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ABSTRACT
Image-guided therapy procedures require the patient to re-
main still throughout the image acquisition, data analysis and
therapy. This imposes a tight time constraint on the over-
all process. Automatic extraction of the pathological regions
prior to the therapy can be faster than the customary man-
ual segmentation performed by the physician. However, the
image data alone is usually not sufficient for reliable and un-
ambiguous computerized segmentation. Thus, the oversight
of an experienced physician remains mandatory.

We present a novel segmentation framework, that allows
user feedback. A few mouse-clicks of the user, discrete in na-
ture, are represented as a continuous energy term that is incor-
porated into a level-set functional. We demonstrate the pro-
posed method on MR scans of uterine fibroids acquired prior
to focused ultrasound ablation treatment. The experiments
show that with a minimal user input, automatic segmentation
results become practically identical to manual expert segmen-
tation.

Index Terms— MR scans segmentation, Level-set frame-
work, User interaction, Image guided therapy

1. INTRODUCTION

Image-guided therapy (IGT) utilizes images acquired before
therapy for localization of the pathological regions to be
treated. The position of the imaged region of interest (ROI)
must not change throughout the IGT procedure. This requires
to minimize the time lapse between image acquisition and
therapy. Automatic, rather than manual, delineation of the
ROI boundaries can speed up the analysis process. However,
phenomena such as noise, blur and sampling artifacts caused
by limitations of the acquisition modalities, make automatic
segmentation challenging and not sufficiently reliable [1].
Moreover, the use of shape or intensity priors is limited due
to the intricacy and variability of anatomical structures. The
knowhow of an experienced physician is mandatory for fine
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tuning and final approval of the boundaries of the ROI to be
treated.

Segmentation methods which allow user interaction are
the key for fast and reliable extraction of the ROI. Current
methods differ by the amount and the type of information
provided by the user. Their underlying mathematical frame-
work is a significant factor determining the form of interac-
tion. In the United Snakes framework [2], based on the clas-
sical snake formulation [3], the user controls the snake evolu-
tion by ‘planting’ seed points. The GrabCut technique [4] is
based on the discrete graph-cut approach, where image pix-
els represent graph vertices. The partitioning of the image
into object and background regions is obtained by solving the
min-cut problem in graphs. The user controls the segmenta-
tion by labeling regions, which are correspondingly assigned
to either the source or the sink of the graph. The selected re-
gions provide color statistics that characterize the object and
the background and are utilized for segmentation. In [5] a user
draws contours which are rough, cartoon-like approximations
to the true boundary. The algorithm automatically learns a
set of statistics from these scribbles and uses this informa-
tion to segment the remainder of the image. The live wire
technique which is based on two independent works [6, 7]
uses the Dijkstra algorithm to find the shortest paths between
manually-segmented segments. Distance is typically defined
to be inversely related to image gradients so shortest paths
follow edges in the image. Despite their popularity live wire,
GabCut and similar methods that rely on the foreground color
statistics or low gradient pathes are not suitable for the seg-
mentation of medical images. Due to low contrast, noise and
blurry boundaries, often the ROI cannot be distinguished from
the background based on gray level statistics or edges alone,
even when calculated with the user’s guidance.

User interactive segmentation methods for medical image
analysis include [8, 9, 10]. In [8] a semi-automatic segmen-
tation of the left ventricle is demonstrated. The method uses
linear or quadratic interpolation to convert the user input into
closed structures. Hence, the feedback is not part of the level-
set formulation. In [9] a method for 3D cortical segmentation
that utilizes dual-front active contours and active regions is
presented. The user can modify the initialization of the active
region by adding or deleting labels. In [10] a probabilistic
level-set method which supports user interaction is proposed.



The user-labeled input points are viewed as independent mea-
surements of the scene.

We propose a coherent, active-contour segmentation
method which supports an intuitive and friendly user in-
teraction subject to the ‘bottom up’ constraints introduced by
the image features. The user does not ‘edit’ the segmentation
but influences its evolution with a few mouse clicks located
in regions of ‘disagreement’. This is made possible by using
the level-set framework [11] which allows parametrization-
free representation of the segmenting contour and automatic
topology changes. The method we suggest consists of two
phases. A fully automatic segmentation is first obtained by
minimizing, via gradient descent, a cost functional that is
based on the image data alone. The user can then provide
feedback relating the initial segmentation. The user input,
discrete in nature, is formulated as a continuous energy term
that is incorporated into the primary cost functional. The
additional term affects the gradient descent process attracting
it toward a new local minimum. This results in a modified
segmentation consistent with both the low-level image data
and the top-down user feedback points.

The proposed method is general and can be applied to
various medical image analysis tasks including image-guided
therapy. We demonstrate its performances on abdomen MR
scans with various forms of uterine fibroids. The segmen-
tation is a part of a clinical procedure used to guide sub-
sequent focused ultrasound ablation treatment. We chose a
2D slice by slice segmentation over complete 3D process-
ing since in the given imaging set-up the off-plane resolu-
tion is significantly lower than the in-plane resolution. As
is demonstrated by the examples in Section 41, only a few
mouse clicks are needed to obtain segmentation results that
are practically equivalent to expert manual segmentation. The
proposed automatic-user-guided segmentation is therefore a
highly reliable yet much faster alternative to the fully manual
segmentation procedures currently used.

The remainder of the paper is organized as follows: In
Section 2 we briefly review the state-of-the-art level set seg-
mentation framework. In Section 3 we introduce the user
feedback term. Results are shown in Section 4 followed by
a discussion in Section 5.

2. LEVEL SET SEGMENTATION

Let I : Ω → R+ denote a gray-level image, where Ω ⊂ R2

is the image domain. We use a level-set function φ to parti-
tion the image domain into two disjoint (not necessarily con-
nected) regions corresponding to the region of interest (ROI)
and the background. The ROI boundaries are represented
by the zero level of φ: C(t) = {x|φ(x, t) = 0}, where
x ≡ (x, y). Similar to [12] we use the regularized form of

1More segmentation examples, including a demonstration video, are
available online at http://www.eng.tau.ac.il/∼nk/ISBI09

the Heaviside function of φ : H̃(φ) = 1
2 (1+ 2

π arctan(φ
ε )) to

label the image regions. The scalar ε is hereby set to 1.
We construct a level-set segmentation functional that is

composed of the classical image intensities and gradients
terms, denoted by EMV and EGAC, respectively and the pro-
posed user feedback term EUSER :

E(φ) = αEMV + βEGAC + ξEUSER. (1)

The weights α, β and ξ are non-negative scalars. When ξ is
positive the user term influences the segmentation.

The evolution of the level set function φ at each iteration
is determined by a gradient descent process:

φ(t + ∆t) = φ(t) + φt∆t, (2)

where φt is obtained from the first variation of the cost func-
tional (1):

φt = αφMV
t + βφGAC

t + ξφUSER
t . (3)

We next describe the classical terms of the functional and their
associated gradient descent equations.

2.1. Region Based Term

Similar to [12] we use the minimal variance term:

EMV(c+, c−, φ) =
∫

Ω

(I − c+)2H̃(φ(x))dx (4)

+
∫

Ω

(I − c−)2(1− H̃(φ(x)))dx,

where c+ and c− are the average intensities in the foreground
and background image regions, respectively. The gradient de-
scent equation associated with EMV is:

φMV
t = δ̃(φ)[−(I − c+)2 + (I − c−)2]. (5)

2.2. Smoothness and Edge Based Term

We use the geodesic active contour (GAC) term as in [13, 14]:

EGAC =
∫

Ω

gGAC(x)|∇H̃(φ(x))|dx, (6)

where gGAC(x) is an inverse edge-indicator function

gGAC(x) = 1/(1 + ϕ|∇I|2) , ϕ ≥ 0. (7)

EGAC is minimized when the evolving contour is aligned with
the local maxima of image gradients. The gradient descent
equation associated with EGAC is:

φGAC
t = δ̃(φ) · div(gGAC(x) · ∇φ/|∇φ|), (8)

where div is the divergence operator. In this work, the scalar
ϕ in eq. (7) is set to 1. Note, however, that when ϕ is set to
zero, eq. (6) reduces to the classical smoothness term:

ELEN =
∫

Ω

|∇H̃(φ(x))|dx. (9)

We next introduce the user-feedback term, which is the
essence of the proposed contribution.



3. USER FEEDBACK

Let {xi}n
i=1 denote the set of user feedback points. We define

M : Ω → {0, 1}:

M(z) =
n∑

i=1

δ(z− xi) (10)

where δ(z) is the 2D Dirac delta function.
The function L : Ω → R represents the user feedback with

respect to the final level-set function φ̂ of the first phase:

L(x) = H̃(φ̂(x)) +
{

1− 2H̃(φ̂(x))
} ∫

z∈λ

M(z)dz, (11)

where λ is an infinitesimal neighborhood of the coordinate x.
Hence, for each x ∈ {xi}n

i=1, L(x) = 0 if the feedback point
is within the segmented region of the first phase. L(x) = 1
if the feedback point is located in the background. L(x) =
H̃(φ̂(x)) if x is not marked.

The indicator function L(x) is used in the formulation of
the energy term which incorporates the user feedback:

EUSER =
∫

x∈Ω

∫

x′∈Ω

(
L(x′)− H̃(φ(x))

)2

K(x,x′)dx′dx

(12)
where K is a Gaussian kernel:

K(x,x′) =
1

2π|Σ| 12 exp
{
− (x− x′)T Σ−1(x− x′)

2

}

(13)
and Σ is the 2× 2 covariance matrix.

The algorithm supports two modes of user feedback. The
user may either draw a cross such that its eccentricity and
orientation determines the entries of the covariance matrix Σ
or can provide a point-wise mouse click, which is represented
by a diagonal Σ with identical entries. The gradient descent
equation associated with EUSER has the form:

φUSER
t (x) = 2δ̃(φ)

∫

x′∈Ω

(
L(x′)− H̃(φ(x))

)
K(x,x′)dx′.

(14)

4. EXPERIMENTAL RESULTS

We demonstrate the proposed method by segmenting uterine
fibroids in MR scans acquired by a 1.5T whole-body sys-
tem (Genesis Signa; GE Medical Systems, Milwaukee, Wis.).
Segmentation results are compared to the boundaries of the fi-
broids that were manually delineated by an experienced radi-
ologist. Qualitative evaluation is via visual inspection. Quan-
titative evaluation is based on standard measures [15], the
True Positive Fraction (TPF) and the False Positive Fraction
(FPF). We set the parameters of the functional (1) for all scans
as follows: α = 1, β = 1.5 and ξ is set to 1 in the second
phase to allow user interaction. For the point-wise user mode

the covariance matrix Σ corresponds to an isotropic Gaussian
with a standard deviation of 3. Fig. 1 shows segmentations
of uterine fibroids in abdomen MR scans of different patients
prior to the user interaction and afterwards. User feedback
points are placed both inside and outside the preliminary seg-
mented regions. The last row of Fig. 1 exemplifies the user
‘cross mode’. The boundaries drawn by the expert are shown
in red. Quantitative comparisons of the segmentations shown
in Fig. 1 with the respective manual expert segmentations are
presented in Table 1. More examples, including a demonstra-
tion video, are available online at [16].

Table 1. True Positive Fraction (TPF) and False Positive Frac-
tion (FPF) of the segmentation obtained before (Phase 1) and after
(Phase 2) user feedback. Additional comparisons are available on-
line [16].

Patient, Slice TPF FPF
Phase 1 Phase 2 Phase 1 Phase 2

A, 3 0.9976 0.9985 0.0056 0.0005
B, 6 0.9641 1.0000 0.0044 0.0024
C, 5 0.9749 0.9983 0.0000 0.0007

D, 5] 0.9810 0.9926 0.0204 0.0150
]Cross-sign feedback

5. SUMMARY AND FUTURE DIRECTIONS

Image-guided therapy (IGT) procedures require fast and
highly reliable segmentation of the pathological regions prior
to the treatments. We presented an expert-supervised seg-
mentation method that achieves this goal. The physician can
provide feedback regarding the results of a first phase fully-
automatic segmentation. The feedback, in the form of a few
mouse clicks, is integrated in subsequent phases of the seg-
mentation process. The extension of the current framework
to 3D is straightforward. The feedback points can be placed
on sagittal, coronal and transverse sections of the initial 3D
segmentation. The 3D segmentation processes can be carried
out using the same methodology, with 3D rather then 2D
coordinate system. This is a subject of a future research.

The experiments are in the context of MRI-guided focused-
ultrasound ablation of uterine fibroids. With minimal expert
interaction, the segmentation accuracy levels (99.9% true
positive fraction and 0.06% false positive fraction), are prac-
tically identical to fully-manual expert segmentation. Thus,
by providing an intuitive and efficient interaction mechanism,
the proposed method allows current image therapy systems
to exploit state of the art image segmentation procedures.
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Fig. 1. Segmentations of uterine fibroids in abdomen MR scans of different patients . The last row demonstrates the ’cross mode’. Manual
segmentation is shown in red. Quantitative comparison with manual segmentations for the respective images is presented in Table 1.
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