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Sparsity Problem

* Datasparsity makes parsing harder
— due to less frequent/unseen words and dependency arcs in data
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Sparsity Problem

* Prediction is worse when the arc is not seen in the training data
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Sparsity Problem

* Prediction is worse when the arc is not seen in the training data
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Sparsity Problem

 Reason: feature weights are simply zero when the features are not seen
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Opportunity and Challenge

To deal with sparsity problem, we will

* Make the model flexible to add various rich features
— For example, words, coarse-to-fine POS tags and word embeddings
— adjust complexity based on how much training data it has

 Model interactions between feature weights

— Propagate weights from seen features to unseen features



Motivating Example: Matrix Completion

* Learn a matrix (or high-order tensor) that has a lot of unseen entries
— Example: image




Motivating Example

In our case: learn a parameter matrix (or tensor) with unseen weights
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Motivating Example

In our case: learn a parameter matrix (or tensor) with unseen weights
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Motivating Example

In our case: learn a parameter matrix (or tensor) with unseen weights
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Motivating Example

In our case: learn a parameter matrix (or tensor) with unseen weights
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Formulation (Simplified)

Recall first-order decoding objective:

y; = argmax S(y;)
Yi€T (x;)

= argmax z s(h, ¢)
Yi€T(x;) (hOey;

Define score as matrix inner product:

s(thyc) =A Q ¢(h,c)

Minimize the loss of training data:

1
L(D, A) = N‘B(xi'yi)
Force Ato be low-rank using
s.t. ||A]l, < C nuclear norm constraint

— onlinegradient descent algorithm available
(Jaggi & Sulovsky, 2010) (Hazan, 2008)
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Results

* Modelstrained with gold POS tags

95%

90%

85%

80%

B MST
75%

M TurboParser

o) .
70% » LowRank

65% -

60% -

55% -

Malagacy Kinyarwanda



Results

* Modelstrained with auto POS tags by TurboTagger
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Results

Results on CoNLL shared task (up to 2000 sentences)
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Results

Adding unsupervised word embeddings to English

MST LowRank LowRank+wv
100 72.4% 76.3% 76.6% (+0.3%)
200 75.8% 77.7% 78.0% (+0.3%)
500 79.5% 80.8% 81.4% (+0.6%)
1000 80.8% 82.8% 82.8% (+0.0%)

2000 84.5% 85.1% 85.8% (+0.7%)



