LECTURE 7

LECTURE OUTLINE

- Review of hyperplane separation
- Nonvertical hyperplanes
- Convex conjugate functions
- Conjugacy theorem
- Examples

Reading: Section 1.5, 1.6

ADDITIONAL THEOREMS

- Fundamental Characterization: The closure of the convex hull of a set $C \subset \Re^n$ is the intersection of the closed halfspaces that contain C. (Proof uses the strict separation theorem.)
- We say that a hyperplane properly separates C_1 and C_2 if it separates C_1 and C_2 and does not fully contain both C_1 and C_2 .

• Proper Separation Theorem: Let C_1 and C_2 be two nonempty convex subsets of \Re^n . There exists a hyperplane that properly separates C_1 and C_2 if and only if

$$ri(C_1) \cap ri(C_2) = \emptyset$$

PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

$$ri(C) \cap ri(P) = \emptyset$$

can be properly separated, i.e., by a hyperplane that does not contain both C and P.

• If P is polyhedral and the slightly stronger condition

$$ri(C) \cap P = \emptyset$$

holds, then the properly separating hyperplane can be chosen so that it does not contain the non-polyhedral set C while it may contain P.

On the left, the separating hyperplane can be chosen so that it does not contain C. On the right where P is not polyhedral, this is not possible.

NONVERTICAL HYPERPLANES

- A hyperplane in \Re^{n+1} with normal (μ, β) is nonvertical if $\beta \neq 0$.
- It intersects the (n+1)st axis at $\xi = (\mu/\beta)'\overline{u} + \overline{w}$, where $(\overline{u}, \overline{w})$ is any vector on the hyperplane.

- A nonvertical hyperplane that contains the epigraph of a function in its "upper" halfspace, provides lower bounds to the function values.
- The epigraph of a proper convex function does not contain a vertical line, so it appears plausible that it is contained in the "upper" halfspace of some nonvertical hyperplane.

NONVERTICAL HYPERPLANE THEOREM

- Let C be a nonempty convex subset of \Re^{n+1} that contains no vertical lines. Then:
 - (a) C is contained in a closed halfspace of a non-vertical hyperplane, i.e., there exist $\mu \in \mathbb{R}^n$, $\beta \in \mathbb{R}$ with $\beta \neq 0$, and $\gamma \in \mathbb{R}$ such that $\mu'u + \beta w \geq \gamma$ for all $(u, w) \in C$.
 - (b) If $(\overline{u}, \overline{w}) \notin cl(C)$, there exists a nonvertical hyperplane strictly separating $(\overline{u}, \overline{w})$ and C.

Proof: Note that cl(C) contains no vert. line [since C contains no vert. line, ri(C) contains no vert. line, and ri(C) and cl(C) have the same recession cone]. So we just consider the case: C closed.

- (a) C is the intersection of the closed halfspaces containing C. If all these corresponded to vertical hyperplanes, C would contain a vertical line.
- (b) There is a hyperplane strictly separating $(\overline{u}, \overline{w})$ and C. If it is nonvertical, we are done, so assume it is vertical. "Add" to this vertical hyperplane a small ϵ -multiple of a nonvertical hyperplane containing C in one of its halfspaces as per (a).

CONJUGATE CONVEX FUNCTIONS

• Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi(f)

 \mapsto Crossing points of vertical axis

$$f^{\star}(y) = \sup_{x \in \Re^n} \{x'y - f(x)\}, \qquad y \in \Re^n.$$

• For any $f: \Re^n \mapsto [-\infty, \infty]$, its conjugate convex function is defined by

$$f^{\star}(y) = \sup_{x \in \Re^n} \{x'y - f(x)\}, \qquad y \in \Re^n$$

EXAMPLES

$$f^{\star}(y) = \sup_{x \in \Re^n} \{x'y - f(x)\}, \qquad y \in \Re^n$$

CONJUGATE OF CONJUGATE

• From the definition

$$f^{\star}(y) = \sup_{x \in \Re^n} \{x'y - f(x)\}, \qquad y \in \Re^n,$$

note that f^* is convex and closed.

• Reason: $epi(f^*)$ is the intersection of the epigraphs of the linear functions of y

$$x'y - f(x)$$

as x ranges over \Re^n .

• Consider the conjugate of the conjugate:

$$f^{\star\star}(x) = \sup_{y \in \Re^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \Re^n.$$

- $f^{\star\star}$ is convex and closed.
- Important fact/Conjugacy theorem: If f is closed proper convex, then $f^{**} = f$.

CONJUGACY THEOREM - VISUALIZATION

$$f^{\star}(y) = \sup_{x \in \Re^n} \{x'y - f(x)\}, \qquad y \in \Re^n$$

$$f^{\star\star}(x) = \sup_{y \in \Re^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \Re^n$$

• If f is closed convex proper, then $f^{\star\star} = f$.

CONJUGACY THEOREM

• Let $f: \Re^n \mapsto (-\infty, \infty]$ be a function, let $\operatorname{cl} f$ be its convex closure, let f^* be its convex conjugate, and consider the conjugate of f^* ,

$$f^{\star\star}(x) = \sup_{y \in \Re^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \Re^n$$

(a) We have

$$f(x) \ge f^{\star\star}(x), \qquad \forall \ x \in \Re^n$$

- (b) If f is convex, then properness of any one of f, f^* , and f^{**} implies properness of the other two.
- (c) If f is closed proper and convex, then

$$f(x) = f^{\star\star}(x), \qquad \forall \ x \in \Re^n$$

(d) If $\operatorname{cl} f(x) > -\infty$ for all $x \in \Re^n$, then

$$\operatorname{\check{cl}} f(x) = f^{\star\star}(x), \qquad \forall \ x \in \Re^n$$

PROOF OF CONJUGACY THEOREM (A), (C)

- (a) For all x, y, we have $f^*(y) \ge y'x f(x)$, implying that $f(x) \ge \sup_{y} \{y'x f^*(y)\} = f^{**}(x)$.
- (c) By contradiction. Assume there is $(x, \gamma) \in \operatorname{epi}(f^{**})$ with $(x, \gamma) \notin \operatorname{epi}(f)$. There exists a non-vertical hyperplane with normal (y, -1) that strictly separates (x, γ) and $\operatorname{epi}(f)$. (The vertical component of the normal vector is normalized to -1.)
- Consider two parallel hyperplanes, translated to pass through (x, f(x)) and $(x, f^{**}(x))$. Their vertical crossing points are x'y f(x) and $x'y f^{**}(x)$, and lie strictly above and below the crossing point of the strictly sep. hyperplane. Hence

$$x'y - f(x) > x'y - f^{\star\star}(x)$$

which contradicts part (a). Q.E.D.

A COUNTEREXAMPLE

• A counterexample (with closed convex but improper f) showing the need to assume properness in order for $f = f^{**}$:

$$f(x) = \begin{cases} \infty & \text{if } x > 0, \\ -\infty & \text{if } x \le 0. \end{cases}$$

We have

$$f^{\star}(y) = \infty, \qquad \forall \ y \in \Re^n,$$

$$f^{\star\star}(x) = -\infty, \qquad \forall \ x \in \Re^n.$$

But

$$\operatorname{\check{cl}} f = f,$$

so $\operatorname{\check{cl}} f \neq f^{\star\star}$.