
LECTURE 8

LECTURE OUTLINE

• Review of conjugate convex functions

• Min common/max crossing duality

• Weak duality

• Special cases

Reading: Sections 1.6, 4.1, 4.2



CONJUGACY THEOREM

f�(y) = sup
x∈�n

�
x�y − f(x)

�
, y ∈ �n

f��(x) = sup
y∈�n

�
y�x− f�(y)

�
, x ∈ �n

• If f is closed convex proper, then f�� = f .

x

Slope = y

0

f(x)
(−y, 1)

inf
x∈�n

{f(x)− x�y} = −f�(y)y�x− f�(y)

f��(x) = sup
y∈�n

�
y�x− f�(y)

�
H =

�
(x,w) | w − x�y = −f�(y)

�
Hyperplane



A FEW EXAMPLES

• lp and lq norm conjugacy, where 1
p + 1

q = 1

f(x) =
1
p

n�

i=1

|xi|p, f�(y) =
1
q

n�

i=1

|yi|q

• Conjugate of a strictly convex quadratic

f(x) =
1
2
x�Qx + a�x + b,

f�(y) =
1
2
(y − a)�Q−1(y − a)− b.

• Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) = p
�
A(x− c)

�
+ a�x + b,

f�(y) = q
�
(A�)−1(y − a)

�
+ c�y + d,

where q is the conjugate of p and d = −(c�a + b).



SUPPORT FUNCTIONS

• Conjugate of indicator function δX of set X

σX(y) = sup
x∈X

y�x

is called the support function of X.

• To determine σX(y) for a given vector y, we
project the set X on the line determined by y,
we find x̂, the extreme point of projection in the
direction y, and we scale by setting

σX(y) = �x̂� · �y�

0

y

X

σX(y)/�y�

x̂

• epi(σX) is a closed convex cone.

• The sets X, cl(X), conv(X), and cl
�
conv(X)

�

all have the same support function (by the conju-
gacy theorem).



SUPPORT FN OF A CONE - POLAR CONE

• The conjugate of the indicator function δC is
the support function, σC(y) = supx∈C y�x.

• If C is a cone,

σC(y) =
� 0 if y�x ≤ 0, ∀ x ∈ C,
∞ otherwise

i.e., σC is the indicator function δC∗ of the cone

C∗ = {y | y�x ≤ 0, ∀ x ∈ C}

This is called the polar cone of C.

• By the Conjugacy Theorem the polar cone of C∗

is cl
�
conv(C)

�
. This is the Polar Cone Theorem.

• Special case: If C = cone
�
{a1, . . . , ar}

�
, then

C∗ = {x | a�jx ≤ 0, j = 1, . . . , r}

• Farkas’ Lemma: (C∗)∗ = C.

• True because C is a closed set [cone
�
{a1, . . . , ar}

�

is the image of the positive orthant {α | α ≥ 0}
under the linear transformation that maps α to�r

j=1 αjaj ], and the image of any polyhedral set
under a linear transformation is a closed set.



EXTENDING DUALITY CONCEPTS

• From dual descriptions of sets

A union of points An intersection of halfspaces

• To dual descriptions of functions (applying
set duality to epigraphs)

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈�n

{f(x)− x�y} = −f�(y)

• We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem



MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of �n+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n+
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.
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MATHEMATICAL FORMULATIONS

• Optimal value of min common problem:
w∗ = inf

(0,w)∈M
w

u

w

M

M
(µ, 1)

(µ, 1)

q∗

q(µ) = inf
(u,w)∈M

�
w + µ�u}

0

Dual function value

Hyperplane Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
ξ

w∗

• Math formulation of max crossing prob-
lem: Focus on hyperplanes with normals (µ, 1)
whose crossing point ξ satisfies

ξ ≤ w + µ�u, ∀ (u,w) ∈ M

Max crossing problem is to maximize ξ subject to
ξ ≤ inf(u,w)∈M{w + µ�u}, µ ∈ �n, or

maximize q(µ) �= inf
(u,w)∈M

{w + µ�u}

subject to µ ∈ �n.



GENERIC PROPERTIES – WEAK DUALITY

• Min common problem

inf
(0,w)∈M

w

• Max crossing problem

maximize q(µ) �= inf
(u,w)∈M

{w + µ�u}

subject to µ ∈ �n.

u

w

M

M
(µ, 1)

(µ, 1)

q∗

q(µ) = inf
(u,w)∈M

�
w + µ�u}

0

Dual function value

Hyperplane Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
ξ

w∗

• Note that q is concave and upper-semicontinuous
(inf of linear functions).

• Weak Duality: For all µ ∈ �n

q(µ) = inf
(u,w)∈M

{w + µ�u} ≤ inf
(0,w)∈M

w = w∗,

so maximizing over µ ∈ �n, we obtain q∗ ≤ w∗.

• We say that strong duality holds if q∗ = w∗.



CONNECTION TO CONJUGACY

• An important special case:

M = epi(p)

where p : �n �→ [−∞,∞]. Then w∗ = p(0), and

q(µ) = inf
(u,w)∈epi(p)

{w+µ�u} = inf
{(u,w)|p(u)≤w}

{w+µ�u},

and finally
q(µ) = inf

u∈�m

�
p(u) + µ�u

�

u0

M = epi(p)

w∗ = p(0)

q∗ = p��(0)

p(u)(µ, 1)

q(µ) = −p�(−µ)

• Thus, q(µ) = −p�(−µ) and

q∗ = sup
µ∈�n

q(µ) = sup
µ∈�n

�
0·(−µ)−p�(−µ)

�
= p��(0)



GENERAL OPTIMIZATION DUALITY

• Consider minimizing a function f : �n �→ [−∞,∞].

• Let F : �n+r �→ [−∞,∞] be a function with

f(x) = F (x, 0), ∀ x ∈ �n

• Consider the perturbation function

p(u) = inf
x∈�n

F (x, u)

and the MC/MC framework with M = epi(p)

• The min common value w∗ is

w∗ = p(0) = inf
x∈�n

F (x, 0) = inf
x∈�n

f(x)

• The dual function is

q(µ) = inf
u∈�r

�
p(u)+µ�u

�
= inf

(x,u)∈�n+r

�
F (x, u)+µ�u

�

so q(µ) = −F �(0,−µ), where F � is the conjugate
of F , viewed as a function of (x, u)

• We have

q∗ = sup
µ∈�r

q(µ) = − inf
µ∈�r

F �(0,−µ) = − inf
µ∈�r

F �(0, µ),

and weak duality has the form

w∗ = inf
x∈�n

F (x, 0) ≥ − inf
µ∈�r

F �(0, µ) = q∗



CONSTRAINED OPTIMIZATION

• Minimize f : �n �→ � over the set

C =
�
x ∈ X | g(x) ≤ 0

�
,

where X ⊂ �n and g : �n �→ �r.

• Introduce a “perturbed constraint set”

Cu =
�
x ∈ X | g(x) ≤ u

�
, u ∈ �r,

and the function

F (x, u) =
�

f(x) if x ∈ Cu,
∞ otherwise,

which satisfies F (x, 0) = f(x) for all x ∈ C.

• Consider perturbation function

p(u) = inf
x∈�n

F (x, u) = inf
x∈X, g(x)≤u

f(x),

and the MC/MC framework with M = epi(p).



CONSTR. OPT. - PRIMAL AND DUAL FNS

• Perturbation function (or primal function)
p(u) = inf

x∈X, g(x)≤u
f(x),

0 u

�
(g(x), f(x)) | x ∈ X

�

M = epi(p)

w∗ = p(0)

p(u)

q∗

• Introduce L(x, µ) = f(x) + µ�g(x). Then

q(µ) = inf
u∈�r

�
p(u) + µ�u

�

= inf
u∈�r, x∈X, g(x)≤u

�
f(x) + µ�u

�

=
�

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise.



LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c�x

subject to a�jx ≥ bj , j = 1, . . . , r,

where c ∈ �n, aj ∈ �n, and bj ∈ �, j = 1, . . . , r.

• For µ ≥ 0, the dual function has the form

q(µ) = inf
x∈�n

L(x, µ)

= inf
x∈�n




c�x +
r�

j=1

µj(bj − a�jx)






=
�

b�µ if
�r

j=1 ajµj = c,
−∞ otherwise

• Thus the dual problem is

maximize b�µ

subject to
r�

j=1

ajµj = c, µ ≥ 0.


