## LECTURE 9

# LECTURE OUTLINE

- Minimax problems and zero-sum games
- Min Common / Max Crossing duality for minimax and zero-sum games
- Min Common / Max Crossing duality theorems
- Strong duality conditions
- Existence of dual optimal solutions

**Reading:** Sections 3.4, 4.3, 4.4, 5.1



# **REVIEW OF THE MC/MC FRAMEWORK**

• Given set  $M \subset \Re^{n+1}$ ,

$$w^* = \inf_{(0,w)\in M} w, \quad q^* = \sup_{\mu\in\Re^n} q(\mu) \stackrel{\triangle}{=} \inf_{(u,w)\in M} \{w + \mu'u\}$$

• Weak Duality:  $q^* \le w^*$ 

• Important special case: M = epi(p). Then  $w^* = p(0), q^* = p^{\star \star}(0)$ , so we have  $w^* = q^*$  if p is closed, proper, convex.

- Some applications:
  - Constrained optimization:  $\min_{x \in X, g(x) \le 0} f(x)$ , with  $p(u) = \inf_{x \in X, g(x) \le u} f(x)$
  - Other optimization problems: Fenchel and conic optimization
  - Useful theorems related to optimization: Farkas' lemma, theorems of the alternative
  - Subgradient theory
  - Minimax problems, 0-sum games

• Strong Duality:  $q^* = w^*$ . Requires that *M* have some convexity structure, among other conditions

#### MINIMAX PROBLEMS

Given  $\phi : X \times Z \mapsto \Re$ , where  $X \subset \Re^n$ ,  $Z \subset \Re^m$ consider minimize  $\sup_{z \in Z} \phi(x, z)$ subject to  $x \in X$ or maximize  $\inf_{x \in X} \phi(x, z)$ subject to  $z \in Z$ .

- Some important contexts:
  - Constrained optimization duality theory
  - Zero sum game theory
- We always have

$$\sup_{z \in Z} \inf_{x \in X} \phi(x, z) \le \inf_{x \in X} \sup_{z \in Z} \phi(x, z)$$

• **Key question:** When does equality hold?

## CONSTRAINED OPTIMIZATION DUALITY

• For the problem

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in X, \qquad g(x) \leq 0 \end{array}$ 

introduce the Lagrangian function

$$L(x,\mu) = f(x) + \mu' g(x)$$

• Primal problem (equivalent to the original)

$$\min_{x \in X} \sup_{\mu \ge 0} L(x, \mu) = \begin{cases} f(x) & \text{if } g(x) \le 0, \\ \\ \infty & \text{otherwise,} \end{cases}$$

• Dual problem

$$\max_{\mu \ge 0} \quad \inf_{x \in X} L(x,\mu)$$

• Key duality question: Is it true that

$$\inf_{x\in\Re^n}\sup_{\mu\ge 0}L(x,\mu)=w^*\stackrel{?}{=}q^*=\sup_{\mu\ge 0}\inf_{x\in\Re^n}L(x,\mu)$$

### ZERO SUM GAMES

• Two players: 1st chooses  $i \in \{1, \ldots, n\}$ , 2nd chooses  $j \in \{1, \ldots, m\}$ .

• If i and j are selected, the 1st player gives  $a_{ij}$  to the 2nd.

• Mixed strategies are allowed: The two players select probability distributions

$$x = (x_1, \ldots, x_n), \qquad z = (z_1, \ldots, z_m)$$

over their possible choices.

• Probability of (i, j) is  $x_i z_j$ , so the expected amount to be paid by the 1st player

$$x'Az = \sum_{i,j} a_{ij} x_i z_j$$

where A is the  $n \times m$  matrix with elements  $a_{ij}$ .

- Each player optimizes his choice against the worst possible selection by the other player. So
  - 1st player minimizes max<sub>z</sub> x'Az
  - 2nd player maximizes min<sub>x</sub> x'Az

#### SADDLE POINTS

**Definition:**  $(x^*, z^*)$  is called a *saddle point* of  $\phi$  if

 $\phi(x^*, z) \le \phi(x^*, z^*) \le \phi(x, z^*), \quad \forall \, x \in X, \, \forall \, z \in Z$ 

**Proposition**:  $(x^*, z^*)$  is a saddle point if and only if the minimax equality holds and

$$x^* \in \arg\min_{x \in X} \sup_{z \in Z} \phi(x, z), \quad z^* \in \arg\max_{z \in Z} \inf_{x \in X} \phi(x, z) \quad (*)$$

**Proof:** If  $(x^*, z^*)$  is a saddle point, then

$$\inf_{x \in X} \sup_{z \in Z} \phi(x, z) \le \sup_{z \in Z} \phi(x^*, z) = \phi(x^*, z^*)$$
$$= \inf_{x \in X} \phi(x, z^*) \le \sup_{z \in Z} \inf_{x \in X} \phi(x, z)$$

By the minimax inequality, the above holds as an equality throughout, so the minimax equality and Eq. (\*) hold.

Conversely, if Eq. (\*) holds, then

$$\sup_{z \in Z} \inf_{x \in X} \phi(x, z) = \inf_{x \in X} \phi(x, z^*) \le \phi(x^*, z^*)$$
$$\le \sup_{z \in Z} \phi(x^*, z) = \inf_{x \in X} \sup_{z \in Z} \phi(x, z)$$

Using the minimax equ.,  $(x^*, z^*)$  is a saddle point.

## VISUALIZATION



The curve of maxima  $f(x, \hat{z}(x))$  lies above the curve of minima  $f(\hat{x}(z), z)$ , where

$$\hat{z}(x) = \arg\max_{z} f(x, z), \qquad \hat{x}(z) = \arg\min_{x} f(x, z)$$

Saddle points correspond to points where these two curves meet.

#### MINIMAX MC/MC FRAMEWORK

• Introduce perturbation function  $p : \Re^m \mapsto [-\infty, \infty]$ 

$$p(u) = \inf_{x \in X} \sup_{z \in Z} \{\phi(x, z) - u'z\}, \qquad u \in \Re^m$$

• Apply the MC/MC framework with M = epi(p). If p is convex, closed, and proper, no duality gap.

- Introduce  $\hat{cl} \phi$ , the concave closure of  $\phi$  viewed as a function of z for fixed x
- We have

$$\sup_{z \in Z} \phi(x, z) = \sup_{z \in \Re^m} (\hat{\operatorname{cl}} \phi)(x, z),$$

 $\mathbf{SO}$ 

$$w^* = p(0) = \inf_{x \in X} \sup_{z \in \Re^m} (\widehat{\mathrm{cl}} \phi)(x, z).$$

• The dual function can be shown to be

$$q(\mu) = \inf_{x \in X} (\widehat{\mathrm{cl}} \phi)(x, \mu), \qquad \forall \ \mu \in \Re^m$$

so if  $\phi(x, \cdot)$  is concave and closed,

$$w^* = \inf_{x \in X} \sup_{z \in \Re^m} \phi(x, z), \qquad q^* = \sup_{z \in \Re^m} \inf_{x \in X} \phi(x, z)$$

### **PROOF OF FORM OF DUAL FUNCTION**

• Write 
$$p(u) = \inf_{x \in X} p_x(u)$$
, where

$$p_x(u) = \sup_{z \in Z} \{\phi(x, z) - u'z\}, \qquad x \in X,$$

and note that

$$\inf_{u \in \Re^m} \left\{ p_x(u) + u'\mu \right\} = -\sup_{u \in \Re^m} \left\{ u'(-\mu) - p_x(u) \right\} = -p_x^*(-\mu)$$

Except for a sign change,  $p_x$  is the conjugate of  $(-\phi)(x, \cdot)$  [assuming  $(-\hat{cl}\phi)(x, \cdot)$  is proper], so

$$p_x^{\star}(-\mu) = -(\hat{\operatorname{cl}}\phi)(x,\mu).$$

Hence, for all  $\mu \in \Re^m$ ,

$$q(\mu) = \inf_{u \in \Re^m} \left\{ p(u) + u'\mu \right\}$$
  
= 
$$\inf_{u \in \Re^m} \inf_{x \in X} \left\{ p_x(u) + u'\mu \right\}$$
  
= 
$$\inf_{x \in X} \inf_{u \in \Re^m} \left\{ p_x(u) + u'\mu \right\}$$
  
= 
$$\inf_{x \in X} \left\{ -p_x^{\star}(-\mu) \right\}$$
  
= 
$$\inf_{x \in X} (\widehat{cl} \phi)(x, \mu)$$

#### **DUALITY THEOREMS**

• Assume that  $w^* < \infty$  and that the set

 $\overline{M} = \left\{ (u, w) \mid \text{there exists } \overline{w} \text{ with } \overline{w} \le w \text{ and } (u, \overline{w}) \in M \right\}$ 

is convex.

• Min Common/Max Crossing Theorem I: We have  $q^* = w^*$  if and only if for every sequence  $\{(u_k, w_k)\} \subset M$  with  $u_k \to 0$ , there holds



 $w^* \le \liminf_{k \to \infty} w_k.$ 

• Corollary: If M = epi(p) where p is closed proper convex and  $p(0) < \infty$ , then  $q^* = w^*$ .

# **DUALITY THEOREMS (CONTINUED)**

• Min Common/Max Crossing Theorem II: Assume in addition that  $-\infty < w^*$  and that

$$D = \left\{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in \overline{M} \right\}$$

contains the origin in its relative interior. Then  $q^* = w^*$  and there exists  $\mu$  such that  $q(\mu) = q^*$ .



• Furthermore, the set  $\{\mu \mid q(\mu) = q^*\}$  is nonempty and compact if and only if D contains the origin in its interior.

• Min Common/Max Crossing Theorem III: Involves polyhedral assumptions, and will be developed later.

#### **PROOF OF THEOREM I**

• Assume that  $q^* = w^*$ . Let  $\{(u_k, w_k)\} \subset M$  be such that  $u_k \to 0$ . Then,

$$q(\mu) = \inf_{(u,w)\in M} \{w + \mu'u\} \le w_k + \mu'u_k, \quad \forall k, \forall \mu \in \Re^n$$

Taking the limit as  $k \to \infty$ , we obtain  $q(\mu) \leq \lim \inf_{k\to\infty} w_k$ , for all  $\mu \in \Re^n$ , implying that

$$w^* = q^* = \sup_{\mu \in \Re^n} q(\mu) \le \liminf_{k \to \infty} w_k$$

Conversely, assume that for every sequence  $\{(u_k, w_k)\} \subset M$  with  $u_k \to 0$ , there holds  $w^* \leq \lim \inf_{k\to\infty} w_k$ . If  $w^* = -\infty$ , then  $q^* = -\infty$ , by weak duality, so assume that  $-\infty < w^*$ . Steps:

• Step 1:  $(0, w^* - \epsilon) \notin cl(\overline{M})$  for any  $\epsilon > 0$ .



## **PROOF OF THEOREM I (CONTINUED)**

• Step 2:  $\overline{M}$  does not contain any vertical lines. If this were not so, (0, -1) would be a direction of recession of  $\operatorname{cl}(\overline{M})$ . Because  $(0, w^*) \in \operatorname{cl}(\overline{M})$ , the entire halfline  $\{(0, w^* - \epsilon) \mid \epsilon \ge 0\}$  belongs to  $\operatorname{cl}(\overline{M})$ , contradicting Step 1.

• Step 3: For any  $\epsilon > 0$ , since  $(0, w^* - \epsilon) \notin \operatorname{cl}(\overline{M})$ , there exists a nonvertical hyperplane strictly separating  $(0, w^* - \epsilon)$  and  $\overline{M}$ . This hyperplane crosses the (n + 1)st axis at a vector  $(0, \xi)$  with  $w^* - \epsilon \leq$  $\xi \leq w^*$ , so  $w^* - \epsilon \leq q^* \leq w^*$ . Since  $\epsilon$  can be arbitrarily small, it follows that  $q^* = w^*$ .



### **PROOF OF THEOREM II**

• Note that  $(0, w^*)$  is not a relative interior point of  $\overline{M}$ . Therefore, by the Proper Separation Theorem, there is a hyperplane that passes through  $(0, w^*)$ , contains  $\overline{M}$  in one of its closed halfspaces, but does not fully contain  $\overline{M}$ , i.e., for some  $(\mu, \beta) \neq$ (0, 0)

$$\beta w^* \le \mu' u + \beta w, \qquad \forall \ (u, w) \in \overline{M},$$
$$\beta w^* < \sup_{(u, w) \in \overline{M}} \{\mu' u + \beta w\}$$

Will show that the hyperplane is nonvertical.

• Since for any  $(\overline{u}, \overline{w}) \in M$ , the set  $\overline{M}$  contains the halfline  $\{(\overline{u}, w) \mid \overline{w} \leq w\}$ , it follows that  $\beta \geq 0$ . If  $\beta = 0$ , then  $0 \leq \mu' u$  for all  $u \in D$ . Since  $0 \in \operatorname{ri}(D)$  by assumption, we must have  $\mu' u = 0$  for all  $u \in D$  a contradiction. Therefore,  $\beta > 0$ , and we can assume that  $\beta = 1$ . It follows that

$$w^* \leq \inf_{(u,w)\in\overline{M}} \{\mu'u + w\} = q(\mu) \leq q^*$$

Since the inequality  $q^* \leq w^*$  holds always, we must have  $q(\mu) = q^* = w^*$ .

#### NONLINEAR FARKAS' LEMMA

• Let  $X \subset \Re^n$ ,  $f : X \mapsto \Re$ , and  $g_j : X \mapsto \Re$ ,  $j = 1, \ldots, r$ , be convex. Assume that

 $f(x) \ge 0, \quad \forall x \in X \text{ with } g(x) \le 0$ 

Let

$$Q^* = \{ \mu \mid \mu \ge 0, \ f(x) + \mu' g(x) \ge 0, \ \forall \ x \in X \}.$$

Then  $Q^*$  is nonempty and compact if and only if there exists a vector  $\overline{x} \in X$  such that  $g_j(\overline{x}) < 0$ for all  $j = 1, \ldots, r$ .



• The lemma asserts the existence of a nonvertical hyperplane in  $\Re^{r+1}$ , with normal  $(\mu, 1)$ , that passes through the origin and contains the set

$$\left\{ \left(g(x), f(x)\right) \mid x \in X \right\}$$

in its positive halfspace.

# PROOF OF NONLINEAR FARKAS' LEMMA

• Apply MC/MC to

 $M = \left\{ (u, w) \mid \text{there is } x \in X \text{ s. t. } g(x) \le u, \ f(x) \le w \right\}$ 



• M is equal to  $\overline{M}$  and is formed as the union of positive orthants translated to points (g(x), f(x)),  $x \in X$ .

- The convexity of X, f, and  $g_j$  implies convexity of M.
- MC/MC Theorem II applies: we have

 $D = \left\{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in \overline{M} \right\}$ 

and  $0 \in int(D)$ , because  $(g(\overline{x}), f(\overline{x})) \in M$ .