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Abstract A group of people taking pictures of a dynamic
event with their mobile phones is a popular sight. The set
of still images obtained this way is rich in dynamic con-
tent but lacks accurate temporal information. We propose a
method for photo-sequencing—temporally ordering a set of
still images taken asynchronously by a set of uncalibrated
cameras. Photo-sequencing is an essential tool in analyzing
(or visualizing) a dynamic scene captured by still images. The
first step of the method detects sets of corresponding static
and dynamic feature points across images. The static features
are used to determine the epipolar geometry between pairs
of images, and each dynamic feature votes for the temporal
order of the images in which it appears. The partial orders pro-
vided by the dynamic features are not necessarily consistent,
and we use rank aggregation to combine them into a globally
consistent temporal order of images. We demonstrate suc-
cessful photo-sequencing on several challenging collections
of images taken using a number of mobile phones.
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1 Introduction

Dynamic events such as family gatherings, concerts or sports
events are often captured by a group of people, using what
is probably the most popular means of photography today —
smartphones. The set of photos, often taken within a short
time interval of one of the event highlights, can be regarded
as the output of a new type of extended camera, which we call
a crowd-based camera, or CrowdCam for short (see Fig. 1).
This setup differs substantially from traditional multi-camera
systems that are usually calibrated and synchronized. Crowd-
Cam is operated by multiple freely moving, uncooperative
photographers, and there is no coordination in the capturing
time. The question that motivates our study is whether it is
possible to explore, visualize and analyze the dynamic con-
tent of the scene using the set of still images obtained by a
CrowdCam.

Essential to this purpose is recovering the temporal order
of the images, as demonstrated by many computer vision
methods that use one or more video sequences. Clearly, tem-
poral order is available when all images are taken from the
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Fig. 1 CrowdCam: A group of people, holding cellphone cameras,
capturing the highlights of a dynamic event
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Fig. 2 The Photo-Sequencing Problem: recovering the temporal order
of N still images of a dynamic event, taken from different locations at
different time steps

same camera as in a video sequence. Alternatively, when two
or more sequences are taken, temporal order can be recovered
using video synchronization methods.

We propose a method for recovering the temporal order
of a set of still images of an event taken at roughly the same
time, and term this problem photo-sequencing (see Fig. 2).
Our method takes as input a set of still images captured
by a CrowdCam and returns a globally consistent tempo-
ral order for all images. Video synchronization methods are
not applicable here because each camera may provide only
one still image. In our case, the only temporal information
available is given by the phones’ clocks, which we show to
be insufficiently accurate (see Sect. 4.1). More accurate tem-
poral information can be obtained from other devices, e.g.,
GPS. However, their data may not be available in indoor
scenes or may be blocked by the photographer for reasons
of privacy issues. Moreover, a vision based solution is of
scientific value in itself.

Photo-sequencing can be solved directly if the 3D struc-
ture of the dynamic scene is known. However, recovering
the 3D structure of a dynamic scene often requires camera
calibration, prior knowledge about the 3D structure or the
motion of objects, and a very large number of images, which
we do not assume to have.

Our goal is to compute photo-sequencing without recover-
ing the 3D structure of the scene. To do so, we assume that at
least two images are taken from roughly the same location by
the same camera. This assumption is reasonable because peo-
ple often take more than one image of an interesting moment
in the event, without moving much. We further assume that
within the short time interval, there are enough features that
move approximately along straight lines. This assumption
is needed to model the problem but in practice points can
deviate considerably from the linear motion model.

1.1 Algorithm Outline

Consider a 3D scene point moving along a linear trajectory
and captured by a set of cameras, at different time steps.
Imagine sampling the 3D locations along the point trajec-
tory, at the same time steps at which it was captured by the
set of cameras. The spatial order of these 3D locations along
the trajectory implicitly induces the temporal order of the
images (see Fig. 3a). Our method avoids recovering the sam-
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pled 3D locations of a dynamic scene point by computing its
projections on the reference image (see Fig. 3b).

All analysis is done in 2D. We use the static feature points
to compute the fundamental matrix between every image and
the reference image and map all dynamic features to their
epipolar lines in the reference image. In addition, we use
the two reference images (taken from the same position) to
compute the 2D projection of the trajectory of each dynamic
point. The intersection of the epipolar lines with the projec-
tion of the trajectory line gives the spatial order of the scene
point and provides the partial time order for a subset of the
images.

The resulting partial orders computed from each dynamic
feature are not necessarily consistent because of matching
errors, large deviation of some of the features from linear
motion, and noise. One of the challenging problems is to
compute a full temporal order, i.e., an order of all input
images that is as consistent as possible with the computed
partial orders. This problem is known as the rank aggrega-
tion problem, which is known to be NP-hard for the most
general case. We first rely on geometric constraints to clean
up the data, and construct a directed graph that represents the
pairwise temporal orders defined by the dynamic features. If
the graph contains no loops (i.e., it is a DAG), then finding
a Hamiltonian path is reduced to computing a topological
sort, for which a simple polynomial algorithm exists. How-
ever, if the graph contains cycles, finding a Hamiltonian path
becomes NP-hard. Therefore, we adopt a rank aggregation
Markov chain approximation to solve it.

Possible applications of photo-sequencing include visu-
alizing and analyzing dynamic content from a set of still
images. A temporally coherent presentation of a set of images
taken from different viewpoints or time instances of a given
event is one example. It may also be used to generalize vari-
ous computer vision tasks, such as tracking or segmentation,
to work with a set of still images instead of video. These
applications, which are beyond the scope of this paper, arise
naturally when people share their images and are willing to
extract the most out of them.

1.2 Contributions

Our method offers a solution to the novel photo-sequencing
problem—recovering the temporal order of a set of static
images of a dynamic event. The method’s robustness is based
on a rank aggregation algorithm that aggregates noisy mea-
surements to overcome inconsistencies.

In addition, we present a theoretical analysis of the mini-
mal required set of images for recovering 3D trajectory from
the 2D projection of a linear moving point. The analysis is
performed under the assumptions used for photo-sequencing.
We show the tradeoff between the number of required images
and the time stamp information if available (see Sect. 3.4).


Tali Basha
Rectangle


Time — } ! } >

(a)

=
3
m
v

(b)

Fig. 3 (a) The order of the sampled location of a 3D point moving along a straight line implicitly induces the order of the corresponding images:
t(Iz) < t(l1) <t(ls) < t(l2).(b) The same order is also defined along the projection of the line to a reference image

2 Related Work
2.1 Video Synchronization

Temporal alignment of visual data has been studied exten-
sively in the context of video synchronization. Synchroniza-
tion methods for aligning a pair of sequences include cor-
relating motion signatures computed from a set of succes-
sive frames (e.g., Dexter et al. 2009), aligning tracked tra-
jectories of features or objects visible in both videos (e.g.,
Caspi and Irani 2002;Tresadern and Reid 2003; Whitehead
and Laganiere 2005), aligning all the frames (e.g., Caspi and
Irani 2002; Sand and Teller 2004), assuming linear combi-
nation between object views under orthographic projection
(e.g.,Wolf and Zomet 2002), assuming low rank for non-
rigid moving objects (e.g., Zelnik-Manor and Irani 2003), and
using tri-focal tensor-based relations when at least 3 videos
are considered for spatial matching of points or lines (e.g.,Lei
and Yang 2006).

Other synchronization methods attempt to bypass the
computation of spatial correspondence in these methods, by
using spatio-temporal feature statistics (e.g., Yan and Polle-
feys 2004), or temporal signals defined over corresponding
epipolar lines Pundik and Moses (2010). Geometric con-
straints were used for aligning multiple video sequences (e.g.,
Péadua et al. 2010) or for achieving sub-frame accuracy (e.g.,
Meyer et al. 2008). In both methods the intersections of the
trajectory of dynamic features with the epipolar lines of cor-
responding features in the other images were used to define
order.

None of these methods consider the inconsistent order-
ing that may be caused by different choices of features (e.g.,
matching trajectories). Moreover, all the above methods use
successive frames in each of the videos in order to com-
pute the synchronization. However, we assume here that the
cameras might provide only a single image. Such synchro-

nization methods are not applicable for temporal ordering of
the images considered in this paper.

2.2 Structure Reconstruction from Still Images

Several methods address the problem of non-rigid shape and
motion recovery from a set of still images when temporal
order is not used directly. These methods assume that point
correspondences are given and the motion of the objects is
restricted. A method for reconstructing the 3D coordinates of
apoint moving along a straight line and captured by a moving
camera was proposed in Avidan and Shashua (2000). They
use trajectory triangulation and show that a linear solution
exists if the camera parameters are known. If the camera para-
meters are unknown, it is still possible to reconstruct the 3D
coordinates of points moving on planes Shashua and Wolf
(2000). Trajectory triangulation was later extended using
polynomial representations Kaminski and Teicher (2004).
Park et al. (2010) proposed a method for reconstructing the
3D trajectory of a moving point from its correspondence in a
collection of 2D perspective images. However, they assume
that 3D spatial pose and time of capture are given. In our
case, it is sufficient to have each feature matched in only 4,
instead of 5 images, and a weaker calibration is required; that
is, only the fundamental matrix between each image and the
reference image are needed. Moreover, our method offers a
way to overcome the inconsistent ordering obtained by dif-
ferent features and allows us to deviate from the linear motion
assumption.

A different class of methods use factorization to deal
with dynamic scenes Torresani et al (2008). These methods
assume that the correspondence between features in a large
number of images can be obtained. Furthermore, they assume
that the deformation of a 3D shape can be represented by a
linear combination of shape-bases, which often restricts the
number of independently moving objects. Hence, by increas-
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ing the rank of the observation matrix, the non-rigid compo-
nents of motion are captured by additional eigenvectors. This
was later extended by Bartol et al. (2008), Llado et al. (2005).
Indeed the solutions to these methods may result in photo-
sequencing. However, they are limited to restricted scenes
and unlike our method, require features to be matched across
a large number of images.

2.3 Image and Video Collections

Large numbers of images uploaded to the Internet are used
for various applications such as 3D reconstruction, visualiza-
tion, and recognition of static scenes (see review by Snavely
et al. 2010). This is often referred to as community photog-
raphy and assumes that images are co-located in space but
not necessarily in time. Therefore, only the static regions of
the scene are considered. In our case, the set of still images
are co-located both in space and in time, and we focus on
extracting the temporal information. We believe that future
work will combine photo-sequencing with community pho-
tography leading to new ways to analyze the dynamic regions
of the scenes.

A method for temporally aligning still images that span
many years was suggested by Schindler and Dellaert (2010).
Their solution is based on analyzing changes and occlusions
of the viewed 3D static scene. Our method deals with a
dynamic scene captured in a short time interval and is based
on motion.

Recently, a method for navigating in a collection of videos
of a dynamic scene, e.g., a music performance, was proposed
by Ballan et al. (2010), but they use a collection of casually
captured videos rather than still images as we do.

2.4 Rank Aggregation

Rank aggregation is the problem of obtaining a full ordering
of elements (alternatives) given inconsistent partial order-
ings of the same elements from different sources. The
rank aggregation problem was originally studied in the
context of social choice theory and voting theory Young
and Levenglick (1978); Young (1988). However, in recent
years this problem has been of interest in various disci-
plines in the computer science community, for example,
biological applications Shili (2010), and Web applications
such as meta-search, page ranking, and spam detection
Dwork et al. (2001), Schalekamp and van Zuylen (2009),
Elena and Straccia (2003).

Due to the large and diverse body of work on the rank
aggregation problem, we will focus here on the work of
Dwork et al. (2001), who proposed a Markov chain approach
for Web applications, which we adopt for photo-sequencing.
They proposed several heuristic algorithms, and compared
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Algorithm 1 Photo Sequencing Alg.

Input: N images, {Ik},’(\’: | taken by the set of cameras. I, is the refer-
ence.

Output: A permutation, o : {1,..., N} - {l,..., N}.

I: [f1, f2] < Match(ly,1,);

2 [fpys fsis fpy, fs,1 = Classify_Dyn_Stat_Ref(fi, f2)

3: for each Iy and k = 3to N do

4 [fi, fil < Match(,.1,);

5: [fpy, fs.] = Classify_Dyn_Stat(fs,, fp,, fk)

6:  F, =ComputeFundamentalMat( fs,, fs, ).
7

8

N

: end for

: for each dynamic feature p’i € f1do
9: = pPix ph {£' is the image line}
10:  for each pi (1) € ' do

11: 0 =Fpi(n) {€ is the image line)

122 Pi(n) =0 x ¥ {p(t) is the intersection point}
13: o < ComputeAlpha(p!, pi, p' (1))

14:  end for

15:  o; < sort({oy | k € n;}).

16: end for

Full order: 0 < RankAggregation(oy, 02, ...):
17:  V <« VotingMatrix(o1, 02, ...).
18: M <« TransitivityMatrix(V).
19: o <« MarkovChainRanking(M).

them to a number of traditional rank aggregation methods
such as Footrule aggregation and Borda’s method. While
there is no guarantee on the quality of the output, the Markov
chain approach is extremely efficient, and was shown to usu-
ally match or outperform the other methods. The basic idea
is to construct a Markov chain, in which the states are the
elements to be ordered. The stationary distribution of a state
ranked high will have a larger probability than of a state
ranked low. Hence, the stationary distribution will determine
the aggregate rankings of the items (see Sect. 3.2 for fur-
ther details). To the best of our knowledge, rank aggregation
was used in computer vision only for Content-Based Image
Retrieval Jegou et al. (2010), Pedronette and Torres (2011).
We believe that rank aggregation is a powerful tool that can
be adopted for other computer vision tasks.

3 The Method

Consider a dynamic scene captured by N images {I})_,,
taken at different time steps within a small time interval. Our
goal is to determine the temporal order in which the images
were taken. This is equivalent to finding a permutation on the
image indices, o : {1,..., N} — {1, ..., N}, such that

t(Io.—l(l)) < t(]0—1(2)) < t(Io'fl(N))’ (1)

where 7 (Ij) is the time at which image [; was taken, o (i)
indicates the temporal rank of image i, and o —1 s the inverse
mapping. We assume that two of the images are taken from
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Fig. 4 Static & dynamic features: the detected corresponding features
of 11 and I (taken from roughly the same position) are marked over the
reference image, /1; blue are I features (static and dynamic); red are
the corresponding static features of I, and green are the corresponding
dynamic features of I

approximately the same position. Without loss of generality,
let I; and I be these images, and I be the reference image.

3.1 Temporal Order Voting

We first extract and match features from all input images
(see Sect. 3.3.1 for details). The detected features are clas-
sified into static and dynamic features (i.e., projections of
static or dynamic scene points, respectively). To do so, we
classify the matched features in /1 and /». In these images,
each pair of matched static features should be approximately
in the same location. Thus, the static features are easily
detected by thresholding the Euclidean distance between
matched features, and the dynamic features are the remain-
ing ones. An example of the classified features is shown
in Fig. 4.

We then match features between the reference image, /1,
and each image, Ij. The static and dynamic features in [ are
taken to be those that are matched to the static and dynamic
features of Iy, respectively. The static features are used to
compute the fundamental matrix, Fj, between I and I (we

use the BEEM algorithm Goshen and Shimshoni 2006); the
dynamic features are used to determine the temporal order
of the images, as explained next.

3.1.1 Ordering by a Single Set of Dynamic Features

Let p’i € I be a dynamic feature in the reference image
(homogeneous coordinates), and St be the set of its cor-
responding features in a subset of the images. Let n; C
{1, ..., N} be the indices of this subset. The set S’ consists
of the projections of a scene point P! at different time steps.
For simplicity, we assume that P! moves along a line L', and
its projection to the reference image is given by a 2D line ¢’
(see Fig. 3a, b). The set of features S’ defines a set of epipo-
lar lines in I; which intersect the line £/ (see Fig. 5b). The
spatial order of these intersection determines the temporal
order, o;, of the corresponding images, since it is identical to
the spatial order of the 3D positions of P’ along L!.

Formally, let P! (z,) denote the 3D position of P’ at #,, the
time image I; was captured. The feature set S’ is given by:
St = {p,f (t) | k € n;}. From the matching process, we have
direct access to the projection of P! (z;) to image Iy, namely
Pe(t).

Our goal now is to compute the projections of the set of
points Pi(tk) onto the reference, /. That is, we compute
p’i (t,) for each k € n;. Note that p‘i(tz) ~ pé(tz) since both
points were captured roughly from the same position. Hence
the line ¢/ is defined by the two corresponding points, p’i (t1)
and p(tp). That is, £/ = pi(t1) x p’(t2). The point p! (t)
is given by the intersection of the line ¢/ and the correspond-
ing epipolar line: ¢. = Fy pi(#) (see Fig. 5b). Putting it all
together, we have:

Pi) = € x 6] = (P ) x ps) x (Fi pl@w) . (@)

This equation degenerates if the epipolar line, Z,’;, coincides
with £', i.e., the feature moves along the epipolar line. We

Fig. 5 (a) The projection of the trajectory, L', of the point P, forms
the line ¢! on image /. The feature points pi (), p; (t,), in image 11,
and pi(#,) in image I, are corresponding dynamic features. The line
¢ intersects the epipolar line (in yellow), which corresponds to pj .
The intersection point, p’i (1), is the projection of P’ onto I; at time

step #,.. The spatial order of pi(t,), pi(t,), and pi (%), along ¢/, defines
the temporal order between /1, I> and ;. (b) The computation on real
images: the projected trajectory, £/, in cyan; the epipolar line in yellow;,
the intersection in red
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Fig. 6 Linear Motion Assumptions: In green, the real path of the green
boat; in yellow, the approximated 2D image line. The epipolar lines
intersect both the real path and the 2D image line. The spatial order of
both sets of intersections is the same

detect this case by the angle between the two lines and remove
such points from further processing.

Finally, the spatial order of the mapped features along the
line ¢ is computed. Formally, the intersection point, p’i (),
can be represented by:

pit) = pi) + a(ph(n) — pia)). 3)

The computed temporal order, represented by a permutation,
o0, is obtained by sorting the computed values {ay | k € n;}.
It is worth noting that instead of recovering the 3D struc-
ture of the dynamic scene, we perform all calculations in
the image plane of the reference image /. This allows us to
match features in a smaller number of images than required
for full 3D reconstruction, use weaker calibration (fundamen-
tal matrices with respect to the reference image instead of all
pairs of images), and clearly avoid additional noise that may
be introduced into the 3D reconstruction. As it turns out, the
algorithm described above is still applicable when the linear
motion assumption is violated. This is because all we care
about is the spatial order of the intersections of the epipolar
lines and the trajectory and not their actual locations. This is
exemplified in Fig. 6, where the actual path of the green both
was very far from the approximated linear line, yet the order
of the intersection points did not change. Note that if the order
is not preserved, then an incorrect order is produced by this
feature. However, since the information from all features is
aggregated, it is expected that a few such errors will not affect
the result. This is indeed demonstrated by our experiments.
Finally, our method will not work if all epipolar lines are par-
allel and the object moves along the epipolar line direction.
In this case, the intersections of the epipolar lines with the
projection of the real trajectory is expected to be noisy.

3.2 A Full Temporal Order

Each dynamic feature defines a set S’ that give rise to a partial
temporal order, o;, of a subset n; of the images. These partial
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orders are often conflicting due to noise and matching errors.
Such errors are unavoidable in practice. (For example, in
one of our experiments only 23 out of 67 features agreed
with the correct order, and none of them produced a full
order of the set). Our goal is to compute a full order, o, that
is consistent, as much as possible, with the partial orders.
This problem is known as the rank aggregation problem, and
has been studied mostly in the areas of social choice and
voting theory. Aggregation of partial temporal orders must
be performed even if the 3D locations of each feature are
fully recovered.

3.2.1 Objective

Formally, the widely accepted objective to minimize in rank
aggregation is the number of pairwise disagreements between
the full order, o, and each of the input permutations, o;.
Specifically, the distance between ¢ and an input permuta-
tion, o;, is measured by the Kendall distance.

K(o,07) =
Hd,m)| l,m en;, o) <o(m), o;(l)>0;(m)}]. (4)

Therefore, our objective is to find o* such that:

Np
" .

o = argrrgnzi: K (o, o), 5)
where Np is the number of detected dynamic feature sets.

Minimizing this objective function, known as the Kemeny
optimal aggregation, was proven to be NP-hard in the num-
ber of images, even when the number of input permutations
(feature sets) is only four Dwork et al. (2001). We adopt, as
we next describe, the Markov chain approximation of Dwork
et al. (2001), which was shown to work well in Web ranking
applications.

3.2.2 Graph Representation

Let G = (V, E) be a weighted graph where the nodes in V
correspond to the N images to be ordered, and the weight of
an edge (i, j) € E corresponds to the probability that image
I; was captured before image /;, Pr(t(l;) < t(I)).

If all partial orders are consistent with each other then G
is a DAG. In this case the problem reduces to a topological
sort that can be found in polynomial time. (A topological
sort is finding a linear ordering of the vertices such that,
for every edge (i, j), i comes before j in the ordering.) In
addition, if the set of partial orders defines a complete order,
then the topological sort results in a Hamiltonian path. It can
be easily shown that the order defined by this path is optimal
with respect to the Kendall distance (Eq. 5).

In reality, the partial orders are not consistent, and G will
contain cycles, (e.g., Fig. 10). Unfortunately, it is impossible
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to compute a topological sort in this case. One alternative is
to find and remove cycles (i.e., edges) from the graph before
running the topological sort. However, efficiently choosing
which edges to remove is non-trivial. A well-established
alternative is to treat the graph G as a Markov chain system,
that is, a memoryless random process that moves at each time
step from one state to another.

3.2.3 Rank Aggregation by Markov Chain

A Markov chain system is defined by a set of states, and a
(non-negative) transition matrix M that specifies the proba-
bilities of moving from one state to another. In our case, the
states correspond to graph nodes (i.e., images) and the tran-
sitions between states correspond to edge weights: M;; =
Pr(t(I;) < t(I;)). We compute these probabilities using
the computed partial orders, o1, 02, ..., 0N, (see 3.3.2 for
details).

Letus consider arandom walk on this chain (graph), where
the first state is chosen according to a uniform distribution
across all states (nodes). If the chain describes a consistent
full order between the images (G is a DAG), the walk will
end in the steady state at an absorbing state (the graph sink),
i.e., the state that corresponds to the image captured last.
If there is no sink in G, then the random walk will end in a
strongly connected component of G. (In a strongly connected
subgraph, a directed path exists between each pair of nodes.)
This connected component, which we name sink-component,
contains the state corresponding to the last captured image.

The sink or the sink-component can be computed using
eigenvectors in the following way. Formally, letxbea N x 1
vector that describes the probabilities of being at each of the
states (images). Then Mx will be the probability distribution
over the states in the next time step, and after k steps the
distribution will be given by M*x. A random walk on this
graph, with an initial uniform distribution x, will converge to
the eigenvector y = My. The eigenvector can be computed
directly or using power iterations. If node i is a sink of G
(and not part of a cycle), then the i entry of y equals 1, and
the remaining entries equal zero. If G has a sink-component,
then y will have non-zero entries only in the sink-component
nodes.

Given this analysis, we run power iterations until a steady
state is reached. Then, we take the state with the highest
probability to be the last element in the current set (latest
image). After removing it from the chain, the computation is
repeated until all nodes are ordered. Removing the state with
the highest probability is the heuristic part of the algorithm.
Empirically, this formulation was shown to work for Web
ranking applications Dwork et al. (2001), and we found it to
work for photo-sequencing as well.

The connectivity (transitivity) of the chain allows us to
infer relations between pairs of images that were not explic-

itly ordered in any of the partial orders. This lets us aggregate
all available information. If the graph G contains more than
one sink, the order between the sinks cannot be determined
(independent of the existence of cycles). This situation is
unlikely to occur in our case if every pair of images is ordered
by at least one feature.

3.3 Implementation Details
3.3.1 Detect and Match Features

Our method is insensitive to the way static and dynamic
features are detected and matched, as long as enough fea-
tures are available. We compute the fundamental matrices
(using Goshen and Shimshoni 2006) using the detected sta-
tic SIFT features. However, we found that it is difficult to
match SIFT descriptors of dynamic features because of the
non-rigid transformations of moving objects. To overcome
this challenge, we first find a dense correspondence between
each image and the reference image, using the Non-Rigid
Dense Correspondence (NRDC) algorithm HaCohen et al.
(2011). Then, we use the Harris corner detector to detect
feature locations and use only features with high confidence
mapping, where the confidence is defined by NRDC.

3.3.2 Computing the transitivity matrix M

The number of images to be ordered in our case is relatively
small, so we explicitly compute the N x N matrix M from
the estimated permutations, o1, 02, ..., 0,. Each permutation,
oi, votes for the order of pairwise images in its subset. The
pairwise votes from all permutations are collected in an N x
N auxiliary voting matrix, V, where V;; is the voting score for
t(I;) < t(I;). The weight of the votes of each permutation is
proportional toits cardinality, and is given by: |n;|/N. Thus, a
permutation that includes all N images has the highest voting
weight.

An incorrect order produced by a single feature can
already resultin a cycle in the graph defined by V. Hence, we
remove edges by choosing a single direction between each
pair of nodes by comparing V;; and V j;. We set the weight of
the votes to reflect the votes and their relative impact. That is,
the weight is proportional to the value that support the edge
direction and inverse proportional to the value that oppose
the edge direction: V;; > V;;, weset M;; =1 —V;;/V;;.
We normalize the rows of M to 1 because M is a stochastic
matrix.

3.4 Time and 3D Estimation
So far we have recovered the relative temporal order of the

images, but can we recover the exact capturing time of each
image? And when are time and space equivalent? In this

@ Springer


Tali Basha
Rectangle


section we address these questions and study under which
conditions time and space are equivalent.

We consider again a single dynamic scene point, P, mov-
ing along a straightline, L, and projected to a subset of images
at different time steps. Without loss of generality, the set of
images is given by {I};_,, where I; is the reference image
and I, is taken from the same position, by the same camera.
The question is whether the 3D location and the capturing
time of each of the images are interchangeable.

To infer information regarding the time one must have
prior knowledge regarding the kinematics of the 3D point
since the motion of the point and the time are ambiguous.
Thus, we assume that P is moving in a constant, but unknown,
velocity vp within the capturing time interval. Furthermore,
the analysis should be performed in a space in which lengths
are preserved. Therefore, full calibration between the cam-
eras is required (at each location and each time step). Note
that since /1, and I are taken by the same camera, their time
difference is assumed to be known. Without loss of general-
ity, we take t{ = O and t, = 1. (We use #; as short for ¢ (Ix)).
The capturing time instances of the rest of the cameras are
measured with respect to t; = 0.

We next show that under these assumptions, recovering the
capturing time of the images is equivalent to reconstructing
the 3D locations of P at the time step at which it was captured.

We first note that when four images are available, the 3D
locations of the points are uniquely defined independent of
the temporal information. To see that, consider the proof by
Avidan and Shashua (2000) for recovering L. They proved
that five rays in the 3D space, each defined by an image point
and the camera parameters, are required to uniquely recover
L. In our case the two cameras are co-located in space; hence
the plane containing L is defined by the two rays of the ref-
erence image’s points. In addition, the projection of P (#;)
onto the reference image is computed using the intersection
with the corresponding epipolar line (as in Sect. 3.1). Thus,
the 3D location P(#;) can be recovered using triangulation
from the two corresponding points, p,ﬁ and p,’g in I7 and I,
respectively. Hence, the pair of 3D points P(#) and P(¢;)
uniquely defines the 3D line L. The intersection of L with the
rays of the other points uniquely defines their 3D locations.

We will next focus on the n = 3 case, where temporal
information is required for recovering the 3D locations.

Claim #1 Recovering the capturing time #; is equivalent
to recovering the 3D locations P (¢1), P(t),and P(t).

Proof < Without loss of generality, we assume that #; <
t) < tx. Since t; = 0 and 1, = 1, it follows that given the
3D point locations, P (1) and P(t,), the velocity, vp can be
computed:

UP:M. (6)
lt2 — 1]
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Fig. 7 Proof of the Lemma. Given two rays /1, [, and the 3D point
P (), there is only one line (L) that satisfies the time ratio constraints.
See details in the text

Given P (t), the time step #; is given by:

e = 1P (tx) — Pl / |1 P(r2) — P(r)]l - (N
O

Note that if the time difference #; — ty is unknown, we can
still recover #; up to the scale, vp.

=> The 3D location P (#;) can be recovered, as explained
above, using triangulation from the two corresponding
points, p,l and p,/: in /1 and I, respectively. Thus, we have
two rays, £1 and £;, that intersect at the center of projection
of the reference camera, and a 3D point P(#;) that lies on
the same plane (see Fig. 7). Ignoring temporal information
for a moment, we can see that any line that passes through
P (#) and intersects the two rays is a possible solution for the
unknown line L. However, only the true line would result in
the known (or relative) time between the images, as we next
prove.

Lemma Assume perspective projection (Fig. 7). Then, of all
the lines that pass through P (ty) and intersect the rays ¢,
and €3, only one line, L, satisfies the following:

1P (k) — POl /|1 P(2) — Pl = /11, 3
where P(t1) = €1 x L, and P(t;) = {5 x L.

Proof (by contradiction) Assume that there are two lines, L

and K , thatsatisfy Eq. 8,andletC = P(;),A = {;xL, B =

lyxL,D =¢;x K and E = {; x K (see Fig. 7). It follows

that:

|AC|/|AB| = |DC|/|DE| =1/t = )

|AC|/IDC| = |BC|/|EC].
O

Thus, AACD ~ ABCE (since they also share ZAC D).
Therefore, /DAC = /EBC, and /ADC = /BEC, which
implies that £1]|£;. This implies that the COP is at infin-
ity (orthographic projection), and contradicts the perspective
projection assumption.
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Fig. 8 Smartphone Synchronization: (a) the used setup; a group of 20 people (fop) captured a screened running stopwatch (bottom); (b) the

histogram of time offsets between the smartphones

4 Experimental Results

We conducted a number of experiments to test the proposed
method. First, we measured the accuracy of smartphone syn-
chronization, and then we tested our method on sets of real
data images. Finally, we show, through a synthetic experi-
ment, that it is possible to extend photo-sequencing to use
more than a single reference camera.

4.1 Smartphones Synchronization

We tested to what extent different smartphones are synchro-
nized using the time-stamp assigned to the photos’ meta-data.
To do so, we displayed a running stopwatch with millisecond
accuracy, while a group of 20 people were asked to capture it
when the clock reached 10 and 20 s (see Fig. 8a). We collected
the 40 images and extracted the time-stamps associated with
each image in the EXIF data.

Since not all the images were captured exactly at the same
moment, we used the stopwatch time captured in each image
to compensate for these differences. In particular, we com-
puted the differences between the stopwatch time captured
in each image and 10 (or 20) s, and corrected the EXIF
time-stamps accordingly. Thus, the total offsets between the
images are given by the differences between the corrected
time-stamps.

As can be seen from the histogram of time offsets shown
in Fig. 8b, the distribution is not unimodal, and there are two
main peaks at around 1 and 4s. It is important to note that
two out of 20 phones had more than a one minute offset (they
were not included in the histogram). Such outliers are phones
for which the time is set by the phone’s internal clock and

not by the cellular network (as in most of the phones). This
experiment indeed affirms that smartphones are not synchro-
nized up to the frame capturing resolution. (Recall that video
is captured at the rate of 30 frames per second.)

4.2 Real Data

We captured five challenging and diverse datasets of outdoor
scenes. The images were captured from different viewpoints,
without calibration or a controlled setup, by various cameras
(including Apple iPhone 3 and 4, Samsung Galaxy SI/SII,
Blackberry, and Canon PowerShot SD940 IS).

Matching features across images is very challenging and,
in particular, we found that SIFT features cannot be correctly
matched in the dynamic regions (see Sect. 3.3.1).

Another challenge for sequencing each of the datasets is
the large search space for possible solutions, N!/2, where N
is the number of images. In these datasets N is between 9
and 15. We tested our method on each of the five datasets
without assuming a priori knowledge about the scene.

To evaluate the results of photo-sequencing, the ground
truth temporal order is required. However, manually order-
ing still images is difficult (even more than manual video
synchronization). Therefore, we captured video sequences
instead of still images with each phone / camera. This
allowed us to compute the ground truth. The input to
our method is a set of extracted still images from the
video sequences. Our algorithm was not provided with this
temporal information.

In each experiment, we choose two images, /1 and I,
taken approximately from the same location, with known
relative order. This is the only assumption made regarding
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6tP Image (reference)

Fig. 9 Boats: First row (a—d): four of the fifteen input images, ordered
by our method; (b) is the reference; the detected dynamic features are
marked in red points over the images. Second row: for evaluation pur-
poses each boat is framed by hand and colored the same in all images.

the order of the input images or the camera locations. The
following datasets were considered:

4.2.1 Boats

The Boats dataset consists of 15 images extracted from
sequences taken by hand-held mobile phones (iPhone 4). Ten
images were taken by one phone, and the other 5 were taken
from different locations by the other phone. The detected

12th Image 15th Image

(f) The reference; each of the images (a), (¢) and (d) were aligned to
it; (e), (g), (h) the aligned images of (a), (c¢) and (d), respectively, are
shown over the reference (f)

dynamic and static features of /| and /5, are shown in Fig. 3c.
Four of the input images (1st, 6th, 12th and 15th), arranged
in the order computed by our method, are shown in Fig. 9a—
d. The dynamic features are marked in red in each image.
Note that the dynamic features may be different from image
to image due to the difference in viewpoints and capturing
time (as Fig. 9 shows). For example, the features detected
in Fig. 9a, d belong to different objects, (e.g., see the right-
hand boat). As can be seen, it is hard to visually determine

Image 1

Image 14

Fig. 10 The directed subgraph computed for the Boats dataset. The strongly connected nodes are marked in red. The correct detected order of the
nodes is indicated by red arrows. Note that the incorrect edge that closes a cycle is (13, 6)
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Fig. 11 (a) The detected static and dynamic features of /; and I, are
marked over the reference image, /1; blue are I features; red and green
are [ static and dynamic features, respectively; on the right is a close-
up of the region where the children appear. (b) The detected static and
dynamic features for the Basketball dataset

the correct temporal order. Therefore, to verify our results,
we aligned the three images, Fig. 9a, c, d, to the reference,
Fig. 9b, using the static features. Fig. 9e—h shows the aligned
images, semi-transparently, over the reference image. The
resulting locations of three boats in the aligned images are
shown in the colored frames. These locations agree with the
recovered order.

The number of dynamic feature sets is 66, only 22 of which
fully agreed with the correct order. In addition, the obtained
graph contains a cycle. A subgraph that contains the strongly
connected component of the cycle (with 7 nodes marked
in red) is presented in Fig. 10. Therefore, this experiment
demonstrates the necessity of using rank aggregation and the
robustness of our photo-sequencing algorithm to aggregate
multiple inconsistent partial orders into a globally consistent
one.

4.2.2 Slide

The Slide dataset consists of ten images extracted from
sequences captured by five different cameras: Samsung

i (e) Galaxy SII (f) iPhone 4

Galaxy SII, BlackBerry, iPhone 4 (two phones), and Canon
PowerShot SD940 IS. Several cameras were mounted on a
tripod, and the rest were hand-held. The detected features are
shown in Fig. 11a. In Fig. 12 we present eight of the input
images, arranged in the recovered order. The correct order
of the images can be visually verified by the positions of the
children along the slide. A closer look at Fig. 12g—h will
reveal some incorrect dynamic features (e.g., the dynamic
features detected in the background of (h)). However, since
most of the detected features are correct, our method was
able to recover the correct order.

4.2.3 Skateboard

The Skateboard dataset consists of nine images, extracted
from sequences captured by a pair of hand-held mobile
phones (iPhone 4 & Smasung Galaxy SI). The dynamic and
static features of I; and I, are shown in Fig. 13a. A closer
look shows that the corresponding static features (blue and
red points) in /; and I, are not exactly at the same posi-
tion (since the phone was hand-held). Since we threshold the
distance between the features, we can handle slight move-
ment between the two images. Figure 14 shows eight of the
input images, arranged in the temporal order computed by
our method. It can be seen that the viewpoints of the images
are very different. Thus, we align the first and last ordered
images (see Fig. 14a, h, respectively) to the reference image.
Figure 13c—d shows the aligned images semi-transparently
over the reference image. The resulting locations of the man
in the aligned images are shown in the cyan and yellow
frames. As can be seen, the man in the cyan frame indeed
appears before the reference, whereas the yellow frame in
Fig. 13d appears after.

(g) iPhone 4

Fig. 12 Slide: Eight of the images ordered by our method (left-to-right, top-to-bottom). The dynamic features are overplayed on the images in red.

(d) and (f) refer to I and />, respectively
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(b)

Fig. 13 (a) The reference image, /1, overlayed with the detected corre-
sponding features between /1 and I, (taken by an approximately static
camera): blue are /| features, and red and green are the /5 static and
dynamic features, respectively; (b) the image to the right is a close-

4.2.4 Basketball

The Basketball dataset contains eight images extracted from
sequences taken by a pair of mobile phones (iPhone 4),
mounted on a tripod. The detected features are shown in
Fig. 11b. As Fig. 15 shows, we can correctly order the pho-
tos even though the dynamic feature points move in different
directions and follow a natural trajectory that is not neces-
sarily linear. The correct order of the images can be visually
verified by following the motion of the arm of the girl throw-
ing the basketball.

4.2.5 Beach

The Beach dataset contains eight images extracted from
sequences taken by a pair of hand-held mobile phones
(iPhone 4 and iPhone 3). The detected features are shown
in Fig. 16b. The scene consists of large low texture regions
(the sky) in which static features cannot be found, and reflec-
tions. For this dataset the number of dynamic feature sets was

(d)

up of the man region; (c, d) overlay images: the first and last ordered
images (see Fig. 14(a, h)), are aligned to the reference image, and shown
semi-transparently over it

only 32, while only 15 of them completely agreed with the
correct order.

In all five datasets the number of dynamic feature sets
were between 32 and 200, while only about 40 % of them
fully agreed with the correct order. However, the pairwise
voting was sufficient in three of the datasets to obtain a graph
without cycles. Our method successfully obtained the correct
order despite the difference in viewpoint, colors, resolution
and aspect ratio between the images, as long as we managed
to find correspondence (Fig. 16).

4.3 Analysis for Two Reference Images

So far we have tested our method using a single reference
image (a single static image pair), but it can also integrate
information from multiple reference images. This allows us
to consider a wider range of camera configurations since not
all the input images are required to be matched to one single
reference image.

(e) Galaxy SI

(f) iPhone 4

(g) Galaxy SI (h) Galaxy SI

Fig. 14 Skateboard: Eight of the input images ordered by our method (left-to-right, top-to-bottom). The dynamic features are marked in red. The

yellow and cyan frames are the first and last ordered images, respectively
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(a) 274 Image

(b) 5" Image

(c) 6" image (d) 7*" image

Fig. 15 Basketball: Four of the eight input images, ordered by our method (left-to-right); the detected dynamic features are marked in red points

over the images

In this experiment, we generated synthetic data to demon-
strate the use of two reference images, i.e., two image pairs,
each taken roughly from the same location. In particular, we
simulated a 3D scene, captured by a set of 58 cameras. The
cameras were randomly placed on a half-circle, facing the
center (see Fig. 17a). Two of the cameras were chosen as
the reference cameras; each provided two images from the
same location (in total 60 images from all cameras). The 3D
scene was generated by randomly choosing 100 lines inside
a bounding box located in the center of the circle, where
each line was projected to a random subset of the images.
Gaussian noise with zero mean and ¢ = 1 (measured in
pixel) was added to the 2D features.

In order to simulate a realistic scenario, we divided the
cameras into two groups, each associated with one refer-
ence camera. We computed the partial orders (votes) for each
group individually, and then fed the Rank Aggregation by
the votes from both groups. Obviously, if there is no over-
lap between the groups, it is impossible to derive the full
order of all the 60 images. The bigger the overlap is, the
better the chance to obtain the correct order. Therefore, we
tested our method considering 5 different levels of overlap
between the groups. Due to the random nature of the simula-
tion, we repeated each test 10 times, and computed the mean
error and its standard deviation (see Fig. 17b). As expected,

the mean error drops with the amount of overlap between the
groups (from 4.89% error with 10.17% overlap to 1.08% with
63.17% overlap). Nevertheless, the maximal error is below
5% incorrect pairwise orders out of a total of 1770 image
pairs. Table 1 shows the mean error and the average group
size when considering only one of the reference images, and
when integrating the information from both references. Note
that mean error when considering a single reference image
is computed over the subset of images associated with the
group, which is smaller than the total number of images;
hence, the error for a single reference may be lower than the
error for the two reference case.

5 Limitations and Conclusions

Photo-sequencing orders a set of images in the correct tem-
poral order. This is useful in real world scenarios when a
group of people captures still photos of some dynamic event
at approximately the same time.

We proposed a geometry-based method which aggregates
partial orders of the images computed from a set of dynamic
features. We make several assumptions to model the prob-
lem. These assumptions let us reduce temporal order to the
order of line intersections in the image plane. In practice, our

(a) 1°¢ Image

(b) 4t* Tmage

(c) 6" image

(d) 7" image (e) 8t image

Fig. 16 Beach: Five of the eight input images, ordered by our method (left-to-right); the detected dynamic features are marked in green points

over the images
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Fig. 17 Synthetic Experiment: (a) 3D visualization of the cameras
setup; the two reference images are colored in yellow. The group of
cameras associated with the left and right reference are colored in green
and red, respectively; the cameras associated with both reference images
are colored in blue. (b) The computed mean error and its variance when
increasing the amount of overlap between Group I and Group II

algorithm is quite insensitive to some of these assumptions,
as the only thing matters is the order of the intersections and
not their actual location. In particular, we found that our algo-
rithm can handle cases in which the reference camera moves
to some extent and the motion of dynamic features deviates
considerably from a linear trajectory (as demonstrated in our
experiments). This can be seen in Fig. 6, where the actual
path of the green boat was very far from the approximated
linear line, yet the order of the intersection points did not
change.

Regarding limitations, our method cannot rely on features
with repeated motions (back and forth) to derive the tempo-
ral order. Such features vote for incorrect ordering and are
treated as noise. Moreover, our method requires that each of

@ Springer

Table 1 Synthetic Experiment: For each amount of overlap between
Group I and II, the table shows: the average number of cameras (group
size) and the mean error over 10 tests; these values are computed when
using only the group associated with reference (I), reference (II), and
both refrences (I)+(II).

Avg # cameras Mean err. (%)

Overlap (%) I I I+11 I I I+II
10.17 (%) 32 34.1 60 2.03 1.92 4.89
19.33 (%) 355 36.1 60 1.38 1.96 3.67
32.83 (%) 41.9 38.4 60 2.19 1.45 2.35
63.17 (%) 48.7 50.1 60 1.29 1.58 1.08

the input images be reliably matched to the reference image.
That is, if one of the input images does not sufficiently over-
lap with the reference image, its temporal information cannot
be recovered. Although we do not require that all features be
found in all images, this assumption limits the range of spatial
and temporal camera configurations that can be considered.

In the future, we intend to relax the assumptions made
by our method, and make it more scalable in both time and
space. In addition, our method can be extended to longer time
periods by first coarsely ordering the images using their EXIF
timestamp, and then performing a finer ordering using our
method in a sliding window fashion. We believe that photo-
sequencing in a general setup will allow the development of
novel computer vision and graphics applications for dynamic
scenes captured by a CrowdCam.
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