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Abstract. Fetal Magnetic Resonance Imaging (MRI) in early phases of
the cerebral development during gestation offers insights into the emer-
gence of brain structures, their characteristics and variability across the
population. To collect substantial bodies of observations automatic anal-
ysis of these data is necessary. However, automatic segmentation proofs
challenging due to image quality, low contrast between brain tissues,
and the rapid development at this early age. Current atlas-based seg-
mentation approaches perform well in the adult population, but they
are unable to cover the rapid changes during early development phases.
In this paper, we introduce a spatio-temporal group-wise segmentation
of fetal brain structures given a single annotated example. The method is
based on an emerging spatio-temporal latent atlas that captures the age-
dependent characteristics in the training population, and supports the
segmentation of brain structures. The proposed atlas makes segmenta-
tion of subcortical structures possible by integrating information across
a large number of subjects. It encodes the average development and its
variability, which is ultimately relevant for diagnosis. Furthermore, we
introduce a method to re-estimate each subject’s age to accommodate
variability in developmental speed. Results on 33 cases from 20th to
30th gestational week demonstrate improved segmentation results, and
an estimate of average development.
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1 Introduction

Novel imaging methods, such as ultra-fast Magnetic Resonance Imaging (MRI),
allow for high-resolution image acquisition in utero [7, 12]. Fig. 1 shows fetal
brains at the age of 20, 25 and 30 gestational weeks (GW). Despite the wealth of
information these data provide, currently, the assessment is typically performed
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Fig. 1. Example slices of fetal brain volumes showing the development at GW 20, 25
and 30.

qualitatively. Clinicians and researchers lack a quantitative reference that cap-
tures the developmental characteristics, and variability in the population. A key
to this understanding is to learn spatio-temporal models, and corresponding
segmentations of the brain structures in this period from in vivo data.

Atlases exist for the adult [4–6] or neonatal brain [1, 9, 11]. However, no com-
prehensive quantitative atlas of fetal development is available. A major challenge
is the rapid and substantial change the brain undergoes during this period. It
makes the temporal component a crucial part of any modeling approach, and
limits the applicability of standard methods such as group-wise registration [4,
6]. At the same time, a large number of cases is necessary to learn a represen-
tative model of the developmental variability. A promising related result was
reported in [8]. However, this method requires a manual annotation for all data.

In this work, we propose a method for the building of a spatio-temporal la-
tent atlas from a single annotated example and a large number of non-annotated
examples. The atlas captures the development and variability of a cerebral struc-
ture in healthy fetal brains during the gestational age of 20-30 weeks. It can serve
as a reference map to represent the sequence of individual developmental stages,
or to compare individual cases to control population statistics. The present work
is closely related to the latent atlas proposed in [13]. It advances the approach
presented in [13] by two essential aspects: 1. it tackles the question of fetal
brain development by incorporating a time component, and is thereby able to
cope with the substantial changes of fetal brain structures parameterized by
the gestational age. 2. It provides an important clinical benefit by enabling an
estimation of a subject’s gestational age based on correlation with the cohort.
This takes into account that not all fetuses grow exactly as expected by com-
mon literature [7]. In case the development is behind or ahead of its expected
time, it is possible to confuse these minor age changes with severe diseases (i.e.
lissencephaly, a form of malformation of cortical diseases). The age re-estimation
presented above respects the possibility of a small age shift and corrects for it.

2 Learning a spatio-temporal latent atlas from partially
annotated data

This section introduces the spatio-temporal atlas and its construction having
individual training images. The atlas as well as the segmentations of the MR
images are obtained via an iterative optimization process given a unified cost
functional that incorporates both spatial and temporal components. The pro-



posed method also allows a fine tuning of the subjects gestational age as an
inherent part of the entire optimization procedure.

Our objective is to segment a specific subcortical structure from N fetal
MR images. Each of the images In : Ω → R+ (n = 1, ..., N) has v voxels
defined on Ω ⊂ R3. We denote by Γn : Ω → {0, 1} the segmentation of image
In. Furthermore, each image is assigned to a nominal age µ(n) ∈ {τ1 . . . τK}
measured in weeks. We make the assumption that Γn induces the image In
with probability p(In|Γn; θI,n), independently from all other pairs of images and
segmentations. We model the intensity distribution with a Gaussian mixture
model (GMM). We denote by θI,n the GMM parameters corresponding to the
intensity distribution of an image In. We also assume that the segmentations are
drawn I.I.D. from a probability distribution p(Γ ; θµΓ ), with θµΓ : Ω → [0, 1] being
the latent spatio-temporal model parameters. As we will show in the following,
this definition of latent parameters extends [13] due to the temporal dependency.

2.1 Cost functional

We use a probabilistic level-set formulation to segment an ensemble of aligned
images and to construct a probabilistic spatio-temporal atlas. Let φn : Ω → R
denote a level-set function that defines the binary segmentation Γn of an image
In, such that its zero-level ∂φn represents the boundary of the structure of
interest. As in [2] we use a smooth approximation of the Heaviside function
H̃(φn) to partition the image domain Ω into foreground and background regions.
The formulations we use for H̃(φ) and its derivative with respect to φ, i.e. δ̃(φ)
are the same as in [13]. We next construct a unified cost functional of {φn}. The
joint estimation of the unknown model parameters Θ = {θΓ , θI,1, ..., θI,N} and
the segmentations Γn (or φn) is obtained by an alternating minimization process
of the cost functional using calculus of variations. The proposed cost functional
C(φ1, . . . , φn, Θ) is the weighted sum of several energy terms:

C(φ1, . . . , φn, Θ) = γCL + βCI + αCS + ηCA (1)

where CL is the classic smoothness term, CI is an image likelihood term, CS is
a spatial term, CA is an area term and α, β, γ, η are the corresponding weight
parameters. The mathematical formulation of these terms is given as follows:

Spatio-temporal term: This term is the main innovative component of the
proposed framework. It links the segmentations of the training images and the
spatio-temporal atlas, and is a function of the latent model parameters θµΓ , i.e.
the spatial parameters corresponding to gestational age µ (details in Sec. 2.3):

CS(φn, Θ) = −
∫
Ω

[H̃(φn(x)) log θµΓ (x) + H̃(−φn(x)) log(1− θµΓ (x))]dx (2)

Image likelihood term: Let pin and pout define the intensity distribution
of the foreground and the background regions, correspondingly. Since we deal
with MR images that contain multiple tissue classes we chose a mixture of Gaus-
sians to represent the background intensity distribution. In our experiments two
Gaussians proved sufficient. We assume normal distribution of the structure of
interest’s intensities. We use an image likelihood term as derived in [13]:



CI(φn, Θ) = −
∫
Ω

[H̃(φn(x)) log(pin(In; θI,n))+H̃(−φn(x)) log(pout(In; θI,n))]dx.

(3)
Length term: CL denotes the contour length regularizer. It is commonly

used in the level-set literature (like [2]), controls the length of the segmentation,
and restrains boundary smoothness.

CL(φn) =
∫
Ω

|∇H̃(φn(x))|dx (4)

Area term. The area term (with similar behavior as a balloon force [3])
is denoted by CA, and describes the area of the shape or structure of interest.

CA(φn) =
∫
Ω

H̃(φn(x))dx (5)

2.2 Optimization of the cost functional

The cost function (Eq. 1) is optimized by applying two steps in an alternating
manner: for fixed model parameters Θ, the level set function φn is evolved by
the following gradient descent equation:

φn(x, t+∆t) = φn(x, t) +∆t
∂φn
∂t

(6)

where t represents the time parameter, and ∆t controls the update step width.
δφn
δt is computed using the Euler-Lagrange equations, leading to:

∂φn
∂t

= δ(φn){γ div (
∇φn
|∇φn|

) + β[log pin(In(x); θI,n)− (7)

− log pout(In(x); θI,n)] + α[log θΓ − log(1− θΓ )] + η} (8)

Then, we fix the segmentations φn and update the model parameters (intensity
and spatial parameters) by computing derivatives of the cost function in Eq. 1
with respect to each parameter. The spatial function θµΓ is unique to each sub-
ject’s age. It is estimated by optimizing the sum of cost terms dependig on θµΓ :

θµΓ ≈ arg max
N∑
n=1

∫
Ω

[H̃(φn(x)) log(θµΓ (x)) + (1− H̃(φn(x))) log(1− θµΓ (x))]dx,

(9)
resulting in the spatio-temporal atlas function in Eq. 10.

2.3 A spatio-temporal template

The atlas links the segmentations in all training images. However, it is not a sin-
gle probabilistic template, but depends on the gestational age µ of the training
example it is applied to. Thus, instead of averaging over the segmentation prob-
ability maps of all the subjects (as performed in [13]), we introduce a weighted
sum, with weights wµ,µ(n) that balance the influence of segmentations in exam-
ples with different ages. This is similar in spirit to kernel-based registration tech-
niques such as [4]. The weighting is central to incorporate the spatio-temporal



characteristics into the atlas. The weights are established to fulfill the following
constraints: Consider two images Ik and Ij with gestational ages µ(k), and µ(j)
respectively (j, k ∈ {1, ..., N}). ∆µk,j = µ(k)−µ(j) denotes the age difference be-
tween these images. If ∆µk,j = 0, i.e. the subjects have the same gestational age
then the segmentation Γj has the largest influence on θµ(k)

Γ and vice versa. That
is, subjects of the same age share the same atlas (∆µk,j = 0)⇒ (θµ(k)

Γ = θ
µ(j)
Γ ),

therefore the atlas is age-dependant rather than subject-identity dependent. Let
σ define the age range that should be considered for the age-dependent atlas
generation. For σ << 1, only segmentation of subjects of similar ages are con-
sidered in the atlas computation. When σ → ∞, the segmentations are equally
weighted as in the original latent atlas framework. Our spatio-temporal latent
atlas for all subjects of age µ is defined as follows:

θµΓ (x) =
1
Wµ

N∑
n=1

wµ,µ(n)H̃(φn(x)), where wµ,µ(n) = e−
(µ−µ(n))2

σ2 (10)

with Wµ =
∑N
n=1 wµ,µ(n) as normalization term.

2.4 Age re-estimation

While learning the atlas, we can re-estimate the subject’s age based on the
segmented structure, and its similarity to other cases in the training population.
For this, we compose an energy function

ξ =
∑
m

∑
n

ωµ(m),µ(n)(Γm logΓn + (1− Γm) log(1− Γn)). (11)

The minimum of this energy function reveals the subject’s estimated age, i.e. the
age based upon which the subject best fits to the cohort. Thus, for a large ξ, the
segmented structures Γm and Γn differ from each other, resulting in a dissimilar
age. In contrast to this, if ξ is small, the structures are approximately the same
age. The age correction can further be seen as an extraction of information about
how the age indicated by the state of morphological development deviates from
the nominal age.

2.5 Preprocessing

The proposed method is based on a preliminary registration of all volumes. We
use a surface-based spatio-temporal group-wise registration [10] to achieve an
initial positioning. Based on the alignment of surface points, the brain volume
is registered. In addition, we perform a local refinement during the iterative
optimization process. Each image is translated to the point of highest correlation
with the probabilistic atlas θµΓ . In a coarse initialization, the segmentation Γk
of a reference image Ik (with k ∈ {1, ..., N}) is mapped onto all images. The
goal is to estimate the remaining segmentations Γn (n ∈ {1, ..., N} \ {k}). Since
the model parameters are also unknown, we now alternate between estimating
segmentations Γ and refining model parameters Θ [13].



Fig. 2. (a-c): 3D visualization (with 2 different views each) of segmentation results (red)
compared to the ground truth (blue) and the resulting atlas (green) for subjects at (a)
21, (b) 23, (c) 26 GWs. Obviously, there is a high overlap of the segmentation and the
ground truth, and the segmentation shows a more natural shape of the ventricle than
its serrated annotation. (d-e): Segmentation accuracy of the SNG atlas (d), and our
improved ST atlas (e) for a fetus at 21 GW after 50 iterations (yellow = initialization,
blue = ground truth, red = segmentation result). Dice score of the ground truth before
(f), and after the age optimization (g).

3 Data

This project is an ongoing collaboration with neuroradiologists and anatomists
specialized on fetal MRIs. We evaluated our approach on 33 coronal in utero
MR scans depicting healthy fetal brains from GW 20 to 30. We excluded cases
suspicious for cardiac abnormalities, complex syndromes or chromosomal ab-
normalities. Data (T2-weighted MRI) was acquired by a single-shot, fast spin-
echo 1.5 Tesla Philips Gyroscan during clinical routine with in-plane resolution
0.78-0.9 pixels/mm, slice thickness 3-4.4mm, image resolution 256 × 256, FOV
200mm, SAR < 9%/0.4 W/kg, image acquisition time ≤ 20s, TE 100-140ms,
TR 14000ms. During image acquisition, neither the fetus nor the mother were
sedated. We chose a larger slice thickness to avoid motion artifacts, and included
only cases where the degree of fetal motion was acceptable. Isotropic resolution
was gained by cubic data interpolation. To obtain a standard of reference for
validation, a medical expert manually segmented the ventricles in each of these
images.

4 Results and Discussion

The parameter settings were selected based on cross validation, resulting in a
constellation of α = 0.1, β = 0.1, γ = 0.3, η = 0.6 for the cost term weights,
and σ = 2 for the spatio-temporal age weight. 2 Gaussians were used to model
the background intensity distribution, the remaining GMM parameters were
established by expectation maximization (EM). As reference, we selected a fetal
brain at 24 GWs since at this age the subcortical structures are best perceptible
(according to the collaborating anatomist).



We compared the proposed spatio-temporal latent atlas (ST) to the latent
atlas presented in [13] (denoted by single (or SNG) atlas). Each image’s seg-
mentation by the ST atlas is evaluated with respect to the ground truth, and
compared to the accuracy achieved by the SNG atlas. A comparison of the seg-
mentation result (after 50 iterations) for a fetal brain at 21 GW is given in
Fig. 2(d-e). The update of the segmentation, and its convergence towards the
ground truth is visible: the current segmentation (red) is translated in the di-
rection of the actual ground truth (blue), even though it was initialized at the
yellow area. Starting from a mean/median Dice score of 0.44/0.47 after the first
iteration, the SNG atlas dropped to 0.36/0.35, whereas the proposed ST atlas
achieved a mean/median Dice score of 0.61/0.60. This difference indicates clearly
that the temporal component in the ST atlas improves segmentation accuracy
while a single SNG template is not sufficient for joint segmentation. After visual
inspection of segmentation result and annotation (see Fig. 2(a-c)), we attribute
the still relatively low ST Dice score to yet imperfect serrated annotations and
potentially minimal remaining motion artifacts.

To validate the developmental age estimation method, we conducted an ex-
periment where 11 manual annotations were used to perform the age optimiza-
tion. Fig. 2(f-g) shows a joint histogram of the pairwise Dice scores between
all cases of different gestational age before (f) and after (g) age optimization.1

Consistent with the expectation, the histogram becomes narrower after the op-
timization. The age correction improves the coherence of the data, and is able
to explain a part of the shape variability by a shift in age.

5 Conclusion

We propose a probabilistic spatio-temporal latent atlas for the segmentation
of cerebral structures during early brain development. From a single annotated
example and a set of images without annotation we learn an atlas and segmen-
tations of an anatomical structure. The images are samples of a developmental
process and the spatio-temporal latent atlas is a continuous distribution of aver-
age templates for each age in the observed interval. Experiments show that the
proposed spatio-temporal latent atlas outperforms an existing atlas approach
without age specificity by learning time dependent shape of the structure during
segmentation. Although the segmentation accuracy improves, we expect further
improvement by including a larger training sample, and more accurate non-rigid
registration. The benefits of the atlas are two-fold. First, it serves as a prior
during segmentation of large numbers of examples for structures that undergo
development, and secondly, the atlas itself is informative regarding the under-
lying developmental process. Finally, we show that gestational age estimation
can partially explain shape variability by age shifts, which is highly relevant in
a clinical context where the developmental process and possible pathological de-
viations have to be assessed. There are several interesting questions future work

1 Note that we excluded the computation of the Dice score between each case and
itself. Thus, if there is only one case in a specific week, its entry in the diagonal of
the matrix is of course zero.



will focus on. In the context of age estimation, we have to better understand how
to reliably attribute variability to anatomical variability, or differences in devel-
opmental speed. Furthermore, the inclusion of multiple subcortical structures
in the atlas building and segmentation process is a natural next step. Lastly,
the choice of reference examples can have an influence on the segmentation, but
since after initialization all images are treated equally, this influence is relatively
small during optimization. Thus, the possible inclusion of multiple annotated
examples is a straightforward extension of the proposed framework.
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