of our 3D representation in this multi-view variational framework results in a chal-
lenging nonconvex optimization problem. Moreover, due to our 3D representation, the relation between the
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Figure 2.11: Cat dataset: (a-c), the three views at time t, where (c) is the reference; (f-h), the corresponding views at
time t + 1; (d), warped image from h→ c; (e), warped image from g→c, where the yellow regions are the computed
occlusions; (i), the magnitude of the resulting scene flow (mm); (j), the depth map masked by the computed occlusion
maps; and (k), the projection of the computed scene flow. Occluded pixels are colored in red.

image coordinates and the unknowns is nonlinear (as opposed to optical flow or disparity). Consequently, the
derivation of the associated Euler-Lagrange equations involves nontrivial computations. In addition, the use
of multiple views requires that occlusions be properly handled since each view adds more occluded regions.
Obviously, the occlusion between the views becomes more severe when a wide baseline rig is considered.
Our variational framework, which is used for the first time for multiple views and 3D representation, suc-
cessfully recovers the 3D structure and scene flow despite these difficulties. Our accurate and dense results
on real and synthetic data demonstrate the validity of the developed method.

There are several challenges that remain open for future work. These include dealing with larger non-
textured regions. Currently, these regions are handled using the regularization, since the data term does not
provide sufficient constraints. Another challenge is dealing with occluded regions. Such regions are expected
to increase, when the setup consists of even larger differences in the fields of view of the cameras than those
considered in our experiments. On the other hand, using more views may provide partial information about
these regions. As demonstrated in our results, most of the errors are found in the depth discontinuities and
in the occluded regions.

It is, therefore, worthwhile to further study a method that will directly cope with such regions, by, for for
example, improving the smoothness terms near occlusion boundaries.

Appendix A: Mapping Between Images:
Our 3D parameterization in the presented framework introduces a nonlinear transformation of the 3D un-

knowns, Z and V, to each of the image’s plane. A notable challenge in the minimization of the proposed
functional arises from the nontrivial mapping of the images’ coordinates to the reference camera coordinate
system.

Using our parametrization, each pixel in the reference camera, (x, y), and its corresponding depth,
Z(x, y), specify a 3D point, P (see Eq. 2.5). It follows that projecting P onto the ith camera maps (x, y, Z(x, y))
to the point pi = (xi, yi)

T . That is,

pi = Proj(P,M i) = f i(x, y, Z(x, y)), (2.17)

where f i is the mapping to the corresponding ith image. More precisely, f i is given by substituting Eq. 2.5
into Eq. 2.1. For example, the component xi is given by:

xi =
a · Z + b

c · Z + d
. (2.18)
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Figure 2.12: Maria dataset: (a-c), the three views at time t, where (c) is the reference; (f-h), the corresponding views
at time t+ 1; (d), warped image from h→ c; (e), warped image from f→c, where the yellow regions are the computed
occlusions; (i), the magnitude of the resulting scene flow (mm); (j), the depth map masked by the computed occlusion
maps; and (k), the projection of the computed scene flow. Occluded pixels are colored in red.

The coefficients a, b, c and d depend on the reference camera coordinates, (x, y):

a(x, y) = M i
11
· (x/sx − ox/sx) +M i

12 · (y/sy − oy/sy) +M i
13
,

b(x, y) = M i
14
,

c(x, y) = M i
31
· (x/sx − ox/sx) +M i

32
· (y/sy − oy/sy) +M i

33
,

d(x, y) = M i
34
,

(2.19)

where M i is the 3 × 4 projection matrix of the ith camera (subscripts denote the row and column indices).
The expression for yi is equivalently computed.

Similarly, at time step t + 1, projecting P̂ = P + V maps (x, y, Z(x, y), V (x, y)) to p̂i, denoted by a
mapping, f̂ i:

p̂i = Proj(P̂,M i) = f̂ i(x, y, Z(x, y),V(x, y)). (2.20)

Analogously to Eq. 2.18, the component x̂i is given by:

x̂i =
a · Z +M i

11
· u+M i

12
· v +M i

13
· w + b

c · Z +M i
31
· u+M i

32
· v +M i

33
· w + d

, (2.21)

where the coefficients a, b, c and d are defined in Eq. 2.19.

Appendix B:
Image derivatives with respect to the 3D unknowns:
A first step toward the numerical solution of the resulting Euler-Lagrange equations (Eq. 2.12 or Eq. 2.13)

requires computing the derivatives of the intensity functions with respect to the 3D unknowns. To produce
the final expressions for these derivatives, the nonlinear relation between the 3D unknowns and the image
plane has to be carefully considered (see Appendix A). This appendix shows how these computations are
performed. The mathematical analysis is preformed in the continuous domain. Thus, the frames as well as
the 3D unknowns are regarded as continuous functions. Finally, the resulting equations are discretized by
using standard approximations for the derivatives.

For simplicity, given a time step, t, we use the intensity functions Iti and It+1
i to abbreviate Ii(pi, t) and

Ii(p̂i, t + 1), respectively. We next elaborate on the computation of derivatives of Iti and It+1
i with respect

to Z and u, denoted by ∂ZI
t
i , ∂ZI

t+1
i and ∂uI

t+1
i (the other derivatives with respect to v and w are similarly

computed).
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Iti can be regarded as a function of the reference image coordinates,(x, y), and the corresponding depth,
Z(x, y), by considering a composition of two functions: the ith intensity function and the mapping transfor-
mation, defined in appendix A. That is,

Iti (x, y, Z(x, y)) = Ii(f
i(x, y, Z(x, y), t). (2.22)

Similarly, It+1
i can be regarded as a function of (x, y, Z(x, y)) and V. That is,

It+1
i (x, y, Z,V) = Ii(f̂

i(x, y, Z,V), t+ 1). (2.23)

Considering Eq. 2.17-2.20, the chain rule is applied for computing the partial derivatives:

∂ZI
t
i = (∇Iti )T · ∂Zpi, (2.24)

∂ZI
t+1
i = (∇It+1

i )T · ∂Z p̂i, (2.25)

∂uI
t+1
i = (∇It+1

i )T · ∂up̂i. (2.26)

The derivatives ∂ZpTi = (∂Zxi, ∂Zyi)
T are directly computed from Eq. 2.18-2.19.

To compute the derivative of Iti with respect to pi, (∇Iti )T , we use a warping approach. As discussed in
Appendix A, a nonlinear mapping relates each of the image’s plane to the reference camera. By warping Iti
toward the reference image using the estimated Z, the values of Iti can be directly related to the reference
image values, It

0
. Specifically, the required derivatives,∇Iti are then computed using the warped image. Let

Iti,w be the warped image of Iti . That is,

Iti,w(x, y) = Ii(pi, t). (2.27)

The warped image gradient is related to the original image by:

(∇Iti,w)T = (∂xI
t
i,w, ∂yI

t
i,w) = (∇Iti )T ·


∂xi
∂x

∂xi
∂y

∂yi
∂x

∂yi
∂y


︸ ︷︷ ︸

J

, (2.28)

where J is the Jacobian matrix of the change of coordinates, (xi, yi)→ (x, y). Therefore, the original image
derivatives are obtained by multiplying Eq. 2.28 by J−1, leading to:

(∇Iti )T = (∇Iti,w)T · J−1. (2.29)

The Jacobian matrix, J , is obtained by computing the derivatives of pi with respect to x and y. In particular,
J involves the derivatives of Z(x, y), namely ∂xZ and ∂yZ. Following the explanation above, ∇It+1

i,w is
similarly computed. In this case, the Jacobian matrix, J , additionally involves the derivatives of u, v and w
with respect to the reference camera coordinates.

Appendix C: Linearizion:
This appendix describes the linearizion process of the resulting Euler-Lagrange equations and the numerical

approximations used. At each pyramid level, a linear system of equations is obtained and small increments
in the 3D unknowns, dZ, and dV, are estimated. The total solution, Z + dZ, and V + dV, is then used to
initialize the next finer level (see Section 2.2.3).

Considering equations 2.12-2.13, there are two sources of nonlinearity:

1. nonlinearized data term;
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2. nonquadratic cost function Ψ.

Following the numerical approach suggested by Brox et al. [18], two nested fixed point iterations are used
at each pyramid level to remove the nonlinearity.

The outer iteration is responsible for removing the nonlinearity resulting from the nonlinear data term,
using fixed point iteration on Z and V. Let k be the outer index iteration. The solution at the (k + 1)th

iteration is decomposed of the previous solution and small, unknown increments. That is, Zk+1 = Zk+dZk

and Vk+1 = Vk + dVk, where dVk = (duk, dvk, dwk)T .
The first step toward linearizion is approximating the nonlinear expression given in Eq. 2.11 using first

order Taylor expansion. We use ∆k
i , ∆̂k

i and ∆t,k
i to denote the expressions given in Eq. 2.11 using the fixed

values Zk and Vk. That is,

∆k
i = Ii(pki , t)− I0(pk

0
, t),

∆̂k
i = Ii(p̂ki , t+ 1)− I0(p̂k

0
, t+ 1), (2.30)

∆t,k
i = Ii(p̂ki , t+ 1)− Ii(pki , t),

where pki = Proj(Pk,M i) and Pk is given by placing Zk in Eq. 2.5. The expressions for p̂ki and P̂
k

are
analogously given. Using these notations, the first order Taylor expansions for these expressions are given
by:

∆k+1
i ≈ ∆k

i + ∂Z∆k
i · dZk,

∆̂k+1
i ≈ ∆̂k

i + ∂Z ∆̂k
i · dZk+

∂u∆̂k
i · duk + ∂v∆̂

k
i · dvk + ∂w∆̂k

i · dwk,

∆t,k+1
i ≈ ∆t

i + ∂Z∆t,k
i +

∂u∆t,k
i · duk + ∂v∆

t,k
i · dvk + ∂w∆t,k

i · dwk.

(2.31)

Eq. 2.31 is computed by using the first order Taylor expansion for the following expressions:

Ii(pk+1
i , t) = Ii(Proj(Pk+1,M i), t)

≈ Ii(pki , t) + ∂ZIi(pi, t) · dZk,
(2.32)

Ii(p̂k+1
i , t+ 1) = Ii(Proj(P̂

k+1
,M i), t+ 1)

≈ Ii(p̂ki , t+ 1) + ∂ZIi(p̂ki , t+ 1) · dZk+
∂uIi(p̂ki , t+ 1) · duk + ∂vIi(p̂ki , t+ 1) · dvk+
∂wIi(p̂ki , t+ 1) · dwk,

(2.33)

where Pk+1 = Pk + dPk is given by placing Zk + dZk (Eq. 2.5). Similarly, P̂
k+1

= P̂
k

+ dP̂
k

where
dP̂

k
= dZk + dVk. The computation of the image derivatives with respect to the 3D unknowns is detailed

in Appendix, A.
Therefore, deriving the associated Euler-Lagrange equations with respect to the unknown increments
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dZk and duk results in:

0 =
∑N−1

i=0 Ψ′((∆t,k+1
i )2)∆t,k+1

i · (∆t,k
i )Z +∑N−1

i=1 Ψ′((∆k+1
i )2)∆k+1

i · (∆k
i )Z +∑N−1

i=1 Ψ′((∆̂k+1
i )2)∆̂k+1

i · (∆̂k
i )Z−

αµ · div(Ψ′(|∇Zk+1|2)∇Zk+1),

(2.34)

0 =
∑N−1

i=0 Ψ′((∆t,k+1
i )2)∆t,k+1

i · (∆t,k
i )u+∑N−1

i=1 Ψ′((∆̂ik+1)2)∆̂k+1
i · (∆̂k

i )u−

α · div(Ψ′(|∇uk+1|2 + |∇vk+1|2 + |∇wk+1|2)∇uk+1).

(2.35)

The dependency of the above two equations in the increments, dZk and duk, is obtained by substituting
Eq.2.31 into ∆k+1

i ,∆t,k+1
i , and, ∆̂k+1

i . The equations for dvk and dwk are similar to Eq. 2.35.
Applying the above approximations (Eq. 2.31), the resulting Euler-Lagrange equations are a nonlin-

ear system of equations in the unknowns dZk and dVk. The remaining nonlinearity is originated by Ψ
′
.

Therefore, an additional fixed point iterations loop for Ψ
′

expressions is preformed. Finally, after standard
discretization of the derivatives, a linear system of equations is introduced. The solution is obtained by
applying the successive overrelaxation (SOR) method.



Chapter 3

Structure & Motion from Scene
Registration

3.1 Introduction

Structure and motion estimation from image data is of fundamental importance in many vision and graph-
ics applications, including 2D optical flow for image-based rendering, nonrigid volumetric registration of
medical data sets, object tracking, navigation, or virtual reality.

Our objective is to recover the 3D structure and the motion of a nonrigid 3D scene, captured with a
calibrated dense camera array (i.e., the baseline between each pair of adjacent cameras is small, see Fig.3.1).
This problem received considerable attention in the last decade and various algorithms have been proposed
to solve it. These algorithms use multiple cameras to estimate the scene flow, where scene flow is defined as
the dense 3D motion field of a nonrigid scene [99]. It follows directly from this definition that 3D recovery
of the surface must be an essential part of scene flow algorithms, unless it is given a priori.

Most existing methods for 3D structure and scene flow estimation require establishing dense correspon-
dence between pixels or regions of the same scene taken from different views at different time steps. The
correspondence problem brings with it several classical challenges, including ambiguities due to a small field
of view or low texture regions (the aperture problem), dissimilar appearance of the scene over time or from
different views, and image noise. Another central difficulty in estimating dense correspondence fields is the
occlusion problem. That is, regions visible in one image but having no counterparts in other, and hence
cannot be matched.

Extensive research has been carried out to address the problem of correspondence in time and space,
mostly in the area of optical flow and stereo estimation. Most existing methods for scene flow or multi-
view reconstruction rely on a “photo-consistency” measure for evaluating the visual compatibility of the
correspondence across multiple images. In addition, most of these methods define a “visibility model”,
to determine the occlusion relationship between the recovered 3D points. The visibility model determines
which images should participate in the estimation of the photo-consistency measure. The photo-consistency
measure and the visibility model interfere with each other because errors in the photo-consistency measure
affect the visibility modeling and vice-versa. Thus, despite many advances in recent years [7, 82] handling
occlusions and the resulting discontinuities is still an open research problem.

Our approach sidesteps the need to recover or handle occlusions and does not require explicit reasoning
about flow discontinuities, a requirement that adversely affects scene flow methods. We represent the prob-
lem in a 3D volumetric space that does not distinguish between real and free 3D scene points. Specifically,
we use a dense, calibrated and synchronized multi-camera array to capture a dynamic nonrigid 3D scene at

This work was published in CVPR 2012 [23].
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a b

Figure 3.1: (a), The ProFusion 5x5 camera array. The central camera is the reference. (b), Linear stage with a Canon
5D Mark II DSLR.

two time steps. The set of images captured by the camera array at each time step samples the light rays in
the scene. The captured data at each time step is then represented with a discretized 3D volume, where each
cell stores the distribution of light rays passing through it. We approximate this 3D vector field of light rays
by a 3D scalar volume. In particular, the set of light rays at each point is reduced to a scalar and a confidence
measure, estimated by nonlinear filtering.

The proposed approach has a number of benefits. First, we sidestep the need to reason about visibility,
which is taken care of automatically in the volumetric registration step. Second, each voxel in our volume is
assigned with our confidence that there is a real 3D point there. This way we do not have to commit to the 3D
structure. Thus, we can compute the flow between the two volumes, which represent the scene at two time
steps, without explicit representation of the scene. Computing the flow in this volumetric space amounts to
matching two 3D scalar fields, a problem that has been addressed in the past. Finally, the method is scalable
and, to the best of our knowledge, we are the first to compute both 3D structure and scene flow from tens of
cameras.

Once correspondence in this space is estimated, we use the confidence measure to extract both the scene
flow and the 3D structure, and successfully estimate the sharp discontinuities in both time and space.

3.2 Related Work

Due to the considerable body of work on flow and reconstruction, we focus on research we consider most
relevant to ours. See [7, 82] for a recent overview and evaluation on optical flow and multi-view reconstruc-
tion.

The seminal work of Horn and Schunck [42] on optical flow estimation assumed a smooth deformation
field. This works well in many cases but fails around boundaries of independently moving image regions.
Since then a large body of work focused on the problem of flow discontinuities [69, 14, 17, 3, 2, 104, 89].

Using more than a single camera enables the estimation of a three dimensional scene flow, as opposed
to the two dimensional optic flow which is simply the projection of the scene flow onto the image plane of a
camera. Vedula et al. [99] compute the 3D scene flow from multiple images by lifting the 2D optical flow
between several image pairs to 3D. However, they do not enforce consistency across the flow fields. This
was later addressed by Huguet et al. [43] and Basha et al. [28] that simultaneously recover the depth and
motion. Some of the work on scene flow estimation assumed a 2D parametrization of the problem [103], but
recently there is a growing body of literature that uses a 3D parametrization for solving both 3D structure
and 3D motion [61, 67].

Our work is also closely related to the problem of voxel coloring, where the goal is to reconstruct a static
3D structure from multiple cameras [83]. Voxel coloring discretizes the space into voxels and determines
for each voxel if it is occupied or not based on the mutual agreement of its projection on the images, as well
as occlusion reasoning. Voxel coloring assumes a certain arrangement of cameras and this assumption was
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Figure 3.2: The 3D space is discretized using a set of K fronto-parallel planes, {πk}Kk=1, with respect to the central
camera, C0.

later removed by Space Carving [50] that still makes hard decisions about voxel occupancy. Space Carving
was extended to deal with probabilistic space carving [16] as well as non Lambertian surfaces [112, 94] but
all extensions depends on photo-consistency and need to deal occlusions. One way to adopt voxel coloring,
or any of its descendants, for our needs is to estimate the 3D structure at each time step and then estimate
the scene flow between the two. Unfortunately, there is no guarantee that the 3D structure estimations will
be consistent and hence the scene flow estimation might fail, as we show in the experimental section.

Neumann et al. [62] proposed a new camera design to deal with 3D motion estimation (as opposed to
3D reconstruction). They first define a polydioptric camera which is a generalized camera that captures a
multi-perspective subset of the space of light rays (dioptric: assisting vision by refracting and focusing light).
And then show that 3D motion estimation of polydioptric cameras based on a light field representation is
independent of the actual scene. The intensity of a light ray does not change over time in a static scene with
fixed illumination and therefore matching light rays is possible.

We, on the other hand, consider a dynamic scene where the correspondence between light rays is ill
defined since the intensity of a light ray can change due to nonrigid deformations. So instead of matching
individual light rays, we match 3D points where each point aggregates the distribution of light in multiple
directions. This makes our approach more robust to handling dynamic scenes.

3.3 The Method

We use a multi-camera array, consisting of N cameras, to capture a dynamic non rigid scene at two different
time steps. The cameras are assumed to be calibrated, synchronized, and each pair of adjacent cameras is
assumed to have small baseline.

Each set of images, captured at a single time step, is used to construct a 3D volume, V (x), where
every cell holds a 2D distribution of the light rays that pass through the point x. We then approximate
V (x) to obtain a scalar volume, S(x), by applying a nonlinear filter to the captured light rays at each scene
point. In this scalar volume, occluding surfaces are blurred out in the vicinity of the objects boundaries.
Furthermore, S(x), which consist of real scene points as well as points in the free space, is a piecewise
continuous representation with respect to all three dimensions (x, y and z). This lets us perform a dense
matching of the two scalar volumes, St and St+1, computed at two time steps, prior to recovering the 3D
structure of the scene. By doing so, we bypass the need to reason about occlusions or sharp discontinuities
in both the 3D structure and 3D motion field.

Finally, the computed flow between St and St+1 is used to extract both the 3D structure and the 3D
motion and to recover the sharp discontinuities in both the depth and the motion field. In the following we
first describe the construction of S. Section 3.3.2 then describes how the volumes St and St+1 computed at



CHAPTER 3. STRUCTURE & MOTION FROM SCENE REGISTRATION 30

a b

Figure 3.3: 2D illustration of the volume representation; each point in the volume is represented by the set of intensities
that are captured by the camera array; shown are the intensities for of real scene point (a) that is visible in all cameras,
for a point that is partially occluded (b), and for point in the free space (c).

two consecutive time steps can be registered.

3.3.1 3D Representation

We discretize the 3D space using a set of K fronto-parallel planes, {πk}Kk=1, with respect to the central
camera, C0 (see Fig. 3.2). For each plane, the images from all N cameras are aligned to the reference view
by computing the homographies between the views, in a way similar to the stereo parametrization used by
Szeliski & Golland [90]. Formally, let V (x) be the volume:

V (x) = {γi | 0 ≤ i ≤ N − 1}, (3.1)

where γi is the intensity of the pixel that is the projection of the 3D point x onto the ith camera (see Fig. 3.3
for 2D illustration). This gives us a 2D distribution function of the light rays passing through the point x
and sampled by the camera array. In practice, the 3D space is sampled by back-projecting each pixel in the
reference view onto each of the planes, {πk}Kk=1. Namely, there is a known transformation between each
volume point, x, to a pixel in the reference view.

Observe that γi represents the true intensity of the 3D point only if it is a real scene point that is visible
to the ith camera (see Fig. 3.3(a)). In case the point is occluded in the ith camera (see Fig. 3.3(b)) or in case
it is a point in free space, (see Fig. 3.3(c)), then γi is the intensity of an arbitrary point.

Then why is V (x) a useful representation? To understand this, consider the simple case of a scene that
consists of Lambertian background and foreground objects captured by a dense camera array. A scene point
that is visible in all views would have a unimodal distribution centered around the surface irradiance at that
point. A 3D point that is located in free space will not have such a unimodal distribution because random 3D
points are projected to the various cameras in the camera array. A 3D point that is occluded in all views will
behave in the same way a free 3D point would (see Fig. 3.4). This reasoning should hold for scenes with
more objects as well. We will take advantage of the fact that only real scene points are supposed to have a
unimodal distribution.

In order to allow for an efficient and robust correspondence estimation, we reduce the 2D distribution
of rays at each 3D point in V (x) to a single scalar S(x), which allows us to use existing 3D matching
techniques for computing the 3D motion of every point in the 3D space.

Simple averaging of samples from all cameras, as is done for example in voxel coloring [83] or synthetic
aperture photography [46], results in combining intensities of different 3D points in the scene. In particular,
scene points that are occluded in some of the cameras are likely to be assigned a different intensity; hence,
the matching between the volumes is prone to errors. Instead, we take a more robust measure that assigns a
coherent intensity to scene points, while blurring out points in the free space. We demonstrate the advantages
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Figure 3.4: The histograms of the gray level values, as captured from a twenty-five camera array, for: (A), a visible
scene point, (B), point in the free space, and (C), partially occluded scene point.

of our method over simple averaging in the experimental section.
Following the discussion above, we assume that the largest mode (i.e., the most frequent intensity value)

of V (x) corresponds to the true irradiance of x, in the case that x is a scene point. However, if x is a point in
free space, or is completely occluded, choosing the intensity to be one of the modes results in random noise.
Fig. 3.4 shows a typical distribution of light rays, in terms of their corresponding gray level histogram, for
three pixels that correspond to a visible scene point, partially occluded scene point and a point in free space.

Given V (x) we wish to compute volume S(x) and confidence C(x). Formally, we detect the modes of
V (x) for every point x using QuickShift [96] and obtain the following:

m(x) = (m1,m2, ....)
T , (3.2)

n(x) = (n1, n2, ....)
T , (3.3)

where m(x) is the vector (of variable size) of the intensity centers of the detected modes; n(x) is the vector
of the cardinality of each mode (i.e., how many samples belong to each mode). We denote m∗ and n∗ to be
the intensity and cardinality of the largest mode.

We determine the intensity of each 3D point, x, by averaging the modes of V (x):

S(x) = ĉ(x)Tm(x), (3.4)

where ĉ(x) = (ĉ1, ĉ2, ....) is a vector of weights. We set the weight ĉi of mode i, according to its cardinality,
ni, and deviation from the intensity of the largest mode, m∗:

ĉi =
ni
Nx

(
µ

1√
(mi −m∗)2 + ε

+ 1− µ

)
, (3.5)

where Nx =
∑

i ni is the total number of cameras that view the point x and ε = 0.001. To control the
relative impact of the intensity deviation, we set µ = n∗

Nx
∈ [0, 1]. It follows that a large mode which is close

to m∗, will have high weight. We found this heuristic choice to work well in practice.
A confidence measure is computed for each point, x, by taking the ratio of the number of cameras in the
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Figure 3.5: Synthetic datasets: (a-b), the reference view of each dataset; (c-d), the corresponding depth maps; (e-f),
side view of the scene. The background translates in the depth direction.

largest mode of the distribution compared to the total number of cameras that view that point:

C(x) = µ =
n∗
Nx

. (3.6)

This way scene points will have a high confidence, because we expect their distribution to be unimodal,
while all other points (i.e. those in free space or those that are occluded) will have a very low confidence.

Following this procedure, each sampled volume V (x) is reduced to a scalar-valued 3D volume S(x),
and the corresponding confidence C(x). Now we are able to compute the matching between the volumes
computed at two successive time steps t and t+ 1.

3.3.2 3D Registration

Each of the two 3D scalar volumes St and St+1, can be regarded as a sampling of a piecewise continuous
volume with respect to all three dimensions (x,y, and z). This property enables us to find the matching be-
tween the volumes using nonrigid 3D registration techniques. In particular, we use the method of Glocker
et al. [35], previously used in the context of medical imaging. This method allows the brightness constancy
assumption to be imposed between the source and target volumes (data term) and the smoothness assumption
on the 3D flow (smoothness term), using arbitrary cost functions. A global objective functional is defined
to express these assumptions and then is reformulated as a discrete labeling problem. In order to account
for large displacements and to achieve sub-pixel accuracy, a multi-scale incremental approach is consid-
ered where the optimal solution is iteratively updated. The discretized functional at each level is efficiently
minimized using the Markov Random Field (MRF) optimization method of [48].

To use the method of Glocker et al.[35] let F(x) denote the 3D flow between St(x) and St+1(x̂). That
is,

F(x) = (u(x), v(x), w(x)), (3.7)

where u, v and w are the flow’s horizontal, vertical and depth components, respectively. We chose the data
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Figure 3.6: Ground truth evaluation: The top row (b-f) shows depth results of a volume slice (frontoparllel plane) fo-
cused on the foreground. The bottom row (b-f) shows optical flow results of a volume slice focused on the background.
(a) Slices of the volume focused on the foreground (top) and background (bottom). (b) The computed confidence map;
high confidence points are colored in red; (c) Ground truth of depth (top) and optical flow magnitude (bottom); (d)
Robust scene registration; (e) Simple averaging (instead of robust) scene registration; (f) Robust voxel coloring.

cost to be the weighted sum between the brightness constancy and gradient constancy assumptions. That is,

EData(F) =
1

|ΩS |

(
(1− λ)

∑
x∈ΩS

|St(x)− St+1(x̂)| (3.8)

−λ
∑
x∈ΩS

∣∣∣∣ ∇St(x)

|∇St(x)|
· ∇S

t+1(x̂)

|∇St+1(x̂)|

∣∣∣∣
)

where x̂ = x+F(x), λ controls the relative weight between the terms and ΩS denotes the volume domain.
The smoothness term is given by the truncated L1 distance between the flow of neighboring volume

points:

ESmooth(F) =
∑
x∈ΩS

∑
xn∈N (x)

min{||F(x)−F(xn)||1, η}, (3.9)

where N (x) is the neighborhood of point x, and η is the truncation threshold. In practice, a truncation of
the smoothness term allows discontinuities in the flow F(x).

3.3.3 Depth and Optical Flow Estimation

After the volumetric registration stage, every point in the volume is associated with an intensity value, a
confidence measure, and a 3D flow estimation. With these in hand, we extract both the 3D structure and 3D
motion of the scene (scene flow) w.r.t the reference camera by assigning a depth value for each pixel in the
reference camera. That is, once the depth value of each pixel is chosen, the optical flow and depth value at
the following time step are directly determined by the computed 3D flow.

Each pixel p = (x, y) in the reference camera I0 is associated with a set of K possible locations in
the volume, given by: {xi = (x, y, zi)}Ki=1, where {zi}Ki=1 are the discretized depth values that form the
volumetric space. The intensity, the confidence and the 3D flow of xi are respectively given by:

{St(xi), Ct(xi),F(xi)}. (3.10)
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Figure 3.7: Real dataset (Frame): (a,d) the reference view at time t and t+ 1, respectively; (b) the slice from our 3D
volume that corresponds to foreground object; (e) the computed confidence map of (b), with high confidence points
colored in red; (c) the estimated depth map. (f) the magnitude of the optical flow estimated by our method; (g) the
magnitude of the optical flow estimated by [116]. (h) the flow map of our optical flow.

We wish to find the optimal depth z∗ that minimizes the difference between the intensity, I0(p), of pixel p in
reference image I0 and the intensity St(x, y, z∗) in the volume. We also assume that the optimal assignment
should have high confidence, so we want Ct(x, y, z∗) to be high. These assumptions are formulated as a
MRF multi-labeling optimization problem where a label assignment `p associates the pixel p with the point,
x`p . Formally, the data term is defined as a weighted sum of the above mentioned assumptions and is given
by:

EData(L) =
∑
p∈Ω

|I0(p)− St(x`p)|+ α(1− Ct(x`p)), (3.11)

where L is the set of discrete assignments of all pixels, α controls the relative impact of each of the terms,
and Ω denotes the reference camera domain.

A spatial smoothness term is added, expressing the assumption that neighboring pixels have similar depth
values. That is,

ESmooth(`) =
∑
p∈Ω

∑
q∈N (p)

|`p − `q|, (3.12)

where N (p) is the neighborhood of pixel p. The total energy,

E(`) = EData(`) + β · ESmooth(`), (3.13)

is effectively minimized using graph cuts. We use a fairly low value of β in our implementation.
Finally, given that the optimal assignment for each p is z(`∗p), we define x∗ = (x, y, z(`∗p)). The optical

flow of p is given by (u(x∗), v(x∗)), and the new depth value at the following time step is given by (z∗ +
w(x∗)). The computed optical flow and the depth maps at two time steps can now be reprojected (using the
camera intrinsic parameters) in order to recover the exact 3D structure and 3D motion in the perspective 3D
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space.
Observe that we were able to extract the optical flow and the 3D structure without reasoning about

visibility of 3D points in the cameras. This is the key insight in extracting the depth and optical flow from
our volumetric space.

3.4 Results

We conducted a number of experiments on synthetic and real data to evaluate several aspects of the proposed
method. First, we compare ourselves to other, state-of-the-art methods on synthetic data and find that we
are more accurate. Second, we show that our method can handle sharp discontinuities in both shape and
motion on both synthetic and real-world scenes. In addition, in one experiment we use 1D camera array of
100 cameras to demonstrate the scalability of our method.

We also analyze two key design decisions that we made. The first decision we analyze is the reduction of
the vector-valued volume V (x) to scalar volume S(x) using QuickShift, as opposed to simple averaging. We
find that QuickShift is more robust and leads to better overall accuracy (see Fig.3.6(e)). The second design
decision we analyze is the use of our scene registration, i.e., performing a matching prior to recovering the
3D structure of the scene. To this end, we use a robust version of Voxel coloring, where photo consistency
is estimated using QuickShift, to estimate 3D structure at each time step independently and then register
the two volumes. We find that the results are not as good as our method, because Voxel coloring does not
guarantee consistent 3D structure at both time steps, an inconsistency that adversely affects the registration
step.

Ground Truth Evaluation: We tested our method on two challenging synthetic scenes that were rendered
in OpenGL. The scenes are viewed by a dense 1D array of 51 cameras, and consist of a moving foreground
that is placed at a distance of Z=200 in front of a background plane that is located at Z=500, (the units
are arbitrary). The foreground, i.e., a frontoparallel frame in the first scene and a tilted plane in the second
scene, is moving 70 units in the depth direction w.r.t. the reference camera (See Fig. 3.5). Therefore,
large discontinuities and occlusions are introduced in both the spatial and the temporal domains. In both
experiments the depth was discretized into twenty-five levels, and the reference camera was the central one.

The results for the first experiment are presented in Fig. 3.6. As Fig.3.6.(d) clearly demonstrates, we
successfully obtain accurate results for both the optical flow and the depth. We quantitatively evaluated

RMS AAE
u v (deg)

Our method (N=51) 0.57 0.69 2.8
Our method (N=25) 0.60 0.78 3.25

Stones Our method (N=7) 0.68 0.79 3.34
S.F. [27] 1.32 1.80 3.32

O.F. [116] 2.03 1.86 5.83
Our method (N=51) 0.38 0.47 1.70
Our method (N=25) 0.39 0.48 1.70

Leaves Our method (N=7) 0.57 0.53 1.98
S.F. [27] 1.14 1.26 1.83

O.F. [116] 1.31 1.41 3.67

Table 3.1: The evaluated errors (w.r.t ground truth) of the extracted optical flow computed with our method and
comparison to the projection of the scene flow results of Basha et al.[28] and the optical flow results of Zach
et al.[116].RMS error in the optical flow, (u, v). Also shown is the absolute angular error (AAE).
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Figure 3.8: Real dataset (Giraffe): Please see caption of Figure 3.7 for the description of the subfigures.

our results by computing the RMS and the AAE with respect to the ground truth. To test the affect of the
number of cameras on accuracy, we evaluated our results with a smaller number of cameras (N=25 and
N=7). The computed errors of our results compared to the errors of the multi-view scene flow method of
Basha et al.[28]1, and to the optical flow method of Zach et al.[116] are summarized in Table 3.1, which
demonstrates the higher accuracy of our method.

Real Data: We tested our method on several real-world sequences that were captured by the 5× 5 camera
array, ProFUSION 25 (see Fig. 3.1(a)). The cameras are arranged with 12mm spacing and provide 640×480
images of raw data at a rate of 25FPS. Due to the narrow baseline setup, the camera array was placed at a
distance of 1.5-2 meters from the background. The cameras were calibrated independently using OpenCV
and the images were corrected for lens distortion and vignetting. In all the real-data experiment the depth
was discretized into thirty values and the images were downsampled by a factor of two.

Our results for three datasets are presented in Fig. 3.7-3.9. The first two datasets demonstrate large
discontinuities in depth and motion. In the second dataset (Fig. 3.8), larger motion is considered and hence
significant occlusions in temporal domain must be dealt with.

Fig. 3.7-3.9, show the recovered depth and the magnitude of the estimated optical flow, for each of the
first two datasets. In addition, we present the 2D slice from the volume that corresponds to the foreground
object and its associated confidence map. As can be seen, the foreground object is in focus while the rest of
the scene is blurred out. Moreover, the foreground object is assigned a high confidence as expected. However,
a closer look shows that there are additional high confidence regions that belong to the background. The
reason is the low variance of intensities in those regions. In particular, these regions cannot be distinguished
during the clustering stage (despite the wrong depth value), and hence, the 3D structure cannot be obtained
from the confidence alone. Nonetheless, since the depth and optical flow are extracted using the brightness
constancy assumption (between the volume and the reference camera) as well, we successfully obtain the
correct solution.

The third dataset (Fig. 3.9) involves nonrigid motion of a moving face. The recovered depth map shows
that the depth differences between parts of the face are recognized. This is also shown in Fig. 3.9.(f), where
the nose is assigned low confidence.

1Due to the high computational complexity of [28] the results were computed from seven input views.
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Figure 3.9: Real dataset (Simon): Please see caption of Figure 3.7 for the description of the subfigures. The narrow
figures to (f-g) is a close-up of the boundary region.

In the last experiment we used a camera stage (see Fig.3.1(b)) to capture a scene with several toys that
move behind a wire fence. At each time step we take 100 images, of size 320× 240, of the scene. Fig. 3.10
shows the results of this experiment. As can be seen, we successfully recovered the 3D motion of the toys,
as well as the 3D structure of the scene, despite sharp discontinuities (for example, the wire fence).

a b c

d e f

Figure 3.10: Real dataset (Toy Story): (a),(b) the reference view at time t and t + 1, respectively; Buzz, as well as
the check-board, moved; (c) the flow map of our optical flow; (d) the magnitude of our optical flow; (e) our depth map;
(f) the estimated depth map using robust Voxel Coloring.
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3.5 Discussion and Conclusions

Scene registration is a method for computing the structure and motion of a dynamic nonrigid scene, captured
with a camera array. A feature of our approach is that it does not require explicit occlusion handling and
improves the reconstruction of discontinuities both in space and time. The key idea of our method is to
convert the input sets of images into a novel volumetric space. In this volume both real scene points and
points in free space are represented by a scalar value and a confidence measure. With this representation
the flow computation is reduced to a nonrigid registration of two 3D scalar volumes that does not require
explicit reconstruction of the 3D scene structure or reasoning about occlusions. Instead, the scene flow and
structure can be recovered easily after the volumetric registration. Experiments on a number of challenging
synthetic and real data sets demonstrated the advantages of our approach. The experiments also reveal that
our method is scalable and can successfully handle tens of cameras.

In future work, we intend to improve the the current matching algorithm by taking into account full
confidence information. Also, we would like to extend the matching algorithm to deal with different variants
of 3D vector fields such has higher dimensional light fields.



Chapter 4

Geometrically Consistent Stereo Seam
Carving

4.1 Introduction

Digital images are displayed on a variety of digital devices, each of which might require a different aspect
ratio. The core idea of image retargeting algorithms is to adapt the image content to the screen without
distorting the important objects in the scene. The rapid pace of technology makes it possible to view 3D
content on a large range of devices, from cellphones to large TV screens. In addition, stereophotography is
becoming increasingly popular, with a large number of stereo images appearing online. As a result, image
retargeting algorithms need to be adapted to work on stereo image pairs.

We propose a novel method for retargeting stereo image pairs. The input to our method is assumed to be
a rectified stereo image pair and a disparity map. The input disparity map may be computed from the pair of
images by an available stereo algorithm, or be given by any other algorithm or device. The 3D information
provides valuable cues for retargeting, as previously demonstrated by retargeting algorithms for a single
image [58]. Indeed, stereo image retargeting can also benefit from the 3D information provided by the other
image. However, since the 3D information must be maintained in the retargeted pair, maintaining the 3D
information poses new challenges.

Our method retargets the input pair in the horizontal domain while minimizing the distortion of each
image as well as the distortion in depth. A key property of our method is that the retargeted stereo pair has
a feasible 3D interpretation that is similar to the original one. Thanks to this geometric consistency, our
retargeted pair can be viewed on a stereoscopic display or processed by any computer vision algorithm that
makes use of a stereo pair (e.g., cosegmentation or tracking).

4.1.1 The General Idea

We generalize the single image seam carving algorithm [5, 74] to work on a rectified stereo pair. Instead
of removing a seam from a single image, our algorithm iteratively removes a pair of seams from the stereo
image pair.

A naive extension of the single image seam carving algorithm is to independently apply it to each of the
images (see the blue box in Figure 4.1a). It disregards the geometry and as a result, damages the 3D structure
of the scene, for example by removing a pixel from one image while keeping its corresponding pixel in the
other one. To overcome this problem, a joint retargeting of both images must be considered. In particular,
the selection of seams in both images should be coupled. A straightforward approach for stereo retargeting

This work was published in ICCV 2011 [24], and PAMI 2013 [25].
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Independent Single Image Retagreting Our Stereo Retagreting Approach

a b

Figure 4.1: Geometric Evaluation. (a): The results of applying single image SC [74] on each of the input images.(b):
The results of applying our stereo retargeting algorithm. On both left and right sides: D̂SGM is computed by applying
SGM [41] on the retargeted pair; the original disparity values of the remaining pixels are stored in D̂o. Finally, the
depth distortion is measured by |D̂SGM− D̂o|. The color code is blue for low values and red for high ones; red indicates
a difference of at least six pixels.

is to compute the seam in one of the images, say the left one, and then map it to the right image via the
disparity map. This is clearly sub-optimal as it does not utilize the information available in the right image
or the depth map. Figure 4.2 demonstrates the results using this approach (for more details see Section 4.6).

In fact, the problems run even deeper, mainly due to occlusions; there is no guarantee that seam pixels in
the left image have matching pixels in the right. And the change in 3D shape must be carefully considered to
avoid an inconsistent change in the visibility relation of the scene points. In particular, pixels that are visible
only in one of the views should not be revealed. Thus, the new problem of stereo retargeting creates new
challenges.

The proposed method overcomes the challenges of stereo retargeting by generalizing seam carving to
simultaneously carve a pair of seams in both images, while minimizing distortion in appearance and depth.
Seam selection and disparity map modification are subject to geometric constraints that take into account
the visibility relations between pixels in the images (occluded and occluding pixels). These geometric con-
straints guarantee consistency of the target images with a feasible 3D scene, as formally proven in Section 4.5
and empirically demonstrated in Section 4.6.

4.2 Related Work

Image and video retargeting algorithms have been extensively investigated in recent years. These algorithms
attempt to change the aspect ratio of an image or a video in a way that does not distort the proportions of
the important objects in the image. The various algorithms differ in how they determine the importance of
different pixels in the image and in how they use this information. Two main classes of algorithms have
emerged. Discrete methods for single image retargeting, such as seam carving [5] or shift map [68], remove
and shift pixels in the image. Continuous methods [108, 101] warp a quad mesh based on image content. An
excellent overview and comprehensive study of the topic is given in [73].

Here, we extend the seam carving algorithm to work on stereo. The algorithm was first introduced in [5]
and was extended in [74]. The seam carving algorithm works by iteratively computing a seam with minimal
visual distortion in the image and removing it. A seam is defined to be a connected path in the image, yet
this is not a necessary assumption and Grundmann et al. [37] recently showed that piece-wise connected
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Figure 4.2: The straightforward approach for seam coupling. (a-b): The pair of input images, and (c), their ground
truth disparity map. (d): The single image retargeted left image using [74], and (e) the retargeted right image computed
by carving corresponding seams. (f): The disparity map computed by applying the SGM stereo algorithm on the pair
(d-e). (g): The updated disparity map computed by our method.

paths are more flexible for video retargeting. There the goal is to retarget frames sequentially and rely on
piece-wise connected seams to better fit the retargeting to previous frames. However, they do not consider
stereo data.

Most work reported thus far in the literature has focused on retargeting a single image or video. However,
the rise of 3D content makes it necessary to extend image retargeting algorithms to work with 3D content.
Lang et al. [51] adjust the disparity map according to various stylistic considerations. They do not consider
the problem of stereo image retargeting, nor do they discuss the the geometric consistency of their method.

Mansfield et al. [58] assume the input is a single image and a relative depth map (provided by the user)
and the output is a single image. They extend seam carving to scene carving and show that scene carving
is indeed scene consistent, can introduce occlusions, and can also handle pixel reappearance, say when
one layer moves behind another layer and reappears on the other side. There are a number of important
distinctions between our work and that of [58]. First, we assume that the input is a pair of stereo images.
They, on the other hand, assume the input to be an image with a depth map. As a result, they cannot produce
a retargeted stereo pair without resorting to image synthesis techniques to fill in gaps, as they have to deal
with the occlusions caused by the different points of view of the stereo image pair. Second, we assume a
per-pixel stereo map, as opposed to representing the scene as a collection of well-defined fronto-parallel
planes.

Chang et al. [21] proposed a content-aware display adaptation method that simultaneously resizes a
stereoscopic image to the target resolution and adapts its depth to the comfort zone of the display while
preserving the perceived shapes of prominent objects. This is done by detecting and matching a sparse set
of feature points that are then used to define a warping field according to the target display parameters.

In the scene-warping method by Lee et al. [52], the layer-based approach [58] and the warping-based
approach [21] are combined. Each of the input stereo images is decomposed into multiple layers according to
color and depth information. Each layer is then warped by its own mesh deformation, and the warped layers
are composited together to form the resized images. Both methods [21, 52] do not discuss the geometric
consistency of their method, nor how they deal with occlusions between the left and right views.

Utsugi et al. [95] have also considered the extension of seam carving to stereo images. However, here
too, the primary goal of preserving the geometric consistency of the output image pair is neither defined nor
discussed in their work.

Recently, Birklbauer & Bimber [13] proposed a method for light-field retargeting that preserves the
angular consistency. Their algorithm converts a stack of images into a light field representation in which
seam carving is performed. The retargeted light field is then mapped back to retargeted individual images.
They avoid the need to recover explicit 3D information, however it is not clear how they deal with occlusions.

Finally, our work is part of a recent surge in stereo image editing algorithms, where the goal is to extend
image editing tools to work directly on a pair of stereo images. This includes inpainting of stereo image pairs
[100], stereoscopic 3D cut-and-paste [57], and viewer-centric editor for 3D movies [49].



CHAPTER 4. GEOMETRICALLY CONSISTENT STEREO SEAM CARVING 42

4.3 The Method

The input to our method is a pair of m× n rectified stereo images, {IL, IR}, and a disparity map, D, where
the disparity map can be computed by any stereo algorithm (we use [41]). Without loss of generality, we
consider the disparity with respect to the left image, which is taken to be the reference image. The output of
our algorithm is a pair of retargeted images, {ÎL, ÎR} and an updated disparity map, D̂.

The primary goal of our method is to obtain retargeted images that are geometrically consistent with a
feasible 3D scene. Namely, it is possible to define correspondence between pixels that is consistent with the
epipolar geometry as well as with visibility relations between 3D points in the retargeted pair. To obtain this
goal it is sufficient to impose the following constraints:

C1 : Corresponding pixels in the original images are either both removed or remain corresponding in the
output images.

C2 : 3D points that are visible in the reference view but occluded in the other are not revealed.

In Section 4.5 we formally prove that these constraints are satisfied by our method.

4.3.1 Seam Coupling

The geometric coupling of the two seams, SL = {siL}mi=1 and SR = {siR}mi=1, is obtained by using the corre-
spondence defined byD. Formally, each of the seam’s pixels in the left image at row i, siL = (i, jL(i)) ∈ SL,
is matched to a seam pixel in the right image, siR = (i, jR(i)) ∈ SR, as follows:

siR = (i, jR(i)) = (i, jL(i) +D(siL)), (4.1)

where jL, jR : [m]→ [n], and [m] = [1, ...,m]. The estimated disparity map, D : [n]× [m]→ Z∪⊥, maps
pixels of IL to their corresponding pixels in IR, if the correspondence is known, and to ⊥ otherwise. Note
that the seams contain only pixels for which the disparity is defined.

Note that a continuous seam in the left image generally corresponds to a piecewise continuous seam in
the right image since the seam may cross depth discontinuities. Therefore, we drop the assumption that a
seam (in either IL or IR) is continuous and consider piecewise seams from now on, which we refer to as
generalized seams (see Figure 4.3).

4.3.2 The Energy Function

The energy function of the stereo seam carving method consists of an intensity term and a 3D geometry
term. Removing a seam’s pixel from each image in the stereo pair has the local effect of creating new
adjacent pixels in the target image. The resulting gradients in the retargeted left and right images depend
on the seam pixel in the previous row, denoted by j±L and j±R , respectively. Since the left and right image
seams are coupled, j±R , is uniquely defined by j±L and the disparity map, D. Therefore, we define the energy
function (w.r.t. the left image) in accordance with the seam pixel in the previous row, j± (which is short for
j±L ). That is,

Etotal(i, j, j
±) = Eintensity(i, j, j

±) + αE3D(i, j, j±), (4.2)

where α controls the relative impact of each of the terms. Since we use generalized seams, j± ∈ [m] can be
any pixel in row i− 1 (unlike the continuous case in which j± ∈ {j − 1, j, j + 1}).

Appearance Energy

We generalize the forward energy criterion from [74], whose goal is to minimize the resulting distortion
in the retargeted image caused by the intensity differences between new adjacent pixels. The appearance
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Figure 4.3: (a): The left image masked with the computed occluded pixels in green, and occluding pixels in blue;
out-of-field-of-view pixels are colored in yellow. (b): The right image masked with the corresponding occluding pixels
in blue. In this example both left and right seams (in red) are discontinuous.

distortion Eintensity(i, j, j
±) is taken to be the sum of the energy terms, EL and ER, for removing a pair of

coupled pixels from the left and right images. That is,

Eintensity(i, j, j
±) = EL(i, j, j±) + ER(i, jR, j

±
R ), (4.3)

where the coupling of the left and right seams is captured via the disparity map as defined in Section 4.3.1.
The energy of removing a specific pixel, (i, j) from image I , left or right, is given by:

E(i, j, j±) = Ev(i, j, j±) + Eh(i, j), (4.4)

where Eh and Ev are the forward energy terms due to the new gradients in the horizontal and vertical
directions, respectively. In particular, Eh is given by:

Eh(i, j) = |I(i, j + 1)− I(i, j − 1)|. (4.5)

In the vertical direction, the new gradients depend on the position of the seam in row i− 1, j±. Accordingly,
the vertical forward energy is given by:

Ev(i, j, j±) =

 V1 j± < j
0 j± = j
V2 j± > j

(4.6)

where
V1 =

∑j
k=j±+1 |I(i− 1, k)− I(i, k − 1))|

V2 =
∑j±

k=j+1 |I(i− 1, k − 1)− I(i, k))|.
(4.7)

Depth Energy

The computed depth map provides valuable cues for seam selection, and a 3D forward energy term, ED, is
used to minimize the disparity distortion. It is defined similarly to the forward energy of the intensity values,
by replacing the intensity function, I , with the disparity map D in Eq. 4.4 and Eq. 4.7. In practice, in order
to compensate for the differences in range between the intensity and the disparity values, we normalize both
I and D in the range of zero to one.
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In addition, the object’s distance from the camera often correlates with its saliency. Hence, we increase
the energy of pixels that are the projections of nearby 3D points. Moreover, our method is strongly based
on the disparity map, which is computed by a stereo algorithm that is regarded as a black box. Errors in the
estimated map may result in incorrect coupling of seam pixels. We prefer removing pixels for which we have
high confidence of disparity values, measured by the difference in the intensities of corresponding pixels.
That is,

G(i, j) = |IL(i, j)− IR(i, j +D(i, j))|. (4.8)

The total forward 3D energy is a weighted sum between three components:

E3D(i, j, j±) = ED(i, j, j±) + β|Dn(i, j)|+ γG(i, j), (4.9)

where Dn is the normalized disparity map.

4.3.3 Maintaining Pixel Visibility

An occluded pixel in the reference image is defined as the projection of a 3D point that is not visible in
the right view due to another 3D point that occludes it (red in Figure 4.4a). Occluded pixels do not have
corresponding pixels in the right image; our method does not remove them from the image.

Furthermore, in order to satisfy the geometric constraint, C2, occluded pixels must not be revealed.
Otherwise, no coherent 3D interpretation can justify the visibility of the revealed pixel only in one image
and not in the other. To this end, we ensure that occluded pixels in the original right image remain occluded
in the retargeted right image, by avoiding removing pixels that may reveal them, namely occluding pixels.
An occluding pixel is defined to be the projection of a visible 3D point in both views that accounts for the
occlusion of one or more 3D points in the right view (see green in Figure 4.4a). Our choice of removing only
pixels that are neither occluded nor occluding, guarantees that the original visibility relation (i.e., occluded-
occluding pairs) is preserved. See Section 4.5 for the proof.

The set of occluding and occluded pixels is computed once from the input disparity map, D and repre-

a b

Figure 4.4: (a): Occluded pixels, green, have no corresponding pixels in the right image. The occluding pixels, blue,
are visible in both views. (b): The ordering constraint does not hold: removing the red point causes the point p to shift
left while the point q remains in its original location.
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a b

Figure 4.5: Horizontal Seams: A horizontal seam in the left image (a) does not specify a seam the right (b).

sented by a binary map, O(i, j) where O(i, j) = 1 if pixel (i, j) is an occluded or occluding pixel. This
map is computed using a simplified Z-buffer approach. Namely, if two or more pixels in the left image are
mapped to the same pixel in the right image, the pixel with the largest disparity value is the occluder while
the rest are occluded.

In the examples we considered, the number of occluded and occluding pixels is typically 20%. An
example of both the occluded and occluding maps is given in Figure 4.3.

Input Our Results Comp. & Eval.

Figure 4.6: Moebius Dataset. In the first column (top to bottom), the input left and right images and the input
disparity map. In the second column, our results, with respect to the first column. The third column shows the results
of applying single image SC [74] to the left input image (top); the distortion in depth caused by independent single
image retargeting (middle); the distortion in depth caused by our stereo retargeting method. Depth distortion scores:
single image SC, B=85%; stereo pair SC, B=3.2%.
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Our Results Utsugi et al. Single Image SC

Figure 4.7: Aloe Dataset. In the first column (top to bottom), our results for the left and right images and the disparity
map. The input stereo pair is shown in Figure 4.2(a-b). In the second column, the results of the method of Utsugi
et al.[95]. In the third column, the results of applying single image SC [74] to the left input image (top); see caption
of Figure 4.6. The depth distortion scores: single image SC, B=47%; stereo pair SC, B=2.9%.

4.3.4 Stereo Seam Selection and Carving

The energy term defined in Eq. 4.2 is now accumulated in a cost matrix M to select a pair of seams using
dynamic programming. The seams are coupled as defined in Section 4.3.1. We set M(i, j) = ∞ for pixels
that do not satisfy the visibility constraints, namely if O(i, j) = 1 (see Sec 4.3.3).

By default, we prefer continuous seams (where j± ∈ j − 1, j, j + 1), which affect fewer pixels than dis-
continuous seams (see Eq. 4.7). However, if a continuous path is blocked at pixel (i, j) by occluded/occluding
pixels, we allow discontinuous seams. Formally, we consider two cases, according to whether it is necessary
to switch at the pixel (i, j) from a continuous to discontinuous seam:

M(i, j) =


min

j±∈{j−1,j,j+1}
Etotal(i, j, j

±); T (i, j) = 0

min
j±∈[m]

Etotal(i, j, j
±); T (i, j) = 1,

(4.10)

where, T is the binary map of size n ×m. T (i, j) indicates whether a continuous path is blocked in row
i − 1 by occluding/occluded pixels. That is, T (i, j) = 1 if O(i − 1, j±) = 1 for j± ∈ {j − 1, j, j + 1}.
Note that piece-wise connected seams were successfully used for video retargeting [37], where the goal is to
preserve the moving regions.

As in [74], removing a seam pixel from a row results in shifting pixels in that row. Specifically, all
pixels to the right of the removed pixels are shifted left by one pixel. The remaining pixels are unchanged.
Formally, the shifting function fL(i, j) : [m]× [n]→ [m]× [n− 1] maps the ith input row to the ith output
row. Let siL = (i, jL(i)) be the pixel to be removed from the left image. Then, the shifting mapping is
defined by:

fL(i, j) =


j if j < jL(i)
j − 1 if j > jL(i)
⊥ if j = jL(i)

(4.11)
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a b c d

Figure 4.8: Diana Dataset. (a): The input pair of images. (b): The retargeted pair of images produced by our method.
(c): The input disparity map, our result, and the evaluated depth distortion. (d): The result of single image SC on the
left image.

Likewise, fR(i, j) is the corresponding mapping function in the right image, where jL(i) is replaced by
jR(i) (as defined in Eq. 4.1).

After carving a seam, the new disparity map, D̂, is obtained by removing the left seam SL from the
previous D and updating the disparity values of the remaining pixels. In particular, the updated disparity
value, D̂, of a pixel (i, j) is given by:

D̂(i, fL(i, j)) = fR(i, j +D(i, j))− fL(i, j). (4.12)

Geometric Interpretation

We next describe the geometric interpretation of the carving. From Eq. 4.11 it follows that each pixel may
either be shifted one pixel to the left or remain in its original location. If a pair of corresponding pixels
remains in its original location, the associated 3D point remains the same as in the original scene. When
pixels are shifted, the position of the associated 3D points change. If the two pixels in a corresponding pair
are both shifted left, the original depth is preserved, namely D̂(i, j) = D(i, j) (see Eq. 4.12). The associated
3D point changes its location accordingly by a left translation, parallel to the image plane. Most pixels will
either remain in their original location or be shifted together. However, when the ordering constraint does not
hold (see Figure 4.4b), a pixel may be shifted in one of the images, while its corresponding pixel remains in
its original location. In this case, the disparity is changed by one pixel, which corresponds to a small change
in depth.

4.3.5 Stereo Image Pair Enlarging

So far we have shown how to reduce the width of the input stereo pair, but our method can also be applied to
enlarge the width. This is done, similarly to the single image seam-carving algorithm [74], by first selecting
the optimal pairs of seams for removal, and duplicating them in the pair of images. In addition, we update
the disparity map by duplicating the left image seams, and updating the disparity values when necessary (i.e.,
corresponding pixels in the left and right images are not on the same side of the seam in both images.)

4.4 Horizontal Seams

Existing single image retargeting methods can be directly applied to change the height of the image as well
since the vertical and horizontal directions are symmetric. However, when a stereo pair is considered this is
no longer the case. Preserving the geometric consistency of a pair of images is possible only if restrictive
assumptions on the disparity map are imposed, as we describe below.

To preserve the 3D interpretation of the scene, it is essential to couple the seams of the pair of images
(see Section 4.3.1). As in the vertical case, a seam in the left image is mapped to a set of corresponding
pixels in the right image, determined by the disparity map. However, in the horizontal case, this set of pixels
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Figure 4.9: Car Dataset. In column (a) (top to bottom), the input left and right images and the input disparity
map. In columns (b) and (c), our results for reducing and increasing the width by 17%. In columns (d),(e), the
results of applying single image SC to the left input image (top); the distortion in depth caused by independent single
image retargeting (middle); the distortion in depth caused by our stereo retargeting method. Depth distortion scores:
Shrinkage: single image SC, B=70%; stereo pair SC, B=1.3%; Expansion: single image SC, B=69.3%; stereo pair SC,
B=1.9%.

generally does not specify a horizontal seam in the right image. That is, there is no guarantee that the set of
corresponding pixels in the right image consists of a single pixel at each column (see example in Figure 4.5).
An exceptional case is a constant disparity along the seam, where the right image seam is simply a shift of the
left one. However, even under this restriction (which is not valid in practice), the disparity must be further
constrained for retargeting while maintaining the geometric consistency of the stereo pair. In particular,
pixels above the seam remain at the same location, while pixels below the seam are shifted up in one pixel.
Thus, the epipolar lines of the pixels below the seam are shifted up as well. It follows that in order to preserve
the epipolar geometry, corresponding pixels in the left and right image must be on the same side of the seam
(below or above) in both images.

We conclude that constraints on both the seam disparity and on the disparity of pixels in the region
bounded by the rows that participate in the seam are unlikely to be satisfied for realistic scenes. Hence,
horizontal seams cannot be used for retargeting while keeping the geometric consistency of a stereo pair. It
is worth noting that the image height can be resized by expanding the image width, followed by uniform
scaling. Clearly, this is not optimal but allows the aspect ratio to be changed as desired.

4.5 Geometric Consistency

We prove here that our algorithm preserves the geometric consistency of the input pair. Clearly, the epipolar
geometry is preserved (as well as the rectification) since all pixels in both images are either left-shifted or
remain in their original location. We next show that our method satisfies the constraints C1 and C2 (see
Section 4.3).

Constraint C1, maintaining the original input correspondence, is directly satisfied by our method since
the disparity map is used to couple the seams (see Section 4.3.1). To show that constraint C2 is satisfied, we
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prove that the operation of removing a pair of seams pixels and the following update of the disparity map
guarantee that the original visibility of 3D points is preserved. To this end we formally define the occluded
and occluding pixels.
Definition: Occluded and Occluding Pixels
Let (i, jb) and (i, jf ) be two pixels in the left image. The pixel (i, jf ) occludes (i, jb) iff jb < jf and the
two pixels are mapped to the same pixel in the right image. That is,

jf +D(i, jf ) = jb +D(i, jb). (4.13)

It follows that a pixel (i, j) is not an occluding\occluded iff

j +D(i, j) 6= j′ +D(i, j′) ∀j′ 6= j. (4.14)

Lemma #1:

The operation of removing a seam point, pL = (i, jL), preserves the ordering between the remaining pixels
in the row i. Formally, given two pixels, p1 = (i, j1) and p2 = (i, j2): j1 < j2 ⇔ fL(i, j1) < fL(i, j2),
where f is defined in Eq. 4.11.

It follows directly from this Lemma that: j1 = j2 ⇔ fL(i, j1) = fL(i, j2).

Proof: If both p1 and p2 are on the same side of the seam, then by Eq. 4.11 the order is preserved. Therefore,
the only case to consider is when the seam pixel, (i, jL), is in between the two pixels: without loss of
generality, j1 < jL < j2. In this case, fL(i, j1) = j1 and fL(i, j2) = j2 − 1. Since this scenario is possible
only if the gap between j1 and j2 is at least one pixel, it follows that j1 < j2 − 1. In particular, we obtain
that j1 < j2 and fL(i, j1) < fL(i, j2).

Claim: Let pf (i, jf ) and pb = (i, jb) be two pixels in the reference view. Pixel pf occludes pb in the original
image pair iff (i, fL(i, jf )) occludes (i, fL(i, jb)) after removing the seam pixels.

Proof: We have to show that: jb < jf and jf + D(i, jf ) = jb + D(i, jb) iff fL(i, jb) < fL(i, jf ) and
fL(i, jb) + D̂(i, fL(i, jb)) = fL(i, jf ) + D̂(i, fL(jf )). Using the definition of D̂ (see Eq. 4.12), it follows
that:

fL(i, jb) + D̂(i, fL(i, jb)) =
fL(i, jb) + fR(i, jb +D(i, jb))− fL(i, jb) =
fR(i, jb +D(i, jb))

fL(i, jf ) + D̂(i, fL(i, jf )) =
fL(i, jf ) + fR(i, jf +D(i, jf ))− fL(i, jf ) =
fR(i, jf +D(i, jf )).

(4.15)

Now, using Lemma 1 we obtain that

jb < jf ⇔ fL(i, jb) < fL(i, jf ), and, (4.16)

fR(i, jb +D(i, jb)) = fR(i, jf +D(i, jf ))⇔
jb + d(jb) = jf + d(jf ).

(4.17)

To complete the proof, the above equations are put together:

fL(i, jb) + D̂(fL(i, jb)) = fL(i, jf ) + D̂(i, fL(i, jf ))⇔
jb +D(i, jb) = jf +D(i, jf ).
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4.6 Results

We tested our method on challenging indoor and outdoor scenes. In all experiments, we used the OpenCV
implementation of the SGM stereo algorithm [41] to compute the input disparity; hole filling was performed
on regions for which the disparity was not computed. This is done by a simple interpolation along scanlines
– the holes in each scanline are filled with the minimal disparity value on the hole boundary. The algorithm
was implemented in MATLAB and the code as well as the datasets are publicly available.

4.6.1 Datasets

The following datasets were considered:

Middlebury: Six of the Middlebury stereo datasets [40]: Moebius (Figure 4.6), Aloe (Figure 4.7), Cloth,
Wood, Dolls, and Laundry. These datasets are challenging because the scenes are highly textured and contain
objects at different depths. In most of these datasets about 20% of the pixels in the original reference images
cannot be removed, since they are either occluding or occluded (see Figure 4.3).

Portrait: A pair of images (Figure 4.8), provided by [43]. The main challenge in this pair is that the salient
object, which covers most of the image, should not be distorted. Moreover, a significant part of the left image
is out of the field of view of the right camera, and hence cannot be removed by our algorithm.

Flickr: A set of stereo images, with large depth range, downloaded from Flickr (Figure 4.12-4.11). The
images were manually rectified using [34].

4.6.2 Geometric Evaluation

A main contribution of our method is the production of a geometrically consistent retargeted image pair
that preserves the original depth values of the remaining points. We evaluate depth distortion by measuring
the deviation of the updated disparity values from their original values. Our evaluation scheme is described
in Figure 4.1: a disparity map, D̂SGM, is computed on the retargeted pair of stereo images. The computed
map, D̂SGM, reflects the geometry that can be recovered from the pair of retargeted images, regardless of the
method used to produce them.

The depth distortion is measured by comparing the disparity value of each pixel in D̂SGM with its original
value. In particular, we compute D̂o, which consists of the original disparity values, D, after removing the
relevant seams with respect to the reference view. The absolute difference, |D̂o − D̂SGM|, is shown for all
our experiments. For comparison, we evaluate the depth distortion caused by independent single image
retargeting (see Figure 4.1a). For quantitative evaluation, we define the depth distortion score to be the
percentage of pixels whose depth, D̂SGM, has been changed by more than one pixel. That is,

B =
1

N

∑
(i,j)

(
|D̂o(i, j)− D̂SGM(i, j)| > 1

)
. (4.18)

Note that the true depth distortion should have been measured directly in 3D rather in 2D (see [28]).
However, evaluating the distortion in 3D is not applicable in our case since the cameras are not calibrated
and the units of the inverse disparity are unknown. Hence, we choose to compute the disparity distortion,
which is correlated with the 3D distortion. Hence, we choose to compute the disparity distortion, which is
correlated with the 3D distortion.
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V1 & V2 V1 & V5 V1 & V6
Cloth 4.14% 18.06% 23.13%
Wood 5.65% 20.90% 26.61%
Dolls 3.14% 17.70% 23.34%

Laundry 4.44% 20.27% 24.59%

Table 4.1: Initial Occlusions. For each dataset and each baseline, the initial percentage of occluding and occluded
pixel out of the total image pixels.

4.6.3 Main Test

We tested our algorithm on the abovementioned datasets using a fixed set of parameters for the 3D weight:
β = 0.08 and γ = 0.5 (see Eq. 4.9). The parameter α (see Eq. 4.9) was empirically set in the range of
1-5, for each of the datasets. The image width was reduced by 20% for the Middlebury datasets Aloe and
Moebius, and by 17% for the rest. The results are presented in Figures 4.6-4.9. In addition, Figures 4.9-4.12
show our results, and the results of single image seam-carving, for enlarging the width by 17%.

Our experiments show that the output pair is geometrically consistent and the original depth values are
preserved. It is evident that significant depth distortion is caused when naive independent retargeting of each
image is considered. (See right columns in each of the figures.)

To evaluate the appearance distortion, we show the single image seam carving result of the left image
[74]. The large number of geometric constraints that our method must satisfy limits the number of candidate
seams; the constraints are thus expected to yield results that are not as good as those obtained for single
image retargeting. Still, the 3D information and the use of generalized seams compensate for this problem.
Our results are similar (e.g., Figure 4.6 and Figure 4.7) to those of single image seam carving and in some
cases much better. For example, our method successfully preserves the face appearance (Figure 4.8) as well
as the face depth (Figure 4.8c), without prior knowledge, such as face location, used by [108]. Figure 4.12
shows another example in which the perspective of the running track is nicely preserved and the man is not
deformed, in contrast to the single image seam carving.

Input Our Results Comparison

Figure 4.10: Snowman Dataset from Flickr. See caption of Fig. 4.6. Depth distortion scores: single image SC,
B=70%; stereo pair SC, B=1.3%.
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Input Low β High β Comparison

Figure 4.11: People Dataset. The first column shows the input pair and the computed disparity map. The second and
third columns show our results using low and high weights, respectively; the bottom figures show the depth distortion,
respectively. The third column shows the results of applying single image SC to the left (top) and right (middle) input
images; the bottom figure shows the depth distortion caused by single image SC. Depth distortion scores: single image
SC, B=79%; stereo pair SC, low β, B=2.1%; stereo pair SC, high β, B=2.6%.

4.6.4 A Naive Use of The Disparity

A naive approach to using the disparity map is to retarget the reference image (by applying single image seam
carving), and map the selected seams to the other image using the disparity map. Figure 4.2 presents the
retargeted images (d-e). The ground truth disparity map of the original pair, c, is compared to the disparity
map computed using the SGM on the naive retargeted pair, f, and to our results, g. This comparison clearly
shows that the a naive use of the disparity map is insufficient for obtaining geometric consistency. (The
retargeted images using our results are presented in Figure 4.7.)

4.6.5 3D Weight

So far we have used fixed parameters for the 3D weight. However, as can be seen in the second column of
Figure 4.11, the man on the left almost “lost” his leg. Allowing user interaction for setting the weight of ob-
jects according to their depth (the parameter β in Eq. 4.9) improves the results (third column in Figure 4.11).
The head of the person on the right was not distorted regardless of this parameter, in contrast to the single
image seam carving which distorts it dramatically. We note that the geometric consistency of the retargeted
images is obtained regardless of the choice of parameters, and depth distortion remains negligible.

Finally, we compare the disparity computed by our method, D̂, with that computed by the SGM algo-
rithm on the retargeted images, D̂SGM. For all the tests described above, the difference is less than 2%.

4.6.6 Effect of Baseline & Retargeting Rate

Next we tested the effect of the baseline between the cameras on the visual appearance and geometric consis-
tency of our results. To this end, we used four of the Middlebury datasets: Cloth, Wood, Dolls, and Laundry.
We tested our method on each dataset, while considering three baselines w.r.t. same view (view1). The initial
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Figure 4.12: Man Dataset. In column (a) (top to bottom), the input left and right images and the input disparity
map. In columns (b),(c), our results for reducing and increasing the width in 17%, respectively. In columns (d),(e), the
results of applying single image SC to the left input image (top); the distortion in depth caused by independent single
image retargeting (middle); the distortion in depth caused by our stereo retargeting method. Depth distortion scores:
Shrinkage: single image SC, B=49%; stereo pair SC, B=0.43%; Expansion: single image SC B=62.4%; stereo pair
SC, B=1.02%.

percentage of occluding and occluded pixels out of the total image pixels is summarized in Table 4.1. Note
that after retargeting, the percentage of occluding and occluded pixels is defined by the new image image size
(since occluding/occluded pixels are not removed). Figure 4.13 shows the computed depth distortion scores
(see Eq. 4.18) for shrinking the image width by 17%, 25%, and 35%. As can be seen, the distortion scores
increase to some extent as the baseline is extended, and the image width is reduced. The main reason for this
result is that the quality of the disparity map degrades as the baseline is extended. The depth distortion score
ranges from 0.039%-3.8%, and the average over all scores (all datasets, baseline, and image widths) is only
0.78%. That is, the depth values of more than 99% of all pixels on average, have been perserved.

In terms of geometric consistency, there is no real restriction regarding the capacity to shrink. An ex-
ception is the extreme case where all pixels in a certain row in the left image are occluding/occluded pixels.
In such a case (which did not happen in any of our experiments) there is no valid seam to remove. In terms
of appearance, the limitation of the capacity to shrink depends also on the occluding and occluded pixels,
which are not removed by our method. The number of possible candidate seams is reduced as more seams
are removed (the percentage of occluding/occluded pixels is increased); therefore, the visual artifacts are
expected to be more significant (see next section).

4.6.7 Visual Effect of The Input Disparity

As explained above, our method depends on the quality of the disparity map. Errors in the disparity map
affect the depth distortion scores as well as the visual appearance of the images. The effect of these errors
become more significant as more seams are removed. Figure 4.14 shows our results on the Cloth and Wood
datasets when shrinking them by 17%, 25%, and 35%. The baseline here is fixed (V1 & V5). In the left
column, the input disparity maps were obtained by the SGM stereo algorithm (followed by hole filling).
In the right column, the ground truth disparity maps were used as input. The results on the Cloth dataset



CHAPTER 4. GEOMETRICALLY CONSISTENT STEREO SEAM CARVING 54

show only a small difference in the appearance when the ground truth disparity was used. Overall, the visual
appearance of the images in both cases is preserved. The results on the Wood dataset using SGM shows
several visual artifacts that becomes more significant as more seams are removed. These distortions do not
appear when the ground truth disparity is used.

4.6.8 Comparison with Stereo Retargeting Methods

We compared our method with existing warping-based methods for stereoscopic image retargeting [21, 52].
The comparison of the visual appearance for the same datasets is found in [52]. For all methods, the visual
appearance of the left and right images is overall pretty good. In each of the methods, including ours, small
visual artifacts can be found. However, we focus here on evaluating the geometric consistency of the results,
which is the primary goal and contribution of our method.

Each retargeted stereo image pair gives rise to a new retargeted scene, which is represented by a disparity
map between the retargeted images. Figure 4.17 presents the disparity maps computed by SGM on the input
images, and the retargeted pairs obtained by our method, Chang et al. [21], and Lee et al. [52]. As can be
seen, the disparity maps computed on Chang et al.’s images (Figure 4.17c) are noisy and contain significant
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Figure 4.13: (a)-(d): Depth distortion scores for the Middlebury datasets: Cloth, Wood, Dolls, and Laundry. In each
graph, the depth distortion scores (y-axis) computed for three baselines: view1 and view2 (V1 & V2), view1 and view5

(V1 & V5), view1 and view6 (V1 & V6), and for shrinkage of: , , and .
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Results using SGM Results using GT
Input 17% 25% 35% Input 17% 25% 35%

Figure 4.14: The results on the Cloth and Wood datasets for shrinking the image width by: 17%, 25% and 35%. On
the left column, the input disparity maps were computed by SGM stereo algoithm. On the right column, the results
w.r.t. left column using the ground truth disparity maps as input.

artifacts of both background and foreground objects (e.g., the man on the right in the People dataset result).
Lee et al.’s disparity maps (Figure 4.17d) are less noisy, but the depth values and the 3D structure of the 3D
scene are often considerably distorted compared to input disparity map. For instance, the change of depth
values of the foreground men in the People dataset (first row), and the depth change of the face in Diana
dataset (last row). Another visual artifact can be seen in the results on the Man dataset (second row), the
3D structure of running track background (see Figure 4.12), is significantly bended in Lee’s result. None
of these artifacts, 3D distortions or noise exist in our results. This comparison demonstrates that neither
methods [21, 52] obtained geometrically consistent disparity maps that preserve the original depth values.
The depth distortion score for their results cannot be computed since the mapping between the retargeted
and input images is not available.

A comparison to Utsugi et al. [95] is presented in Figure 4.7. As can be clearly seen, the appearance of
their retargeted images is considerably distorted compared to our results.
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Figure 4.15: Stones Dataset. Anaglyph images of the input stereo pair, our results for 30% and 50% reduction, and

the results of independent single image seam-carving; the images should be viewed with a red-green glasses .
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Figure 4.16: Anaglyph images . (a),(b) the input stereo pair and our results, respectively; the images should be

viewed with red-green glasses .

4.6.9 Depth Perception

As demonstrated so far, our method obtains geometrically consistent results, while preserving the original
depth values of the 3D structure of the scene. This implies that the depth of the new, retargeted scene
should be perceived as similar to the depth of the original scene. To confirm this property, we use anaglyph
(red-green) images to perceive the depth of the retargeted 3D scene (see Figure 4.16).

The perceived depth is often affected by single image 3D cues such as perspective or prior knowledge of
the objects’ 3D shape. In order to reduce the influence of such cues, we generated a synthetic scene which
consists of a background plane and a foreground frame. Both the foreground and the background scene are
rendered with the same texture. Figure 4.15 shows, from left to right, the anaglyph input image, our results
for 30% and 50% reduction in the width, and the comparison to the independent single image seam carving.
Viewing these images in 3D using red-green glasses demonstrates that the perceived depth of the retargeted
images is similar to the original one (see also Figure 4.15). Furthermore, when considering the result of
independent image retargeting, it is clear that the perceived depth is significantly distorted. The distortion
becomes progressively more severe as more seams are removed, until it is impossible to perceive depth.
However, it is important to note that our brain can often compensate for the resulting distortions, depending
on the 3D structure of scene, the type of objects and other 3D cues.
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4.7 Conclusions & Future Work

We extended seam carving to work on a stereo image pair. Retargeting each image independently will
distort the geometric structure. We have shown how to extend single image seam carving to work on a
pair of images, and proved that the proposed algorithm is guaranteed to give a geometrically consistent
result. The retargeted images can thus be viewed on a stereoscopic display or processed by any computer
vision algorithm. We demonstrated the advantages of our method on several challenging stereo images, and
compared it to current state-of-the-are stereo retargeting methods.

In addition to single image seam carving limitations, our method also affected by the quality of the input
disparity map and the amount of occluding and occluded pixels. Both are affected by the texture, the camera
locations, and the 3D scene. Another limitation of stereo seam carving is that it can be applied only on
rectified stereo pair, and can remove only vertical seams (see Section 4.4). To reduce the image height, it is
necessary to extend the image width and then apply uniform resizing of the image.

On the positive side, in addition to the guaranteed geometric consistency, our method takes advantage of
both appearance and depth cues and obtain small appearance distortion in image of scenes that are difficult
to deal with using a single image seam carving.

Possible future extensions of our method include extension to stereoscopic video, implementation on
smartphones equipped with a stereo camera and 3D display, incorporating depth based saliency map. An-
other interesting direction is establishing a benchmark for stereoscopic retaregting and editing as well as
conducting an in-depth user study for evaluating the depth perception.
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Figure 4.17: Depth Comparison. In column (a), the disparity map computed by applying the SGM stereo algorithm
on each of the input image pairs: People, Cars, Man, Snowman, Aloe, and Diana. In columns (b-d), the disparity
maps computed by applying SGM on the retargeted stereo pairs obtained by our method, Change et al.[21], and Lee
et al.[52], respectively.



Chapter 5

Photo Sequencing

5.1 Introduction

Dynamic events such as family gatherings, concerts or sports events are often captured by a group of people,
using what is probably the most popular means of photography today – smartphones. The set of photos, often
taken within a short time interval of one of the event highlights, can be regarded as the output of a new type of
extended camera, which we call a crowd-based camera, or CrowdCam for short (see Figure 1.2). This setup
differs substantially from traditional multi-camera systems that are usually calibrated and synchronized.
CrowdCam is operated by multiple freely moving, uncooperative photographers, and there is no coordination
in the capturing time. The question that motivates our study is whether it is possible to explore, visualize and
analyze the dynamic content of the scene using the set of still images obtained by a CrowdCam.

Essential to this purpose is recovering the temporal order of the images, as demonstrated by many com-
puter vision methods that use one or more video sequences. Clearly, temporal order is available when all
images are taken from the same camera as in a video sequence. Alternatively, when two or more sequences
are taken, temporal order can be recovered using video synchronization methods.

We propose a method for recovering the temporal order of a set of still images of an event taken at
roughly the same time, and term this problem photo-sequencing (see Figure 5.1). Our method takes as input
a set of still images captured by a CrowdCam and returns a globally consistent temporal order for all images.
Video synchronization methods are not applicable here because each camera may provide only one still
image. In our case, the only temporal information available is given by the phones’ clocks, which we show
to be insufficiently accurate (see Section 5.4.1). More accurate temporal information can be obtained from
other devices, e.g., GPS. However, their data may not be available in indoor scenes or may be blocked by the
photographer for reasons of privacy issues. Moreover, a vision based solution is of scientific value in itself.

Photo-sequencing can be solved directly if the 3D structure of the dynamic scene is known. However,
recovering the 3D structure of a dynamic scene often requires camera calibration, prior knowledge about the
3D structure or the motion of objects, and a very large number of images, which we do not assume to have.

Our goal is to compute photo-sequencing without recovering the 3D structure of the scene. To do so,
we assume that at least two images are taken from roughly the same location by the same camera. This
assumption is reasonable because people often take more than one image of an interesting moment in the
event, without moving much. We further assume that within the short time interval, there are enough features
that move approximately along straight lines. This assumption is needed to model the problem but in practice
points can deviate considerably from the linear motion model.

Algorithm Outline: Consider a 3D scene point moving along a linear trajectory and captured by a set of
cameras, at different time steps. Imagine sampling the 3D locations along the point trajectory, at the same

This work was published in ECCV 2012 [10], and IJCV 2014 [26].
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Figure 5.1: The Photo-Sequencing Problem: recovering the temporal order of N still images of a dynamic event,
taken from different locations at different time steps.

time steps at which it was captured by the set of cameras. The spatial order of these 3D locations along
the trajectory implicitly induces the temporal order of the images (see Figure 5.2(a)). Our method avoids
recovering the sampled 3D locations of a dynamic scene point by computing its projections on the reference
image (see Figure 5.2(b)).

All analysis is done in 2D. We use the static feature points to compute the fundamental matrix between
every image and the reference image and map all dynamic features to their epipolar lines in the reference
image. In addition, we use the two reference images (taken from the same position) to compute the 2D
projection of the trajectory of each dynamic point. The intersection of the epipolar lines with the projection
of the trajectory line gives the spatial order of the scene point and provides the partial time order for a subset
of the images.

The resulting partial orders computed from each dynamic feature are not necessarily consistent because
of matching errors, large deviation of some of the features from linear motion, and noise. One of the chal-
lenging problems is to compute a full temporal order, i.e., an order of all input images that is as consistent as
possible with the computed partial orders. This problem is known as the rank aggregation problem, which
is known to be NP-hard for the most general case. We first rely on geometric constraints to clean up the
data, and construct a directed graph that represents the pairwise temporal orders defined by the dynamic
features. If the graph contains no loops (i.e., it is a DAG), then finding a Hamiltonian path is reduced to com-
puting a topological sort, for which a simple polynomial algorithm exists. However, if the graph contains
cycles, finding a Hamiltonian path becomes NP-hard. Therefore, we adopt a rank aggregation Markov chain
approximation to solve it. The pseudocode of our algorithm is given in Alg. 2.

Possible applications of photo-sequencing include visualizing and analyzing dynamic content from a set
of still images. A temporally coherent presentation of a set of images taken from different viewpoints or time
instances of a given event is one example. It may also be used to generalize various computer vision tasks,
such as tracking or segmentation, to work with a set of still images instead of video. These applications,
which are beyond the scope of this paper, arise naturally when people share their images and are willing to
extract the most out of them.

Contributions: Our method offers a solution to the novel photo-sequencing problem – recovering the
temporal order of a set of static images of a dynamic event. The method’s robustness is based on a rank
aggregation algorithm that aggregates noisy measurements to overcome inconsistencies.

In addition, we present a theoretical analysis of the minimal required set of images for recovering 3D
trajectory from the 2D projection of a linear moving point. The analysis is performed under the assumptions
used for photo-sequencing. We show the tradeoff between the number of required images and the time stamp
information if available (see Section 5.3.4).
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a b

Figure 5.2: (a) The order of the sampled location of a 3D point moving along a straight line implicitly induces the
order of the corresponding images: t(I3) < t(I1) < t(I4) < t(I2). (b) The same order is also defined along the
projection of the line to a reference image.

5.2 Related Work

5.2.1 Video Synchronization

Temporal alignment of visual data has been studied extensively in the context of video synchronization.
Synchronization methods for aligning a pair of sequences include correlating motion signatures computed
from a set of successive frames (e.g., [29]), aligning tracked trajectories of features or objects visible in both
videos (e.g., [20, 93, 105]), aligning all the frames (e.g., [20, 76]), assuming linear combination between
object views under orthographic projection (e.g.,[107]), assuming low rank for non-rigid moving objects
(e.g., [117]), and using tri-focal tensor-based relations when at least 3 videos are considered for spatial
matching of points or lines (e.g.,[53]).

Other synchronization methods attempt to bypass the computation of spatial correspondence in these
methods, by using spatio-temporal feature statistics (e.g., [111]), or temporal signals defined over corre-
sponding epipolar lines [70]. Geometric constraints were used for aligning multiple video sequences (e.g.,
[63]) or for achieving sub-frame accuracy (e.g., [59]). In both methods the intersections of the trajectory of
dynamic features with the epipolar lines of corresponding features in the other images were used to define
order.

None of these methods consider the inconsistent ordering that may be caused by different choices of
features (e.g., matching trajectories). Moreover, all the above methods use successive frames in each of the
videos in order to compute the synchronization. However, we assume here that the cameras might provide
only a single image. Such synchronization methods are not applicable for temporal ordering of the images
considered in this paper.

5.2.2 Structure Reconstruction from Still Images

Several methods address the problem of non-rigid shape and motion recovery from a set of still images
when temporal order is not used directly. These methods assume that point correspondences are given
and the motion of the objects is restricted. A method for reconstructing the 3D coordinates of a point
moving along a straight line and captured by a moving camera was proposed in [4]. They use trajectory
triangulation and show that a linear solution exists if the camera parameters are known. If the camera
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Figure 5.3: Static & dynamic features: the detected corresponding features of I1 and I2 (taken from roughly the same
position) are marked over the reference image, I1; blue are I1 features (static and dynamic); red are the corresponding
static features of I2, and green are the corresponding dynamic features of I2.

parameters are unknown, it is still possible to reconstruct the 3D coordinates of points moving on planes
[84]. Trajectory triangulation was later extended using polynomial representations [47]. Park et al. [64]
proposed a method for reconstructing the 3D trajectory of a moving point from its correspondence in a
collection of 2D perspective images. However, they assume that 3D spatial pose and time of capture are
given. In our case, it is sufficient to have each feature matched in only 4, instead of 5 images, and a weaker
calibration is required; that is, only the fundamental matrix between each image and the reference image
are needed. Moreover, our method offers a way to overcome the inconsistent ordering obtained by different
features and allows us to deviate from the linear motion assumption.

A different class of methods use factorization to deal with dynamic scenes [92]. These methods assume
that the correspondence between features in a large number of images can be obtained. Furthermore, they
assume that the deformation of a 3D shape can be represented by a linear combination of shape-bases, which
often restricts the number of independently moving objects. Hence, by increasing the rank of the observation
matrix, the non-rigid components of motion are captured by additional eigenvectors. This was later extended
by [9, 56]. Indeed the solutions to these methods may result in photo-sequencing. However, they are limited
to restricted scenes and unlike our method, require features to be matched across a large number of images.

5.2.3 Image and Video Collections

Large numbers of images uploaded to the Internet are used for various applications such as 3D reconstruction,
visualization, and recognition of static scenes (see review by Snavely et al.[87]). This is often referred to
as community photography and assumes that images are co-located in space but not necessarily in time.
Therefore, only the static regions of the scene are considered. In our case, the set of still images are co-
located both in space and in time, and we focus on extracting the temporal information. We believe that
future work will combine photo-sequencing with community photography leading to new ways to analyze
the dynamic regions of the scenes.

A method for temporally aligning still images that span many years was suggested by Schindler et al.
[81]. Their solution is based on analyzing changes and occlusions of the viewed 3D static scene. Our method
deals with a dynamic scene captured in a short time interval and is based on motion.

Recently, a method for navigating in a collection of videos of a dynamic scene, e.g., a music performance,
was proposed by [8], but they use a collection of casually captured videos rather than still images as we do.
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a b

Figure 5.4: (a) The projection of the trajectory, Li, of the point P i, forms the line `i on image I1. The feature points
pi1(t1), pi2(t2), in image I1, and pik(tk) in image Ik, are corresponding dynamic features. The line `i intersects the
epipolar line (in yellow), which corresponds to pik . The intersection point, pi1(tk), is the projection of P i onto I1 at
time step tk. The spatial order of pi1(t1), pi2(t2), and pi1(tk), along `i, defines the temporal order between I1, I2 and Ik.
(b) The computation on real images: the projected trajectory, `i, in cyan; the epipolar line in yellow; the intersection
in red.

5.2.4 Rank Aggregation

Rank aggregation is the problem of obtaining a full ordering of elements (alternatives) given inconsistent
partial orderings of the same elements from different sources. The rank aggregation problem was origi-
nally studied in the context of social choice theory and voting theory [115, 114]. However, in recent years
this problem has been of interest in various disciplines in the computer science community, for example,
biological applications [55], and Web applications such as meta-search, page ranking, and spam detection
[30, 77, 71].

Due to the large and diverse body of work on the rank aggregation problem, we will focus here on the
work of Dwork et al. [30], who proposed a Markov chain approach for Web applications, which we adopt for
photo-sequencing. They proposed several heuristic algorithms, and compared them to a number of traditional
rank aggregation methods such as Footrule aggregation and Borda’s method. While there is no guarantee on
the quality of the output, the Markov chain approach is extremely efficient, and was shown to usually match
or outperform the other methods. The basic idea is to construct a Markov chain, in which the states are the
elements to be ordered. The stationary distribution of a state ranked high will have a larger probability than
of a state ranked low. Hence, the stationary distribution will determine the aggregate rankings of the items
(see Section 5.3.2 for further details). To the best of our knowledge, rank aggregation was used in computer
vision only for Content-Based Image Retrieval [45, 65]. We believe that rank aggregation is a powerful tool
that can be adopted for other computer vision tasks.

5.3 The Method

Consider a dynamic scene captured by N images {Ik}Nk=1, taken at different time steps within a small time
interval. Our goal is to determine the temporal order in which the images were taken. This is equivalent to
finding a permutation on the image indices, σ : {1, ..., N} → {1, ..., N}, such that

t(Iσ-1(1)) ≤ t(Iσ-1(2))... ≤ t(Iσ-1(N)), (5.1)
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Figure 5.5: Linear Motion Assumption: In green, the real path of the green boat; in yellow, the approximated 2D
image line. The epipolar lines intersect both the real path and the 2D image line. The spatial order of both sets of
intersections is the same.

where t(Ik) is the time at which image Ik was taken, σ(i) indicates the temporal rank of image i, and σ−1

is the inverse mapping. We assume that two of the images are taken from approximately the same position.
Without loss of generality, let I1 and I2 be these images, and I1 be the reference image.

5.3.1 Temporal Order Voting

We first extract and match features from all input images (see Section 5.3.3 for details). The detected fea-
tures are classified into static and dynamic features (i.e., projections of static or dynamic scene points, re-
spectively). To do so, we classify the matched features in I1 and I2. In these images, each pair of matched
static features should be approximately in the same location. Thus, the static features are easily detected by
thresholding the Euclidean distance between matched features, and the dynamic features are the remaining

Algorithm 2 Photo Sequencing Alg.
Input: N images, {Ik}Nk=1 taken by the set of cameras. I1 is the reference.
Output: A permutation, σ : {1, ..., N} → {1, ..., N}.
1: [f1, f2]←Match(I1,I2);
2: [fD1 , fS1 , fD2 , fS2 ] = Classify Dyn Stat Ref(f1, f2)
3: for each Ik and k = 3 to N do
4: [f1, fk]←Match(I1,Ik);
5: [fDk , fSk ] = Classify Dyn Stat(fS1 , fD1 , fk)
6: Fk =ComputeFundamentalMat(fS1 , fSk ).
7: end for
8: for each dynamic feature pi1 ∈ f1 do
9: ˆ̀i = p̂i1 × p̂i2 {ˆ̀i is the image line}

10: for each pik(tk) ∈ Si do
11: ̂̀i

k = Fkp̂
i
k(tk) {̂̀i is the image line}

12: p̂i1(tk) = ̂̀i × ̂̀i
k {pi1(tk) is the intersection point}

13: αk ← ComputeAlpha(pi1, pi2, pi1(tk))
14: end for
15: σi← sort({αk | k ∈ ni}).
16: end for

Full order: σ ← RankAggregation(σ1, σ2, ...):
17: V ← VotingMatrix(σ1, σ2, ...).
18: M ← TransitivityMatrix(V ).
19: σ ←MarkovChainRanking(M ).
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ones. An example of the classified features is shown in Figure 5.3.
We then match features between the reference image, I1, and each image, Ik. The static and dynamic

features in Ik are taken to be those that are matched to the static and dynamic features of I1, respectively.
The static features are used to compute the fundamental matrix, Fk, between I1 and Ik (we use the BEEM
algorithm [36]); the dynamic features are used to determine the temporal order of the images, as explained
next.

Ordering by a Single Set of Dynamic Features:
Let pi1 ∈ I1 be a dynamic feature in the reference image (homogeneous coordinates), and Si be the set of its
corresponding features in a subset of the images. Let ni ⊆ {1, ..., N} be the indices of this subset. The set
Si consists of the projections of a scene point P i at different time steps. For simplicity, we assume that P i

moves along a line Li, and its projection to the reference image is given by a 2D line `i (see Figure 5.2(a)-
(b)). The set of features Si defines a set of epipolar lines in I1 which intersect the line `i (see Figure 5.4(b)).
The spatial order of these intersection determines the temporal order, σi, of the corresponding images, since
it is identical to the spatial order of the 3D positions of P i along Li.

Formally, let P i(tk) denote the 3D position of P i at tk, the time image Ik was captured. The feature set
Si is given by: Si = {pik(tk) | k ∈ ni}. From the matching process, we have direct access to the projection
of P i(tk) to image Ik, namely pik(tk).

Our goal now is to compute the projections of the set of points P i(tk) onto the reference, I1. That is, we
compute pi1(tk) for each k ∈ ni. Note that pi1(t2) ≈ pi2(t2) since both points were captured roughly from
the same position. Hence the line `i is defined by the two corresponding points, pi1(t1) and pi2(t2). That
is, `i = pi1(t1) × pi2(t2). The point pi1(tk) is given by the intersection of the line `i and the corresponding
epipolar line: `ik = Fkp

i
k(tk) (see Figure 5.4(b)). Putting it all together, we have:

pi1(tk) = `i × `ki = (pi1(t1)× pi2(t2))×
(
Fk p

i
k(tk)

)
. (5.2)

This equation degenerates if the epipolar line, `ik, coincides with `i, i.e., the feature moves along the epipolar
line. We detect this case by the angle between the two lines and remove such points from further processing.

Finally, the spatial order of the mapped features along the line `i is computed. Formally, the intersection
point, pi1(tk), can be represented by:

pi1(tk) = pi1(t1) + αk(p
i
2(t2)− pi1(t1)). (5.3)

Figure 5.6: Proof of the Lemma. Given two rays l1, l2 and the 3D point P (tk), there is only one line (L) that satisfies
the time ratio constraints. See details in the text.



CHAPTER 5. PHOTO SEQUENCING 66

−1 0 1 2 3 4 5
0

2

4

6

8

10

12

Time Offset (sec)

N
u

m
b

e
r 

o
f 

Im
a
g

e
s

a b

Figure 5.7: Smartphone Synchronization: (a) the used setup; a group of 20 people (top) captured a screened running
stopwatch (bottom); (b) the histogram of time offsets between the smartphones.

The computed temporal order, represented by a permutation, σi, is obtained by sorting the computed values
{αk | k ∈ ni}.

It is worth noting that instead of recovering the 3D structure of the dynamic scene, we perform all
calculations in the image plane of the reference image I1. This allows us to match features in a smaller
number of images than required for full 3D reconstruction, use weaker calibration (fundamental matrices
with respect to the reference image instead of all pairs of images), and clearly avoid additional noise that
may be introduced into the 3D reconstruction. As it turns out, the algorithm described above is still applicable
when the linear motion assumption is violated. This is because all we care about is the spatial order of the
intersections of the epipolar lines and the trajectory and not their actual locations. This is exemplified in
Figure 5.5, where the actual path of the green both was very far from the approximated linear line, yet the
order of the intersection points did not change. Note that if the order is not preserved, then an incorrect order
is produced by this feature. However, since the information from all features is aggregated, it is expected
that a few such errors will not affect the result. This is indeed demonstrated by our experiments. Finally, our
method will not work if all epipolar lines are parallel and the object moves along the epipolar line direction.
In this case, the intersections of the epipolar lines with the projection of the real trajectory is expected to be
noisy.

5.3.2 A Full Temporal Order
Each dynamic feature defines a set Si that give rise to a partial temporal order, σi, of a subset ni of the images.
These partial orders are often conflicting due to noise and matching errors. Such errors are unavoidable in
practice. (For example, in one of our experiments only 23 out of 67 features agreed with the correct order,
and none of them produced a full order of the set). Our goal is to compute a full order, σ, that is consistent, as
much as possible, with the partial orders. This problem is known as the rank aggregation problem, and has
been studied mostly in the areas of social choice and voting theory. Aggregation of partial temporal orders
must be performed even if the 3D locations of each feature are fully recovered.

Objective: Formally, the widely accepted objective to minimize in rank aggregation is the number of
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Figure 5.8: Boats: First row (a-d): four of the fifteen input images, ordered by our method; (b) is the reference; the
detected dynamic features are marked in red points over the images. Second row: for evaluation purposes each boat is
framed by hand and colored the same in all images. (f) The reference; each of the images (a), (c) and (d) were aligned
to it; (e),(g),(h) the aligned images of (a), (c) and (d), respectively, are shown over the reference (f).

pairwise disagreements between the full order, σ, and each of the input permutations, σi. Specifically, the
distance between σ and an input permutation, σi, is measured by the Kendall distance:

K(σ, σi) =
|{(l,m) | l,m ∈ ni, σ(l) < σ(m), σi(l) > σi(m)}|. (5.4)

Therefore, our objective is to find σ∗ such that:

σ∗ = argmin
σ

ND∑
i

K(σ, σi), (5.5)

where ND is the number of detected dynamic feature sets.
Minimizing this objective function, known as the Kemeny optimal aggregation, was proven to be NP-

hard in the number of images, even when the number of input permutations (feature sets) is only four [30].
We adopt, as we next describe, the Markov chain approximation of [30], which was shown to work well in
Web ranking applications.

Graph Representation: Let G = (V,E) be a weighted graph where the nodes in V correspond to the N
images to be ordered, and the weight of an edge (i, j) ∈ E corresponds to the probability that image Ii was
captured before image Ij , Pr(t(Ii) < t(Ij)).

If all partial orders are consistent with each other then G is a DAG. In this case the problem reduces to a
topological sort that can be found in polynomial time. (A topological sort is finding a linear ordering of the
vertices such that, for every edge (i, j), i comes before j in the ordering.) In addition, if the set of partial
orders defines a complete order, then the topological sort results in a Hamiltonian path. It can be easily
shown that the order defined by this path is optimal with respect to the Kendall distance (Eq. 5.5).

In reality, the partial orders are not consistent, andGwill contain cycles, (e.g., Figure 5.9). Unfortunately,
it is impossible to compute a topological sort in this case. One alternative is to find and remove cycles (i.e.,
edges) from the graph before running the topological sort. However, efficiently choosing which edges to
remove is non-trivial. A well-established alternative is to treat the graph G as a Markov chain system, that
is, a memoryless random process that moves at each time step from one state to another.
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Figure 5.9: The directed subgraph computed for the Boats dataset. The strongly connected nodes are marked in red.
The correct detected order of the nodes is indicated by red arrows. Note that the incorrect edge that closes a cycle is
(13, 6).

Rank Aggregation by Markov Chain: A Markov chain system is defined by a set of states, and a (non-
negative) transition matrix M that specifies the probabilities of moving from one state to another. In our
case, the states correspond to graph nodes (i.e., images) and the transitions between states correspond to
edge weights: Mij = Pr(t(Ii) < t(Ij)). We compute these probabilities using the computed partial orders,
σ1, σ2, ..., σND

(see 5.3.3 for details).
Let us consider a random walk on this chain (graph), where the first state is chosen according to a uniform

distribution across all states (nodes). If the chain describes a consistent full order between the images (G
is a DAG), the walk will end in the steady state at an absorbing state (the graph sink), i.e., the state that
corresponds to the image captured last. If there is no sink in G, then the random walk will end in a strongly
connected component of G. (In a strongly connected subgraph, a directed path exists between each pair of
nodes.) This connected component, which we name sink-component, contains the state corresponding to the
last captured image.

The sink or the sink-component can be computed using eigenvectors in the following way. Formally, let
x be a N × 1 vector that describes the probabilities of being at each of the states (images). Then Mx will
be the probability distribution over the states in the next time step, and after k steps the distribution will be
given by Mkx. A random walk on this graph, with an initial uniform distribution x, will converge to the
eigenvector y = My. The eigenvector can be computed directly or using power iterations. If node i is a
sink of G (and not part of a cycle), then the i entry of y equals 1, and the remaining entries equal zero. If G
has a sink-component, then y will have non-zero entries only in the sink-component nodes.

Given this analysis, we run power iterations until a steady state is reached. Then, we take the state
with the highest probability to be the last element in the current set (latest image). After removing it from
the chain, the computation is repeated until all nodes are ordered. Removing the state with the highest
probability is the heuristic part of the algorithm. Empirically, this formulation was shown to work for Web
ranking applications [30], and we found it to work for photo-sequencing as well.

The connectivity (transitivity) of the chain allows us to infer relations between pairs of images that were
not explicitly ordered in any of the partial orders. This lets us aggregate all available information. If the
graph G contains more than one sink, the order between the sinks cannot be determined (independent of the
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a b

Figure 5.10: (a) The detected static and dynamic features of I1 and I2 are marked over the reference image, I1; blue
are I1 features; red and green are I2 static and dynamic features, respectively; on the right is a close-up of the region
where the children appear. (b) The detected static and dynamic features for the Basketball dataset.

existence of cycles). This situation is unlikely to occur in our case if every pair of images is ordered by at
least one feature.

5.3.3 Implementation Details

Detect and match features: Our method is insensitive to the way static and dynamic features are detected
and matched, as long as enough features are available. We compute the fundamental matrices (using [36])
using the detected static SIFT features. However, we found that it is difficult to match SIFT descriptors of
dynamic features because of the non-rigid transformations of moving objects. To overcome this challenge,
we first find a dense correspondence between each image and the reference image, using the Non-Rigid
Dense Correspondence (NRDC) algorithm [38]. Then, we use the Harris corner detector to detect feature
locations and use only features with high confidence mapping, where the confidence is defined by NRDC.

Computing the transitivity matrix M: The number of images to be ordered in our case is relatively
small, so we explicitly compute the N ×N matrix M from the estimated permutations, σ1, σ2, ..., σn. Each
permutation, σi, votes for the order of pairwise images in its subset. The pairwise votes from all permutations
are collected in an N ×N auxiliary voting matrix, V, where Vij is the voting score for t(Ii) < t(Ij). The
weight of the votes of each permutation is proportional to its cardinality, and is given by: |ni|/N . Thus, a
permutation that includes all N images has the highest voting weight.

An incorrect order produced by a single feature can already result in a cycle in the graph defined by
V . Hence, we remove edges by choosing a single direction between each pair of nodes by comparing Vij

and Vji. We set the weight of the votes to reflect the votes and their relative impact. That is, the weight is
proportional to the value that support the edge direction and inverse proportional to the value that oppose the
edge direction: Vij > Vji, we set Mij = 1 −Vji/Vij . We normalize the rows of M to 1 because M is a
stochastic matrix.

5.3.4 Time and 3D Estimation

So far we have recovered the relative temporal order of the images, but can we recover the exact capturing
time of each image? And when are time and space equivalent? In this section we address these questions
and study under which conditions time and space are equivalent.

We consider again a single dynamic scene point, P , moving along a straight line, L, and projected to a
subset of images at different time steps. Without loss of generality, the set of images is given by {Ik}nk=1,
where I1 is the reference image and I2 is taken from the same position, by the same camera. The question is
whether the 3D location and the capturing time of each of the images are interchangeable.
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(a) Canon SD940 IS (b) iPhone 4 (c) Galaxy SII (d) iPhone 4

(e) Galaxy SII (f) iPhone 4 (g) iPhone 4 (h) BlackBerry Torch
Figure 5.11: Slide: Eight of the images ordered by our method (left-to-right, top-to-bottom). The dynamic features
are overplayed on the images in red. (d) and (f) refer to I1 and I2, respectively.

To infer information regarding the time one must have prior knowledge regarding the kinematics of the
3D point since the motion of the point and the time are ambiguous. Thus, we assume that P is moving in
a constant, but unknown, velocity vP within the capturing time interval. Furthermore, the analysis should
be performed in a space in which lengths are preserved. Therefore, full calibration between the cameras is
required (at each location and each time step). Note that since I1, and I2 are taken by the same camera, their
time difference is assumed to be known. Without loss of generality, we take t1 = 0 and t2 = 1. (We use
tk as short for t(Ik)). The capturing time instances of the rest of the cameras are measured with respect to
t1 = 0.

We next show that under these assumptions, recovering the capturing time of the images is equivalent to
reconstructing the 3D locations of P at the time step at which it was captured.

We first note that when four images are available, the 3D locations of the points are uniquely defined
independent of the temporal information. To see that, consider the proof by Avidan and Shashua [4] for
recovering L. They proved that five rays in the 3D space, each defined by an image point and the camera
parameters, are required to uniquely recoverL. In our case the two cameras are co-located in space; hence the
plane containing L is defined by the two rays of the reference image’s points. In addition, the projection of
P (tk) onto the reference image is computed using the intersection with the corresponding epipolar line (as in
Section 5.3.1). Thus, the 3D location P (tk) can be recovered using triangulation from the two corresponding
points, p1

k and pkk in I1 and Ik, respectively. Hence, the pair of 3D points P (tk) and P (tj) uniquely defines
the 3D line L. The intersection of L with the rays of the other points uniquely defines their 3D locations.

We will next focus on the n = 3 case, where temporal information is required for recovering the 3D
locations.

Claim #1: Recovering the capturing time tk is equivalent to recovering the 3D locations P (t1), P (t2), and
P (tk).

Proof:
⇐Without loss of generality, we assume that t1 < t2 < tk. Since t1 = 0 and t2 = 1, it follows that given
the 3D point locations, P (t1) and P (t2), the velocity, vP can be computed:

vP =
‖P (t2)− P (t1)‖
|t2 − t1|

. (5.6)
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Given P (tk), the time step tk is given by:

tk = ‖P (tk)− P (t1)‖ / ‖P (t2)− P (t1)‖ . (5.7)

Note that if the time difference t1 − t0 is unknown, we can still recover tk up to the scale, vP .

⇒ The 3D location P (tk) can be recovered, as explained above, using triangulation from the two corre-
sponding points, p1

k and pkk in I1 and Ik, respectively. Thus, we have two rays, `1 and `2, that intersect
at the center of projection of the reference camera, and a 3D point P (tk) that lies on the same plane (see
Fig. 5.6). Ignoring temporal information for a moment, we can see that any line that passes through P (tk)
and intersects the two rays is a possible solution for the unknown line L. However, only the true line would
result in the known (or relative) time between the images, as we next prove.

Lemma: Assume perspective projection. Then, of all the lines that pass through P (tk) and intersect the
rays `1 and `2, only one line, L, satisfies the following:

‖P (tk)− P (t1)‖ / ‖P (t2)− P (t1)‖ = tk/t1, (5.8)

where P (t1) = `1 × L, and P (t2) = `2 × L.

Proof (by contradiction): Assume that there are two lines, L andK, that satisfy Eq. 5.8, and letC = P (tk),
A = `1 × L,B = `2 × L,D = `1 ×K and E = `2 ×K (see Fig. 5.6). It follows that:

|AC|/|AB| = |DC|/|DE| = tk/t1 ⇒
|AC|/|DC| = |BC|/|EC|. (5.9)

Thus, ∆ACD ∼ ∆BCE (since they also share ∠ACD). Therefore, ∠DAC = ∠EBC, and ∠ADC =
∠BEC, which implies that `1‖`2. This implies that the COP is at infinity (orthographic projection), and
contradicts the perspective projection assumption.

5.4 Experimental Results

We conducted a number of experiments to test the proposed method. First, we measured the accuracy of
smartphone synchronization, and then we tested our method on sets of real data images. Finally, we show,
through a synthetic experiment, that it is possible to extend photo-sequencing to use more than a single
reference camera.

5.4.1 Smartphones Synchronization

We tested to what extent different smartphones are synchronized using the time-stamp assigned to the photos’
meta-data. To do so, we displayed a running stopwatch with millisecond accuracy, while a group of 20 people
were asked to capture it when the clock reached 10 and 20 seconds (see Figure 5.7(b)). We collected the 40
images and extracted the time-stamps associated with each image in the EXIF data.

Since not all the images were captured exactly at the same moment, we used the stopwatch time captured
in each image to compensate for these differences. In particular, we computed the differences between
the stopwatch time captured in each image and 10 (or 20) seconds, and corrected the EXIF time-stamps
accordingly. Thus, the total offsets between the images are given by the differences between the corrected
time-stamps.

As can be seen from the histogram of time offsets shown in Figure 5.7(b), the distribution is not unimodal,
and there are two main peaks at around 1 and 4 seconds. It is important to note that two out of 20 phones



CHAPTER 5. PHOTO SEQUENCING 72

a b c d

Figure 5.12: (a) The reference image, I1, overlayed with the detected corresponding features between I1 and I2 (taken
by an approximately static camera): blue are I1 features, and red and green are the I2 static and dynamic features,
respectively; (b) the image to the right is a close-up of the man region; (c),(d) overlay images: the first and last ordered
images (see Figure5.13.(a),(h)), are aligned to the reference image, and shown semi-transparently over it.

had more than a one minute offset (they were not included in the histogram). Such outliers are phones for
which the time is set by the phone’s internal clock and not by the cellular network (as in most of the phones).
This experiment indeed affirms that smartphones are not synchronized up to the frame capturing resolution.
(Recall that video is captured at the rate of 30 frames per second.)

5.4.2 Real Data

We captured five challenging and diverse datasets of outdoor scenes. The images were captured from differ-
ent viewpoints, without calibration or a controlled setup, by various cameras (including Apple iPhone 3 and
4, Samsung Galaxy SI/SII, Blackberry, and Canon PowerShot SD940 IS).

Matching features across images is very challenging and, in particular, we found that SIFT features
cannot be correctly matched in the dynamic regions (see Section 5.3.3).

Another challenge for sequencing each of the datasets is the large search space for possible solutions,
N !/2, where N is the number of images. In these datasets N is between 9-15. We tested our method on
each of the five datasets without assuming a priori knowledge about the scene.

To evaluate the results of photo-sequencing, the ground truth temporal order is required. However,
manually ordering still images is difficult (even more than manual video synchronization). Therefore, we
captured video sequences instead of still images with each phone / camera. This allowed us to compute
the ground truth. The input to our method is a set of extracted still images from the video sequences. Our
algorithm was not provided with this temporal information.

In each experiment, we choose two images, I1 and I2, taken approximately from the same location, with
known relative order. This is the only assumption made regarding the order of the input images or the camera
locations. The following datasets were considered:
Boats: The Boats dataset consists of 15 images extracted from sequences taken by hand-held mobile phones
(iPhone 4). Ten images were taken by one phone, and the other 5 were taken from different locations by
the other phone. The detected dynamic and static features of I1 and I2, are shown in Figure 5.2(c). Four
of the input images (1st, 6th, 12th and 15th), arranged in the order computed by our method, are shown in
Figure 5.8(a-d). The dynamic features are marked in red in each image. Note that the dynamic features
may be different from image to image due to the difference in viewpoints and capturing time (as Figure 5.8
shows). For example, the features detected in Figure 5.8(a) and Figure 5.8(d) belong to different objects,
(e.g., see the right-hand boat). As can be seen, it is hard to visually determine the correct temporal order.
Therefore, to verify our results, we aligned the three images, Figure 5.8(a,c,d), to the reference, Figure 5.8(b),
using the static features. Figure 5.8(e-h) shows the aligned images, semi-transparently, over the reference
image. The resulting locations of three boats in the aligned images are shown in the colored frames. These
locations agree with the recovered order.
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(a) iPhone 4 (b) Galaxy SI (c) iPhone 4 (d) iPhone 4

(e) Galaxy SI (f) iPhone 4 (g) Galaxy SI (h) Galaxy SI

Figure 5.13: Skateboard: Eight of the input images ordered by our method (left-to-right, top-to-bottom). The dynamic
features are marked in red. The yellow and cyan frames are the first and last ordered images, respectively.

The number of dynamic feature sets is 66, only 22 of which fully agreed with the correct order. In
addition, the obtained graph contains a cycle. A subgraph that contains the strongly connected component of
the cycle (with 7 nodes marked in red) is presented in Figure 5.9. Therefore, this experiment demonstrates
the necessity of using rank aggregation and the robustness of our photo-sequencing algorithm to aggregate
multiple inconsistent partial orders into a globally consistent one.
Slide: The Slide dataset consists of ten images extracted from sequences captured by five different cameras:
Samsung Galaxy SII, BlackBerry, iPhone 4 (two phones), and Canon PowerShot SD940 IS. Several cameras
were mounted on a tripod, and the rest were hand-held. The detected features are shown in Figure 5.10(a).
In Figure5.11 we present eight of the input images, arranged in the recovered order. The correct order
of the images can be visually verified by the positions of the children along the slide. A closer look at
Figure 5.11(g)-(h) will reveal some incorrect dynamic features (e.g., the dynamic features detected in the
background of (h)). However, since most of the detected features are correct, our method was able to recover
the correct order.
Skateboard: The Skateboard dataset consists of nine images, extracted from sequences captured by a pair
of hand-held mobile phones (iPhone 4 & Smasung Galaxy SI). The dynamic and static features of I1 and
I2 are shown in Figure 5.12(a). A closer look shows that the corresponding static features (blue and red
points) in I1 and I2 are not exactly at the same position (since the phone was hand-held). Since we threshold
the distance between the features, we can handle slight movement between the two images. Figure 5.13
shows eight of the input images, arranged in the temporal order computed by our method. It can be seen
that the viewpoints of the images are very different. Thus, we align the first and last ordered images (see
Figure 5.13(a) and Figure 5.13(h), respectively) to the reference image. Figure 5.12(c-d) shows the aligned
images semi-transparently over the reference image. The resulting locations of the man in the aligned images
are shown in the cyan and yellow frames. As can be seen, the man in the cyan frame indeed appears before
the reference, whereas the yellow frame in Figure 5.12(d) appears after.
Basketball: The Basketball dataset contains eight images extracted from sequences taken by a pair of mobile
phones (iPhone 4), mounted on a tripod. The detected features are shown in Figure 5.10(b). As Figure 5.14
shows, we can correctly order the photos even though the dynamic feature points move in different directions
and follow a natural trajectory that is not necessarily linear. The correct order of the images can be visually
verified by following the motion of the arm of the girl throwing the basketball.
Beach: The Beach dataset contains eight images extracted from sequences taken by a pair of hand-held
mobile phones (iPhone 4 and iPhone 3). The detected features are shown in Figure 5.15(b). The scene
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(a) 2nd Image (b) 5th Image (c) 6th image (d) 7th image

Figure 5.14: Basketball: Four of the eight input images, ordered by our method (left-to-right); the detected dynamic
features are marked in red points over the images.

consists of large low texture regions (the sky) in which static features cannot be found, and reflections. For
this dataset the number of dynamic feature sets was only 32, while only 15 of them completely agreed with
the correct order.

In all five datasets the number of dynamic feature sets were between 32 to 200, while only about 40%
of them fully agreed with the correct order. However, the pairwise voting was sufficient in three of the
datasets to obtain a graph without cycles. Our method successfully obtained the correct order despite the
difference in viewpoint, colors, resolution and aspect ratio between the images, as long as we managed to
find correspondence.

5.4.3 Analysis for Two Reference Images

So far we have tested our method using a single reference image (a single static image pair), but it can also
integrate information from multiple reference images. This allows us to consider a wider range of camera
configurations since not all the input images are required to be matched to one single reference image.

In this experiment, we generated synthetic data to demonstrate the use of two reference images, i.e., two
image pairs, each taken roughly from the same location. In particular, we simulated a 3D scene, captured by a
set of 58 cameras. The cameras were randomly placed on a half-circle, facing the center (see Figure 5.16(a)).
Two of the cameras were chosen as the reference cameras; each provided two images from the same location
(in total 60 images from all cameras). The 3D scene was generated by randomly choosing 100 lines inside
a bounding box located in the center of the circle, where each line was projected to a random subset of the
images. Gaussian noise with zero mean and σ = 1 (measured in pixel) was added to the 2D features.

In order to simulate a realistic scenario, we divided the cameras into two groups, each associated with
one reference camera. We computed the partial orders (votes) for each group individually, and then fed the
Rank Aggregation by the votes from both groups. Obviously, if there is no overlap between the groups, it is
impossible to derive the full order of all the 60 images. The bigger the overlap is, the better the chance to
obtain the correct order. Therefore, we tested our method considering 5 different levels of overlap between
the groups. Due to the random nature of the simulation, we repeated each test 10 times, and computed

Avg # Cameras Mean Err. (%)
Overlap (%) I II I+II I II I+II

10.17% 32 34.1 60 2.03 1.92 4.89
19.33% 35.5 36.1 60 1.38 1.96 3.67
32.83% 41.9 38.4 60 2.19 1.45 2.35
63.17% 48.7 50.1 60 1.29 1.58 1.08

Table 5.1: Synthetic Experiment: For each amount of overlap between Group I and II, the table shows: the average
number of cameras (group size) and the mean error over 10 tests; these values are computed when using only the group
associated with reference (I), reference (II), and both refrences (I)+(II).
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(a) 1st Image (b) 4th Image (c) 6th image (d) 7th image (d) 8th image

Figure 5.15: Beach: Five of the eight input images, ordered by our method (left-to-right); the detected dynamic
features are marked in green points over the images.

the mean error and its standard deviation (see Figure 5.16(b)). As expected, the mean error drops with
the amount of overlap between the groups (from 4.89% error with 10.17% overlap to 1.08% with 63.17%
overlap). Nevertheless, the maximal error is below 5% incorrect pairwise orders out of a total of 1770 image
pairs. Table 5.1 shows the mean error and the average group size when considering only one of the reference
images, and when integrating the information from both references. Note that mean error when considering
a single reference image is computed over the subset of images associated with the group, which is smaller
than the total number of images; hence, the error for a single reference may be lower than the error for the
two reference case.

5.5 Discussion and Conclusions

Photo-sequencing orders a set of images in the correct temporal order. This is useful in real world scenarios
when a group of people captures still photos of some dynamic event at approximately the same time.
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Figure 5.16: Synthetic Experiment: (a) 3D visualization of the cameras setup; the two reference images are colored
in yellow. The group of cameras associated with the left and right reference are colored in green and red, respectively;
the cameras associated with both reference images are colored in blue. (b) The computed mean error and its variance
when increasing the amount of overlap between Group I and Group II.
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We proposed a geometry-based method which aggregates partial orders of the images computed from
a set of dynamic features. We make several assumptions to model the problem. These assumptions let us
reduce temporal order to the order of line intersections in the image plane. In practice, our algorithm is
quite insensitive to some of these assumptions, as the only thing matters is the order of the intersections
and not their actual location. In particular, we found that our algorithm can handle cases in which the
reference camera moves to some extent and the motion of dynamic features deviates considerably from a
linear trajectory (as demonstrated in our experiments). This can be seen in Figure 5.5, where the actual path
of the green boat was very far from the approximated linear line, yet the order of the intersection points did
not change.

Regarding limitations, our method cannot rely on features with repeated motions (back and forth) to
derive the temporal order. Such features vote for incorrect ordering and are treated as noise. Moreover, our
method requires that each of the input images be reliably matched to the reference image. That is, if one of
the input images does not sufficiently overlap with the reference image, its temporal information cannot be
recovered. Although we do not require that all features be found in all images, this assumption limits the
range of spatial and temporal camera configurations that can be considered.

In the future, we intend to relax the assumptions made by our method, and make it more scalable in both
time and space. In addition, our method can be extended to longer time periods by first coarsely ordering
the images using their EXIF timestamp, and then performing a finer ordering using our method in a sliding
window fashion. We believe that photo-sequencing in a general setup will allow the development of novel
computer vision and graphics applications for dynamic scenes captured by a CrowdCam.



Chapter 6

Space-Time Tradeoffs in Photo Sequencing

6.1 Introduction

Group photography is emerging as one of the most popular means of photography today. One can often see
a group of people, armed with smartphones, huddling together to grab pictures of some exciting dynamic
event. The set of still images taken this way can be regarded as the output of a new type of extended camera,
which we call a crowd-based camera, or CrowdCam for short. Traditionally, such image sets are used for
analyzing or visualizing the static regions of the scene (e.g. [85]). However, such data also contains rich
information about the dynamic content of the scene.

We are interested in developing tools that analyze, explore and visualize the dynamic regions of the scene
given images taken by CrowdCam (e.g., see Fig.6.1). A preliminary step in solving this problem is to recover
the temporal order of the still images taken asynchronously by a set of uncalibrated cameras. It is of interest
to develop vision based methods to solve this problem rather than assume that an arbitrary set of smartphones
is synchronized, to frame level precision, ahead of time.

Basha et al.[10, 26] were the first to propose a vision based solution to the photo-sequencing problem,
and we follow their general framework. However, we use different assumptions on the data, which requires
developing new tools. First, we compute corresponding static and dynamic feature points across images.
The static features are used to determine the epipolar geometry between pairs of images. Each set of corre-
sponding dynamic features vote for the temporal order of the images in which it appears. The partial orders
provided by the dynamic feature sets are aggregated into a globally consistent temporal order of images
using rank aggregation.

One of the non-trivial problems that must be solved is how a set of corresponding dynamic features
can be used to determine the partial order of the images in which it was found. What makes this problem
so challenging is the uncertainty both in time and space. That is, each feature set contains the projections
of a 3D dynamic point onto different viewpoints at a different time instance. Basha et al.proposed a 2D
geometric based solution that requires that two of the input images be captured by a static camera. Under
linear motion of each of the dynamic features, this assumption allows them to compute a unique ordering
by mapping all the features to the same reference image. However, there are a number of problems. First,
such a pair must be detected automatically, which is not a trivial task. More disturbing is the fact that all
feature points must appear and be matched to features in the static pair. This complicates the correspondence
problem and limits the spatio-temporal extent of the event that can be captured.

We consider a somewhat different scenario, where a static-pair is not needed, but each camera takes more
than a single photo. This scenario increases the uncertainty in space, because the features cannot be mapped
to the same reference image, but decreases the uncertainty in time (since the temporal order of images taken

This work was published in ICCV 2013 [11].
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Figure 6.1: Visualization of a dynamic event from a set of still images; each image was captured from a different
location at a different time. This visualization was generated automatically.

by the same camera is known). We show that, using both the spatial and the temporal constraints, a small
number of temporal orders can be determined from each feature set. In addition, the temporal information
is also integrated as a confidence vote into the rank aggregation,which improves the robustness to errors and
noise.

Our novel geometric analysis allows us to sidestep the need to establish correspondence w.r.t. a specific
image, i.e., each input image can be matched to a different subset of images. As a result, our approach scales
better than [26] when the distance between the cameras, or the time interval within which the images are
taken, grows. This demonstrates the advantages of the tradeoff between spatial and temporal cues.

6.2 Related Work

Basha et al.[10, 26] are the only ones to address the photo-sequencing problem. We elaborate on their
work later in the paper. Related problems include Dynamic Structure-From-Motion (D-SFM), Non-Rigid
Structure-From-Motion (NRSFM), and Video Synchronization.

In D-SFM and NRSFM the goal is to recover a 3D model of a dynamic world from a set of images taken
at different time instances (e.g., monocular video). This is an under-constrained problem because we do not
have the projection of a moving 3D point on two or more images and therefore cannot use triangulation to
recover its 3D location. To overcome this limitation one needs to add priors on the motion of the 3D point.

D-SFM relies on trajectory priors, under the assumption that points move along a parametric trajectory.
For example, Avidan & Shashua [4] showed how to recover the 3D coordinates of a point moving along a
straight line or a conic section. This was later extended by Kaminski & Teicher [47] to general trajectories
using polynomial representation. Wolf & Shashua [109] gave a catalog of different trajectory types and their
corresponding solution by framing the problem as one of projection from PN to P2.

NRSFM methods rely on shape priors to constrain the problem. For example, Bregler et al.[15] ex-
tended the factorization-based method of Tomasi & Kanade [91] to model nonrigid 3D objects observed by
a monocular camera. That is, the nonrigid shape is taken to be a linear combination of some basis shapes.
This, however, assumes an orthographic projection. Hartley & Vidal [39] proposed a closed-form solu-
tion to nonrigid shape and motion recovery from multiple perspective views, under the assumption that the
nonrigid object deforms as a linear combination of K rigid shapes. These methods usually assume only a
single nonrigid object of interest. Instead of assuming the nonrigid shape to be a linear combination of basis
shapes, Akhter et al.[1] took the dual approach and described each trajectory as a linear combination of
basis trajectories.

Our problem is also related to video synchronization where the goal is to temporally align two or more
video sequences. However, only a small number of parameters need be estimated, typically, just shift and
scale are enough. Such methods are inapplicable for solving the photo sequencing problem because there are
many more degrees of freedom. The video synchronization techniques most relevant to our case are those
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Algorithm 3 Photo Sequencing Alg.
Input: A set of still images, I, taken by a set of moving cameras.
The temporal order of images taken by the same camera is known.
Output: A permutation, σ, of I.

1: Match features between all input image pairs.
2: Compute the fundamental matrices between the image pairs.
3: Classify the features into static and dynamic feature sets, Si.
4: for each set of dynamic features, Si do
5: for each image, Ij ∈ ISi do
6: Compute the order set, Γi

j , using Ij as reference (see Sec. 6.3.1).
7: end for
8: Compute final order set, Γi = Γi

1 ∩ · · · ∩ Γi
n .

9: end for
10: Compute the transitivity matrix, M from Γ1,Γ2, ....
11: Integrate the temporal constraints into M .
12: Find the full order, σ, from M using rank-aggregation [30]

that employ geometric constraints to align multiple video sequences (e.g., [63, 70]) or to achieve sub frame
accuracy (e.g., [59]). In both cases the intersections of the trajectory of dynamic features with the epipolar
lines of corresponding features in the other images were used to define order. None of these methods consider
the inconsistent ordering that may be caused by different choices of features.

Other related studies are [8, 81]. Ballan et al.[8] proposed a method for navigating in a collection of
videos of a dynamic scene, e.g., a music performance, but they use a collection of casually captured videos
rather than still images as we do. Schindler et al.[81] proposed a method for constructing 4D city models
from images that span many years. Their method is based on analyzing long-term changes in the 3D static
scene. Our method deals with a dynamic scene captured in a short time interval and is based on motion.

6.3 Method

A group of cameras moves in space and captures a set of still images, I, of a dynamic event. Each image is
captured from a different location at a different time step. Our goal is to recover the photo-sequencing) of
I. We assume that the relative order of images captured by the same camera is given, and use it to impose
temporal constraints on those images. However, we do not assume the actual time stamp of the images is
known.

Following Basha et al.[26], our method can be roughly divided into three main steps (pseudo-code given
in Alg. 3).
Preprocessing: Feature points are detected and matched between image pairs. The fundamental matrix is
computed between image pairs for which enough inlier features are found. In this case, feature points that
obey the epipolar constraint are labeled as static points, and those that do not are labeled as dynamic points.
Order from a Single Feature Set: Let Si be a set of corresponding dynamic features, which are the
projections of a dynamic 3D point P i onto a subset of images, ISi ⊆ I. The set Si is used to compute a
set of possible temporal orders (permutations), Γi, of its set of images, ISi . To do so, we make use of all
available spatial-temporal information, and perform a 2D-based analysis. This is the key that allows us to
consider a wider spread of images in space and time. We elaborate on this step in Sec. 6.3.1.
Rank Aggregate: Rank Aggregation is used to compute a unique global order that is as consistent as pos-
sible with the computed partial temporal orders from all sets,

⋃
Γi, as well as with all available ordering

constraints. See Sec. 6.3.2.
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a b

Figure 6.2: Critical points: (a), a point p1 and two epipolar lines (green and purple); each black dashed line, `, is in
a different sector and induces different orders; the 3 sectors are define by 3 critical points that are marked on the unit
circle centered in p1. (b), a point and 3 epipolar lines; here not all critical points are marked; see proof in Sec. 6.3.1.

6.3.1 Temporal Order from a Single Feature Set

The question we are facing is how to compute the order set Γ of the images IS given the feature set S (the
superscript i is dropped for simplicity). Possible solutions to this problem include recovering the trajectory
of P in 3D or in 2D. However, these solutions make several limiting assumptions on the data, which we
would like to avoid. We next briefly review these approaches and then describe in detail our solution.

Previous Solutions – Trajectory Recovery

Assume we can recover the 3D trajectory of P and sample it at the time the images were captured. Then, the
temporal order of the image set, IS , is determined (up to time-flip) by the spatial order of the 3D locations
of P along its 3D trajectory. Under the assumption of linear motion, the 3D trajectory of P can be recovered
using [4]. However, their solution requires 5 or more fully calibrated images (|S| ≥ 5), which is hard to
obtain in reality and prone to errors due to deviation from the linear motion assumption and sensitivity to
noise, as demonstrated in our experiments. Therefore, we avoid 3D reconstruction and propose a 2D-based
solution.

Basha et al.[26] suggested recovering the 2D linear trajectory of the point P in one reference image.
Then, the 2D projections of P at time {t(Ii)| Ii ∈ IS} could be easily computed, and their 2D spatial order
along the 2D trajectory induce a unique temporal order of IS . The main drawback of their solution is that
it relies on a static camera, which requires establishing reliable correspondence between features in each
of the input images and the reference one. This assumption limits the spatial and temporal configurations
of cameras that can be considered by their method. Moreover, they do not exploit all the available spatio-
temporal information. That is, only feature sets that involve the reference image are used to induce the
temporal order, and valuable temporal information, such as known temporal orders of images taken by the
same camera, is ignored. We suggest a 2D geometric-based solution that extends the solution of Basha
et al. [26], but overcomes its main limitations.

Order Without Trajectory Recovery

We drop the static camera assumption, which means that a unique order of IS , based on the recovered 2D
trajectory cannot be obtained as in [26]. Instead, we treat each image Ij ∈ IS as a reference, and use it
to compute a set of ordering Γj = {σ1, σ2 · · · }. As a result, we obtain n = |S| sets of temporal orders,
Γ1 · · ·Γn. The intersection Γ = Γ1 ∩ · · · ∩ Γn is the final set of ordering consistent with the set S.

The main challenge is how to efficiently compute the set Γj and we show that geometric and temporal
constraints can drastically reduce the size of Γj , compared to pure combinatorial considerations. For exam-
ple, from a combinatorial point of view there are ∼1043 possible ways to order a set obtained by 10 cameras
that take 5 images each. This is reduced by geometric constraints to only 103. In practice, it can be further
reduced to ∼4 using temporal constraints.
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Figure 6.3: Synthetic Experiment: (a), 3D visualization of the camera setup; the camera color encode the same cam-
era at different locations; (b), the computed mean error and its variance when adding Gaussian noise with increasing
variance; (c-d), the mean error and its variance when increasing the number of cameras, or increasing the maximum
images taken by each camera, respectively; the number of images is shown with each bullet.

A Single Reference Analysis:: W.l.o.g. let S = {pj}nj=1 such that pj ∈ Ij , and let I1 serve as a reference
image. Given that the fundamental matrix between image I1 and Ij can be computed (i.e., enough inlier
features were found), the corresponding epipolar line `(pj) ∈ I1 can be determined. Therefore, the available
information in I1 is a feature point, p1, and a set of epipolar lines, {`(pj)}nj=1.

Assuming that P moves along a straight line L, the projection of L onto I1 is a line ` that intersects the
set {`(pj)}nj=1. The spatial order of the intersection points along ` induce the temporal order of the images,
up to order reversing. Unfortunately, the line ` is unknown since we dropped the static-pair assumption
of [26]. In our case, any line passing through p1 is a valid solution to `. Thus, a line ` is defined by its
orientation. Since different lines may induce different temporal orders (see example in Fig. 6.2(a)), a unique
order cannot be recovered in the general case. However, thanks to geometric and temporal constraints, we
can recover a small bounded number of valid orders.
Geometric Analysis:: The key observation is that there are ranges of orientations for which the temporal
order induced by ` is fixed (up to order reversing). This is shown in Fig. 6.2(a) for a particular configuration
of one point and two epipolar lines; the order defined by all lines in sector R1 will be the same, and p1 will
be between the pink and the green lines, while in sector R2 the green line will be in the center. With this
observation in mind, we divide the image plane into sectors, such that all lines within a sector give rise to the
same (up to reversing) temporal order.

We define the image sectors by critical points, which are points on the unit circle centered at p1. Critical
points are formed by the intersection of two types of lines that incidence at p1 with the unit circle. The first
type are lines connecting the point p1 and the intersection of a pair of epipolar lines ˆ̀(pi, pj) = p1× (`(pi)×
`(pj)). Each such line intersects the unit circle at a critical point, ci,j . The second type are lines passing
through p1 and parallel to an epipolar line; we denote these lines by ˆ̀(pi). Each such line intersects the unit
circle at a critical point, ci. This is shown again in Fig. 6.2(a), where there are three critical points, defining
three sectors, R1, R2 and R3.

The number of possible temporal orderings, |Γj |, is bounded by the number of sectors (or critical points).
In fact, it can be further reduced by eliminating sectors that do not fulfill the known temporal orders of images
taken from the same camera. We next use a toy example to illustrate these bounds. Two Ordered Image
Pairs:: Consider the case of two cameras that move and capture two images each. That is, S = {pi}4i=1,
such that the temporal order of each of the pairs {I1, I2} and {I3, I4} is known. In this case there are 6
critical points given by {ci| 2 ≤ i ≤ 4}, and {ci,j | i 6= j, 2 ≤ i, j ≤ 4}.

Fig. 6.2(b) shows an example of four of these points and the resulting sectors (R1-R4), while ignoring
for the sake of clarity the critical points c2,3 and c2,4. We make the following claim:

Claim 1:: There are at most 4 possible orders that are both temporally and geometrically consistent.
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Before we prove this case, let’s have a look at several general observations that can be verified geomet-
rically.

1. Time-Direction: All lines in the same sector induce the same order, up to time-direction ambiguity. The
known temporal order between two images, w.l.o.g. I1 and I2, is used to resolve this ambiguity. Hence, a
single order is induced in each sector.

2. Temporal Consistency: The order induced in each sector may be either consistent or inconsistent with
all the known temporal orders. In our example, if we are given that t(I1) < t(I2) and t(I3) < t(I4) (the
green before the pink), then the sectors R2 and R4 are consistent, while R1 and R3 are not.

3. Adjacent sectors: The orders induced in adjacent sectors are different. In particular, when crossing a
critical point, ci,j , the order of `(pi) and `(pj) alternates. When crossing a critical point, ci, the rank of
`(pi) in the induced order is changed from the first to the last or vice versa. A special case is the critical
point c2, since `(p2) is used to define the time-direction. When crossing c2, the time-direction flips to
preserve the order of I1 and I2, and the rank of `(p2) in the induced order does not change, while the order
of all others is reversed.

Proof Claim 1: We prove that at most 4 sectors are consistent with the known temporal orders. We assume
that the time-direction is determined by the order of I1 and I2. Hence, the question is how many sectors are
consistent with the temporal order of I3 and I4?

Let’s consider only the critical points that affect the order of I3 and I4: c2, c3, c3,4 and c4. These points
define 4 sectors (see Fig.6.2). From observation (3), the order of `(p3) and `(p4) alternates in these sectors.
Hence, only two of them are consistent with the known order of I3 and I4.

Now consider the additional critical points, c2,3 and c2,4, that add two sectors. Each of them can split
either an inconsistent sector or a consistent one. In the first case, the number of consistent sectors remains 2.
In the second case, a consistent sector is replaced by two consistent ones. Thus, it follows that the maximum
number of consistent sectors is 4 and is obtained if each of c2,3 and c2,4 splits a consistent sector. In this
case, we end up with 4 valid permutations of the 4 images. QED.

Note that the proof is independent of the specific order of the critical points shown in Fig 6.2.

The General Case:: Consider a set S such that IS consists of images taken from k cameras, nj images
from camera j. The number of temporal permutations of IS from a combinatorial point of view is given by:

π = n!/
k∏

j=1

(nj !).

Note that π is smaller than n! but still can be very large. For example, if we have 10 cameras taking 5 images
each, then π = 50!/(5!)10 = 4.9 · 1043. Using the geometric constraint, the number of critical points is an
upper bound of the number of orders: πCP ≤

(
n−1

2

)
+ n− 1. For the example above, πCP ≤ 1225.

As in the two ordered pairs case, we can further reduce the number of valid orders by determining the sectors
that are temporally consistent. However, obtaining a complete characterization of the general case remains
open.
Computing Γ in Practice:: Given a feature set S we compute the set of n(n − 1)/2 critical points. For
each sector, Rj , a single representative line ` ∈ Rj is selected, and the temporal order induced by this sector
is computed. In case all available temporal constraints for S are satisfied, the computed order is added to the
order list, Γ. This process is repeated for all images in IS . The intersection Γ = Γ1 ∩ · · · ∩ Γn is the final
list of valid ordering consistent with the set S.

6.3.2 Rank Aggregation

We follow [26] and adopt the Markov Chain based solution of [30] to the rank-aggregation problem. Due to
space limitation, we describe only the modifications with respect to [26]. In our case, each feature generally
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Figure 6.4: RockClimbing, HandWave and Carnival: (a-c), the detected dynamic features are marked in green over
the images, and(d), the same feature set as seen in two different reference images; in each image, an arrow marks
the feature point; the epipolar lines are marked in different colors according to their index (see legend); the available
temporal constraints are shown on the bottom.

votes for more than a single order, and we set the weight of the vote to be inverse proportional to the number
of orders it votes for (j� i j). These votes are accumulated in the auxiliary matrix, which is used to compute
the transitivity matrix,M . In addition, the global order should be consistent with the known temporal orders
(of images taken by the same camera) in addition to the computed partial orders

S
� i . Thus, we set the

entries ofM that correspond to the pairwise known temporal orders to have probability of 1 (maximum) and
then normalize the rows ofM again to sum to 1.

6.4 Results

We tested our method on both synthetic and real data. To quantitatively evaluate the results, we measured
the percentage of incorrect pairwise orders out of the total number of image pairs, known as theKendall
distance. That is, the error ranges from 0% (the order is perfectly correct) to 100% (all pairwise orders are
incorrect). For all the real datasets, the fundamental matrices between the image pairs were computed using
the BEEM algorithm [36]. Feature points were detected and matched across images as in [26], using corners
and NRDC matching [38].

6.4.1 Synthetic Data
We evaluated in a controlled manner two important properties of our method: robustness to noise and scal-
ability. To this end, we generated synthetic data by simulating a 3D scene that is captured by freely moving
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and consists of multiple different static objects. The appearance of the scene may change considerably
from image to image due to the wide baseline between the images in both time and space. In addition, the
the background/foreground are defined according to the physical properties of the scene (motion) and not
only according to their appearance as in classic segmentation. Reliable solutions to the correspondence and
segmentation problems will form the basis for various future applications that use CrowdCam.

In this dissertation, we have demonstrated the power of multiple cameras in a variety of important com-
puter vision tasks by studying several challenging and emerging research directions. Obviously, there are
still many more open questions to be solved, and we hope that the principles elucidated in this dissertation
will inspire future study in this area.
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