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Computer vision is traditionally focused on analyzing images and videos, for example recognizing,
segmenting or tracking objects, estimating motion or recovering the 3D geometry of a scene. My
focus is to go beyond that by not only obtaining an understanding about our world from digital
information but also enhancing the way we perceive it. My goal is to “Re-render Reality” such that
certain properties that are not available or are difficult to perceive from the input data are better
conveyed in the new, re-rendered output. For example, by removing an occluder from an image,
we can better perceive the object behind it. Similarly, by separating and muting interference sound
in a video, we can focus our audio-visual attention on a desired sound source. My work combines
ideas from signal processing, optimization, machine learning and computer graphics for developing
new analysis and re-rendering techniques. It is aimed at both scientific discovery and technological
innovation for enhancing our visual and auditory perception.

In this statement, I review my past, current and future research work, starting from my Ph.D.,
through my post-doctoral studies and my current tenure in Google, up to my future research goals.
While my Ph.D. research has been focused on multi-view geometry, it planted the seeds to my recent
and current work in the scope of Re-rendering Reality.

1 My Ph.D. Research – Multiple Views to the Rescue

Below is a very brief overview of my Ph.D. thesis, which includes 4 papers that have been published
in top-tier conferences in the field of computer vision, two of which have been presented as oral
presentations (with less than 3% acceptance rate). In addition, I have extended and published 3 of
these papers in top computer vision journals [14, 12, 13].

My Ph.D. research has been focused on developing geometric-based methodologies that extract
and analyze image data captured from multiple cameras. The information gained from multiple
views allows us to expand our knowledge beyond a single 2D projection of the scene, hence is
important to modeling and recovering the 3D properties of the scene.

During my Ph.D., I have worked with multi-camera systems under different configurations, rang-
ing from fully controlled and dedicated camera arrays, to uncontrolled distributed set of cellphone
cameras, which we named CrowdCam. I have addressed a variety of tasks, including fundamental
computer vision problems such as scene flow estimation, i.e., accurately recovering the structure
and 3D motion of a dynamic scene [5, 14, 4]; as well as innovative tasks such as photo sequencing,
i.e., estimating the temporal order of an image collection taken by a CrowdCam [10, 13, 11]. Using
the estimated temporal order, we then re-rendered the distributed set of images as a temporally
coherent sequence, which allows us to better perceive the action that occurred in the scene.

I demonstrated that information from multiple views can be useful not only for recovering spa-
tiotemporal properties of the scene, but also for modifying them in a 3D-aware manner. For instance,
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An Attack on Visible Watermarks Securing Visible Watermarks

Attack applied on regular watermark

Attack applied on randomly warped watermark

Figure 1: Left: From observing only watermarked images on the Web, the attack algorithm extracts
the common watermark pattern and recovers the original images with high accuracy. Right: subtle,
random geometric perturbation of the watermark at each image makes the watermark removal
significantly more challenging and the attack results in noticeable artifacts.

in [12, 9], I defined and addressed the problem of stereo retargeting – changing the aspect ratio of a
stereo image pair in order to fit it to a new display. We performed careful 3D analysis and developed
a method that guarantees, as we formally proved, that the re-rendered stereo pair is geometrically
consistent with a feasible 3D scene, similar to the original one. Hence, the new stereo pair can be
viewed on a stereoscopic display or further processed by any computer vision algorithm that uses a
stereo pair. This is an example where geometry is key for re-rendering.

My perspective geometry understanding and multi-camera systems experience became the pillars
of my recent, current and future research.

2 Recent and Current Research

I next discuss some major research directions that I have been pursing in the past few years, during
my post-doc in MIT and my current tenure at Google. These works include 10 papers that have been
published at top-tier conferences in computer vision and graphics (CVPR, SIGGRPAH, SIGGRPAH-
Asia, ICCP, UIST), most of which have also been extensively covered by the media.

All these research projects are within the scope of “Re-rendering Reality”, each with its own
application, novel methodology for analyzing the scene and re-rendering it. On the technical side,
my work can be generally divided into: (i) model-driven algorithms which typically involve rigorously
formulating an objective function and solving for the target unknowns using advanced optimization
techniques, and (ii) data-driven algorithms which utilize recent developments in deep learning and
neural networks. Such algorithms aim at optimizing a single complex, nonlinear function with
millions of parameters (i.e., a deep neural network) by training on large amounts of data.

I will next briefly describe few of these projects.

Securing Visible Watermarks

Detecting and removing obstructors from images (e.g., rain drops, reflections or fine occluding ob-
jects) allows us to better perceive the underlying scene. In this work, I considered a different type
of obstructors – visible watermarks. Such watermarks are widely-used for marking and protecting
copyrights of many millions of stock images that are offered online daily. The watermarking scheme
involves overlaying a semi-transparent image containing a logo or branding on a source image. The
watermark image typically contains complex structures (e.g., thin lines and shadows) and added to
the source image with low, spatially varying opacity. These properties make it extremely challenging
to remove a watermark from a an image without user supervision or a-priori information. However,
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Figure 2: The input to our audio-visual model is a video of two or more people speaking simulta-
neously. Our model first extracts visual features from the video frames and audio features from the
mixed (single) audio track; these features are then fused and processed jointly to estimate the clean
audio track for each of the speakers. The video is then re-rendered with the speech of a desired
speaker while muting all other sounds.

in this work [16, 1], we revealed an inherent security flaw in this watermarking scheme–watermarks
are typically added in a consistent manner to many images. This consistency allows to get past this
protection and remove watermarks completely automatically (Figure. 2 left).

To reveal this vulnerability, I took a principled approach, i.e., derived the watermarking for-
mation model and designed a new multi-image matting algorithm that takes a watermarked image
collection as the only input and automatically decompose the observed signals into the ”foreground”
(watermark), its alpha matte (opacity), and the ”background” (original) images. I showed that the
coherency of the watermark pattern over many images is a key in resolving this ill-posed decompo-
sition problem and achieving high-quality reconstruction of the watermark-free images.

Since such an attack relies on the consistency of watermarks across image collection, I explored
and evaluated how it is affected by various types of inconsistencies in the watermark embedding. We
concluded that per-image random geometric perturbations are an effective way to make watermarks
more secure (Figure 2 right). Our work had a noticeable practical impact on the stock industry
which became aware of the loophole we discovered. Some of the market leaders such as Shutterstock
already deployed our proposed protection on more than 150 million stock images.1

Looking to Listen – Audio-Visual Model for Speech Separation

In our watermark work, an image signal is decomposed into its components and only one of them is
re-rendered. Here, we do the same only for an audio signal. We decompose a single audio track with
mixed speech into its clean speech tracks; we then re-render a video in which the speech of specific
people is enhanced while all other sounds are suppressed. This new effect allows us to better perceive
a desired speaker in challenging scenarios where people are talking over each other, or talking in a
noisy environment. This capability, also known as the cocktail party effect [6], comes natural to us
humans. However, achieving it computationally remains a difficult challenge.

The key insight in our work was to utilize visual signals to help process the audio signal. The
additional visual information has two major advantages over an audio only method: (i) improved
separation quality, especially in the case of mixed speech. (ii) speaker-association: the video, by
design, provides in “one shot” an association between the separated speech tracks and their speakers’
faces in the video. If only audio is used, the separated audio tracks still have to be matched with
their corresponding speaker in the video.

1https://image.shutterstock.com/z/stock-photo--years-old-boy-walking-on-beach-wooden-pier-ready-

to-swim-in-a-sea-summer-outdoor-activities-with-382879477.jpg
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Figure 3: Given a single image as in-
put, our algorithm detects and mod-
ify slight differences in the poses,
heights, and spacing between a line
of dancers performing the same high
leg-kick routine (a). In our exagger-
ated output (b), these various dif-
ferences clearly stand out. Our cor-
rected output (c) provides an ideal-
ized version of the image, in which
the non-local variations are reduced.

We used the power of machine learning and data-driven approach to perform this complex separa-
tion task and introduced the first audio-visual speaker independent separation model2. Specifically,
we designed and trained a deep audio-visual model that takes a video with a single audio track
as input, and outputs the clean speech tracks for each face detected in the video (Figure 2). Our
model is trained only once in a supervised manner, i.e., by directly regressing to the ground truth
clean speech. This approach requires a large dataset of face videos with mixed speech along with the
ground truth clean speech, which did not exist prior to our work. Thus, we built an automatic frame-
work to generate such training data from videos on the Web. The idea is to first collect high-quality,
short clips of visible speakers and clean speech and then generate “synthetic cocktail parties” by mix-
ing several such clean speech tracks and adding background noise. Using our automatic framework,
based on face and audio processing, we extracted over 1500 hours of clean speech from over 100,000
high-quality educational videos mined from YouTube (e.g., TED Talks). This collection forms the
first large-scale audio-visual speech dataset, which we recently released for public academic use.

Our model works well in a variety of real-world scenarios that involves heated interviews, noisy
bars, and screaming children, only requiring the user to select the face of the person in the video
whose speech they want to isolate. I envision a wide range of applications for our technology, from
speech enhancement and recognition in videos, through video conferencing, to improved hearing aids,
especially in situations where there are multiple people speaking. Some of these future directions,
which I will discuss in more details in Section 3, have also been featured in Google I/O event by
Sundar Picahi, Google’s CEO (see [2]).

Geometry based Re-rendered Reality

In the previous two sections I showed how decomposing an audio/image signal into its components
can be used to better perceive certain properties of the data. In a different line of work, I have been
developing techniques that rely on geometric analysis rather than signal decomposition for revealing
physical imperfections that are hard to notice in the input image [8, 22], or for visualizing human
motion in video [23].

It is useful to detect and visualize physical imperfections in photos. For example, buildings may
seem to be perfectly straight, but in reality may be tilted due to structural damage. Detecting such
imperfection ahead of time in everyday photos can be useful for preventing further damage. My goal
in this new line of work is to detect such geometric imperfections, given only a single image as input,

2Previous deep audio-video speech separation models are speaker dependent, i.e., they train a dedicated model for
each speaker they want to isolate. Our model is trained once and can be applied to any speaker.
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Figure 4: Humans can
easily infer the right depth
ordering between the sofa
and the person, without
having precise measurable
depth of the scene. Can
we make a machine do the
same?

and re-render a new image in which the imperfections are exaggerated to highlight them and make
them more visible. On the other direction, the imperfections can also be reduced to idealize/beautify
images, which can be used as a graphics tool for creating more visually pleasing images (Figure 3).

Deviations are measured from some “perfect model” which I defined as: (i) ideal parametric
geometries such as line segments, circles, ellipse, or (ii) perfect repetitions of image structures. Each
of these models has lead to a new algorithm, with a wide range of applications in civil engineering,
astronomy, and materials defects inspection. I recently extended the single image algorithm to
multiple views [21], hence allowing to detect and highlight variations between repeating structures
and patterns in multiple images of the same scene.

While the techniques above are focused on studying static photos, there are space-time signals
that are important and interesting to study and visualize, such as human motion. We developed a
system called MoSculp, for visualizing complex human motion. Our system transform a video into
a 3D motion sculpture–a representation that conveys the 3D structure swept by a human body as it
moves through space [23]. To provide an end-to-end, easy to use workflow, I developed an algorithm
that estimates the humans 3D geometry over time and developed a 3D-aware image-based rendering
approach to preserve the depth ordering between the sculpture and the human as observed in the
video. Motion sculptures reveal space-time information that is difficult to perceive from the input
video such as how different parts of the object interact over time.

3 Future Work

I plan to continue working towards enhancing the way we perceive our digital world. I strive to
make our reformed reality richer, more scene-aware (better harmonized with image content) and
more accessible (expanding the range of applications in which re-rendered content is currently being
used). As users, we want to see and hear better through modified digital content. We want computer
vision to assist us by easily and intuitively displaying information about our world. We want to be
creative and express ourselves by designing and editing our digital content. I believe significant
progress can be made in those fronts by following two main methodologies: (i) combining domain
specific knowledge with recent developments in machine learning, and (ii) developing algorithms
that leverage information from multiple modalities.

3.1 Integrating Computer Vision Fundamentals into Machine Learning

Deep learning is revolutionizing computer vision and computer graphics. Deep-network-based models
excel at the majority of classic vision tasks and make it possible to tackle new problems, some of
which may have been considered unresolvable before. Nevertheless, the common deep models lack
two essential properties: interpretability and predictability of their outputs. Consequently, they often
cannot be used in domain expert applications, such as medical diagnosis.
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I believe that fusing unlearned, fundamental knowledge into neural networks is the key for the
evolution of deep models in the field of computer vision and computer graphics. This general
approach came into force in my recent works (e.g., [7]), and I strive to expand and advance it.
Below are two major areas of research that can greatly benefit from “classic/modern computer
vision” integration.

1. Deep Perspective Geometry: Recovering 3D elements of a scene from 2D images is one
of the most fundamental problems in computer vision. Nevertheless, it is far from being
solved. State-of-the-art multi-view stereo algorithms still rely on a set of assumptions such
as brightness constancy (assume textured and Lambertian world), and are applicable only if
the scene is static. I believe that replacing such traditional assumptions with data driven
priors, using deep learning, is an exciting and promising direction of research. It opens the
door to new problems that were intractable before (e.g., recovering depth of moving objects
from monocular video). However, “deep geometry” calls for new representations, datasets and
learning methodologies that will allow to intelligently integrate the fundamentals of perspective
geometry and their constraints into deep networks.

Augmented Reality (AR) is a rapidly growing area of research in the scope of re-rendering
reality that can be developed significantly by combining fundamental geometry with machine
learning. AR enhances our environment by embedding virtual elements into our real world.
Thus, in many applications, an artifact-free and geometrically-aware compositions is critical
for a rich user experience (e.g., Figure 4). Achieving this highly depends on our ability to
accurately recover the depth of the scene in real world scenarios. In a current research, I am
looking into new ways of predicting depth in a common AR scenario, where both (a single)
camera and the humans in the scene are moving. The main idea is to leverage a large corpus
of data, in which the world is static in order to learn geometric priors about the scene. These
priors allow us to predict depth in cases where traditional methods are inapplicable. I believe
that combining geometric knowledge with a machine learning is essential towards making AR
content richer and more immersive.

2. Bridging the Gap between Low-and High Level Vision: Domain-specific knowledge
forms the ground for developing elegant and simple algorithmic principles. For example, based
on statistical properties of natural images, I defined the Best-Buddies Similarity–a new simple
similarity measure between two sets of points [15, 19]. Based on a rigorous mathematical
analysis, I demonstrated its power for template matching under occlusions and high level of
noise. Adopting this similarity measure to work in a feature space learned by a neural network
has recently showed promising results for matching points across different domains for image
morphing [3]. This is an example of how fusing high level and low level information can be
beneficial. More generally, we would like to benefit from both worlds: low level structured
processing and high level information gained from learning.

Generative models can also benefit from fusing low-level and high-level cues. While these mod-
els made a tremendous progress in image synthesis and are able to go beyond just synthesizing
repetitive textures, they still struggle to capture global structural patterns. They are often re-
stricted to a certain class of images and a specific image resolution. Furthermore, most of these
methods heavily rely on the training loss (e.g., adversarial loss), which often leads to unstable
training. I believe that fusing lower level unlearned information about the characteristics of
natural images such as distribution of patches within the image and geometric constraints can
eliminate many of these limitations.
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Input Speech Waveform Reconstruction from audio Ground truth face

Figure 5: Learning multi-modal correlation via generation–preliminary result: by synthesizing a face
image from a speech segment we can reason about the joint speech-face manifold and the hidden
correlated latent attributes. We can see that age, gender and ethnicity are well reconstructed, but
are there any finer attributes that are being captured (e.g., facial anatomy)?

3.2 Cross-Modal Processing

Another domain which I believe is essential for expanding and enriching re-rendered content is the
utilization of multi-modal data. In our audio-visual source separation work [17], we only scratched
the surface of joint audio-visual processing in the new era of deep-learning. While there has been a
recent surge in developing audio-video algorithms, there are still many fundamental open research
questions about the joint manifold of audio and video, their representation, as well as unexplored
novel applications. Below are three example research threads I intend to pursue in the future.

1. Re-rendering and Synthesizing Sound and Video: Audio and image signals, despite
correlated, have quite different characteristics. For instance, while audio signals provide high
temporal resolution (e.g., even a cellphone’s audio can be sampled at 48kHz) and low spatial
resolution (e.g., provide directional information), image data is typically the opposite–the spa-
tial resolution can be extremely high yet the temporal sampling rate is much lower. We can
leverage the converse properties of audio and video for synthesise and re-rendering. On the
visual-to-rerender-audio side, image data possess rich information about the scene’s motion,
structure, materials, object’s type and location. Such information that is not contained in
the audio signal, has great potential in modeling complex auditory tasks such as cancelling
reverberations/echos, or extreme source separation (i.e., isolating sound in a very noisy envi-
ronment). A novel task that I plan to study is spatial audio from monocular video–synthesizing
stereo or multi-channel audio from a single microphone input and video of the scene.

2. Variable Speed Rate Videos: The digital content that an average person consumes on a
daily basis is astonishingly growing. For example, over 5 billion hours of videos are watched
on Youtube every single day. How can we watch digital content more efficiently? In YouTube,
a user can watch a video at ×1.25, ×1.5, or ×2 speed. In that case, the audio is sped up using
advanced techniques that preserve the pitch, however the video content is simply sub-sampled.
This leads to temporal aliasing and unnatural motions, especially in case of high frequency
motion (e.g., a person speaking to a camera). I plan to develop advanced techniques that
leverage both video and audio for “gracefully” speeding up videos such as TED Talks, Video
Games, Unboxing videos. The sped up video ought to be: (i) pleasant/easy to watch. (ii)
Maintain as much as possible the content of the original video. (iii) be synchronized with the
audio. If such a method will be applied on YouTube scale it could save the world millions of
hours every day, and potentially can be used to save energy and resources by compressing the
videos during upload time.

3. Learning Correlation via Cross-Modal Generation: By examining audio and video
together, we can infer important correlations between them – what object generates what
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sound, what can we tell about an object from the way it sounds, etc. I suggest to learn
correlation via cross-modal generation, i.e., by synthesizing one signal from the other. For
example, by synthesizing an image of a person’s face from its voice, we can learn about the
specific latent properties that are encapsulated in both voice and the face of a person. Detecting
and evaluating these cross-modal attributes can be useful in a variety of applications such as
biometric identification, surveillance, and medical/psychological applications. In biology and
human perception, studies demonstrate that humans can match a voice to a face with higher
accuracy than a chance, and reveal the connection between facial and voice attributes to
masculinity/femininity, health, and height [20]. This was also supported by a recent work in
the field of computer vision that addressed the problem of machine cross-modal matching [18].
However, addressing the full signal synthesize task, although more challenging, may shed new
light on the joint manifold of vision and sound.
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