LECTURE 8

LECTURE OUTLINE

e Review of conjugate convex functions
e Min common/max crossing duality

e Weak duality

e Special cases

Reading: Sections 1.6, 4.1, 4.2



CONJUGACY THEOREM

f*(y) = sup {z'y — f(x)}, yeRn

T ERMT

f(x) = sup {y'z — f*(y)}, =xeRn

yeR™

e If f is closed convex proper, then f** = f.
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/? ﬁﬁﬁﬁﬁﬁ Hyperplane
f(x) = yseugn{y’w —1f*(y) } H = {(z,w) |w—a'y=—F*y)}
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Yz — f*V Jnf {f(z) —='y} = —F*(y)



A FEW EXAMPLES

e [, and [, norm conjugacy, where % + % =1

1 1
fl@)==> lzilr,  f*() == |yl
P53 17
e (Conjugate of a strictly convex quadratic

1
flz) = ix’Qx +a'z+ 0,

(y—a)Q Yy —a) -0

f*(y) = %

e (Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) =p(A(x — ¢)) + d’z + b,

) =q((A)"Yy —a)) +cy+d,

where ¢ is the conjugate of p and d = —(c’a + b).



SUPPORT FUNCTIONS

e Conjugate of indicator function 0x of set X

ox(y) = Sup Y/
X

is called the support function of X.

e To determine ox(y) for a given vector y, we
project the set X on the line determined by y,
we find 2, the extreme point of projection in the
direction y, and we scale by setting

ox(y) = [1z] - [yl

\
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O« o)/l

e epi(ox) is a closed convex cone.

e The sets X, cl(X), conv(X), and cl(conv(X))
all have the same support function (by the conju-
gacy theorem).



SUPPORT FN OF A CONE - POLAR CONE

e The conjugate of the indicator function d¢ is
the support function, oc(y) = sup,cc y'z.

e If C is a cone,

© oo otherwise

i.e., o¢ is the indicator function dc+ of the cone
Cx={y|yxz<0, Vzxel}

This is called the polar cone of C.

e By the Conjugacy Theorem the polar cone of C'*
is cl(conv(C')). This is the Polar Cone Theorem.

e Special case: If C' = cone({ai,...,a,}), then
Cx={z|adx<0,j=1,...,7}

e Farkas’ Lemma: (C*)* =C.

e True because C is a closed set [cone({a1, ..., ar})
is the image of the positive orthant {a | a > 0}
under the linear transformation that maps a to
> ;-1 @ja;], and the image of any polyhedral set
under a linear transformation is a closed set.



EXTENDING DUALITY CONCEPTS

e From dual descriptions of sets

e

A union of points An intersection of halfspaces

e To dual descriptions of functions (applying
set duality to epigraphs)

A (—y,1)

e We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem



MIN COMMON / MAX CROSSING PROBLEMS

e We introduce a pair of fundamental problems:

e Let M be a nonempty subset of R7+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n +
1)st axis. Find one whose (n + 1)st compo-

nent 1S minimum.

Mazx Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their

“upper” closed halfspace.

Find one whose

crossing point of the (n + 1)st axis is maxi-

murin.
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MATHEMATICAL FORMULATIONS

e Optimal value of min common problem:

w* = Inf w
(0,w)eM

\Dual function value q(u) = ( irgf M{w + w'u}
u,w)€E

Hyperplane H, ¢ = {(u,w) | w + p/u = £}
e

>

o] w

e Math formulation of max crossing prob-
lem: Focus on hyperplanes with normals (u, 1)
whose crossing point & satisfies

E<w+ pu, vV (u,w) € M

Max crossing problem is to maximize & subject to
£ < inf(u,w)EM{w + ,u’u}, [ € R, or

maximize q(u) é( ilgf M{w + p'u}
u,w)E

subject to u € Rn.



GENERIC PROPERTIES - WEAK DUALITY

e Min common problem

inf w
(0,w)eM

e Max crossing problem

maximize q(p) = inf {w 4+ p'u}
(w,w)eM

subject to u € Rn.

Dual function value q(u) = ( ir;f M{w + wu}
u,w)e

»

of ™ W

e Note that g is concave and upper-semicontinuous
(inf of linear functions).

¢ Weak Duality: For all 4 € R»

— inf {w+pu} < inf w=uw*
00 =, o o rwul < It =

so maximizing over u € R, we obtain ¢* < w*.

e We say that strong duality holds if ¢g* = w*.



CONNECTION TO CONJUGACY

e An important special case:

M = epi(p)

where p : R — [—00, 00]. Then w* = p(0), and

— inf wtp'ut = inf w+p'ut,
) (u,w)Eepi(p){ Huy {(u,w)lp(U)Sw}{ g
and finally

o) = inf {p(u) + pu)
ueR™

(p,1) Pu) A




GENERAL OPTIMIZATION DUALITY

e Consider minimizing a function f : £" — [—00, o0].
o Let F': Rt — |—00, 00] be a function with

f(x) = F(x,0), Vxe R
e C(Consider the perturbation function

— inf F
p(u) = inf F(z,u)

and the MC/MC framework with M = epi(p)

e The min common value w* is

e = inf F = inf
we=p(0) = inf F(r,0)= inf [(z)
e The dual function is

d(n) = inf {pw)rpnf = ol AF(@ )t}

so q(pu) = —F*(0, —pu), where F* is the conjugate
of F', viewed as a function of (z,u)

e We have
*— sSu = — inf F'* O,— — — inf F* 07 )
T = sup q() Jnf (0, —p) Jnf (0, w)

and weak duality has the form

we = inf F(z,0) >~ inf F~(0,1) = g



CONSTRAINED OPTIMIZATION

e Minimize f : " — R over the set
C={zeX|g(x)<0},
where X C ®» and ¢ : k" — R".
e Introduce a “perturbed constraint set”
Cu={z € X|g(x)<u}, u € R,

and the function

F(x,u) = {f(x) it x € Cly,

o0 otherwise,

which satisfies F'(x,0) = f(z) for all x € C.

e Consider perturbation function

— inf F inf
p(u) = inf F(z,u)= e Suf(év),

and the MC/MC framework with M = epi(p).



CONSTR. OPT. - PRIMAL AND DUAL FNS

e Perturbation function (or primal function)

plu)=  inf  f(z),

reX, g(z)<u

p(u) |

M epi(p

/

w* = p(0) \Q
q*

e Introduce L(x,u) = f(x)+ p'g(x). Then

(9(z), f(z)) |z € X}

o) = inf {p(u) + 4}
ueR"

inf {f(x) + ,u/u}

weR", z€X, g(x)<u
_ {infxex L(z,pn) if u >0,

— 00 otherwise.



LINEAR PROGRAMMING DUALITY

e (onsider the linear program

minimize c'x

subject to a’x >b;, j=1,...,r

where c € R", a;j € ®*, and b; e R, j=1,...,r.
e For 11 > 0, the dual function has the form

— inf L
q(u) = inf L(z,p)

\

(

— 1 : . !

= inf < c’x—l—zl,uj(bj az) 3
\ J=

/

— { b/:u if Z;:l ajpty = C,

—o0 otherwise

e Thus the dual problem is

maximize b u

.
subject to Zaj,uj =c, pu=>0.
j=1



