LECTURE 9

LECTURE OUTLINE

- Minimax problems and zero-sum games
- Min Common / Max Crossing duality for minimax and zero-sum games
- Min Common / Max Crossing duality theorems
- Strong duality conditions
- Existence of dual optimal solutions

Reading: Sections 3.4, 4.3, 4.4, 5.1

(c)

REVIEW OF THE MC/MC FRAMEWORK

- Given set $M \subset \Re^{n+1}$,
$w^{*}=\inf _{(0, w) \in M} w, \quad q^{*}=\sup _{\mu \in \Re^{n}} q(\mu) \triangleq \inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\}$
- Weak Duality: $q^{*} \leq w^{*}$
- Important special case: $M=\operatorname{epi}(p)$. Then $w^{*}=p(0), q^{*}=p^{\star \star}(0)$, so we have $w^{*}=q^{*}$ if p is closed, proper, convex.
- Some applications:
- Constrained optimization: $\min _{x \in X, g(x) \leq 0} f(x)$, with $p(u)=\inf _{x \in X, g(x) \leq u} f(x)$
- Other optimization problems: Fenchel and conic optimization
- Useful theorems related to optimization: Farkas’ lemma, theorems of the alternative
- Subgradient theory
- Minimax problems, 0-sum games
- Strong Duality: $q^{*}=w^{*}$. Requires that M have some convexity structure, among other conditions

MINIMAX PROBLEMS

Given $\phi: X \times Z \mapsto \Re$, where $X \subset \Re^{n}, Z \subset \Re^{m}$ consider
minimize $\sup \phi(x, z)$
$z \in Z$
subject to $x \in X$
or

$$
\begin{array}{ll}
\text { maximize } & \inf _{x \in X} \phi(x, z) \\
\text { subject to } & z \in Z .
\end{array}
$$

- Some important contexts:
- Constrained optimization duality theory
- Zero sum game theory
- We always have

$$
\sup _{z \in Z} \inf _{x \in X} \phi(x, z) \leq \inf _{x \in X} \sup _{z \in Z} \phi(x, z)
$$

- Key question: When does equality hold?

CONSTRAINED OPTIMIZATION DUALITY

- For the problem

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& \text { subject to } x \in X, \quad g(x) \leq 0
\end{aligned}
$$

introduce the Lagrangian function

$$
L(x, \mu)=f(x)+\mu^{\prime} g(x)
$$

- Primal problem (equivalent to the original)

$$
\min _{x \in X} \sup _{\mu \geq 0} L(x, \mu)= \begin{cases}f(x) & \text { if } g(x) \leq 0, \\ \infty & \text { otherwise },\end{cases}
$$

- Dual problem

$$
\max _{\mu \geq 0} \inf _{x \in X} L(x, \mu)
$$

- Key duality question: Is it true that

$$
\inf _{x \in \Re^{n}} \sup _{\mu \geq 0} L(x, \mu)=w^{*}=\frac{?}{=} q^{*}=\sup _{\mu \geq 0} \inf _{x \in \Re^{n}} L(x, \mu)
$$

ZERO SUM GAMES

- Two players: 1st chooses $i \in\{1, \ldots, n\}, 2$ nd chooses $j \in\{1, \ldots, m\}$.
- If i and j are selected, the 1st player gives $a_{i j}$ to the 2 nd .
- Mixed strategies are allowed: The two players select probability distributions

$$
x=\left(x_{1}, \ldots, x_{n}\right), \quad z=\left(z_{1}, \ldots, z_{m}\right)
$$

over their possible choices.

- Probability of (i, j) is $x_{i} z_{j}$, so the expected amount to be paid by the 1st player

$$
x^{\prime} A z=\sum_{i, j} a_{i j} x_{i} z_{j}
$$

where A is the $n \times m$ matrix with elements $a_{i j}$.

- Each player optimizes his choice against the worst possible selection by the other player. So
- 1st player minimizes $\max _{z} x^{\prime} A z$
- 2nd player maximizes $\min _{x} x^{\prime} A z$

SADDLE POINTS

Definition: $\left(x^{*}, z^{*}\right)$ is called a saddle point of ϕ if
$\phi\left(x^{*}, z\right) \leq \phi\left(x^{*}, z^{*}\right) \leq \phi\left(x, z^{*}\right), \quad \forall x \in X, \forall z \in Z$
Proposition: $\left(x^{*}, z^{*}\right)$ is a saddle point if and only if the minimax equality holds and

$$
\begin{equation*}
x^{*} \in \arg \min _{x \in X} \sup _{z \in Z} \phi(x, z), \quad z^{*} \in \arg \max _{z \in Z} \inf _{x \in X} \phi(x, z) \tag{*}
\end{equation*}
$$

Proof: If $\left(x^{*}, z^{*}\right)$ is a saddle point, then

$$
\begin{aligned}
\inf _{x \in X} \sup _{z \in Z} \phi(x, z) & \leq \sup _{z \in Z} \phi\left(x^{*}, z\right)=\phi\left(x^{*}, z^{*}\right) \\
& =\inf _{x \in X} \phi\left(x, z^{*}\right) \leq \sup _{z \in Z} \inf _{x \in X} \phi(x, z)
\end{aligned}
$$

By the minimax inequality, the above holds as an equality throughout, so the minimax equality and Eq. (*) hold.

Conversely, if Eq. (*) holds, then

$$
\begin{aligned}
\sup _{z \in Z} \inf _{x \in X} \phi(x, z) & =\inf _{x \in X} \phi\left(x, z^{*}\right) \leq \phi\left(x^{*}, z^{*}\right) \\
& \leq \sup _{z \in Z} \phi\left(x^{*}, z\right)=\inf _{x \in X} \sup _{z \in Z} \phi(x, z)
\end{aligned}
$$

Using the minimax equ., $\left(x^{*}, z^{*}\right)$ is a saddle point.

VISUALIZATION

The curve of maxima $f(x, \hat{z}(x))$ lies above the curve of minima $f(\hat{x}(z), z)$, where

$$
\hat{z}(x)=\arg \max _{z} f(x, z), \quad \hat{x}(z)=\arg \min _{x} f(x, z)
$$

Saddle points correspond to points where these two curves meet.

MINIMAX MC/MC FRAMEWORK

- Introduce perturbation function $p: \Re^{m} \mapsto$ $[-\infty, \infty]$

$$
p(u)=\inf _{x \in X} \sup _{z \in Z}\left\{\phi(x, z)-u^{\prime} z\right\}, \quad u \in \Re^{m}
$$

- Apply the MC/MC framework with $M=\operatorname{epi}(p)$. If p is convex, closed, and proper, no duality gap.
- Introduce $\hat{c l} \phi$, the concave closure of ϕ viewed as a function of z for fixed x
- We have
so

$$
\sup _{z \in Z} \phi(x, z)=\sup _{z \in \Re^{m}}(\hat{\mathrm{c}} \phi)(x, z),
$$

$$
w^{*}=p(0)=\inf _{x \in X} \sup _{z \in \Re^{m}}(\hat{c l} \phi)(x, z) .
$$

- The dual function can be shown to be

$$
q(\mu)=\inf _{x \in X}(\hat{\mathrm{cl}} \phi)(x, \mu), \quad \forall \mu \in \Re^{m}
$$

so if $\phi(x, \cdot)$ is concave and closed,

$$
w^{*}=\inf _{x \in X} \sup _{z \in \Re^{m}} \phi(x, z), \quad q^{*}=\sup _{z \in \Re^{m}} \inf _{x \in X} \phi(x, z)
$$

PROOF OF FORM OF DUAL FUNCTION

- Write $p(u)=\inf _{x \in X} p_{x}(u)$, where

$$
p_{x}(u)=\sup _{z \in Z}\left\{\phi(x, z)-u^{\prime} z\right\}, \quad x \in X,
$$

and note that
$\inf _{u \in \Re^{m}}\left\{p_{x}(u)+u^{\prime} \mu\right\}=-\sup _{u \in \Re^{m}}\left\{u^{\prime}(-\mu)-p_{x}(u)\right\}=-p_{x}^{\star}(-\mu)$
Except for a sign change, p_{x} is the conjugate of $(-\phi)(x, \cdot)$ [assuming $(-\hat{\mathrm{cl}} \phi)(x, \cdot)$ is proper], so

$$
p_{x}^{\star}(-\mu)=-(\hat{\mathrm{c}} \phi)(x, \mu) .
$$

Hence, for all $\mu \in \Re^{m}$,

$$
\begin{aligned}
q(\mu) & =\inf _{u \in \Re^{m}}\left\{p(u)+u^{\prime} \mu\right\} \\
& =\inf _{u \in \Re^{m}} \inf _{x \in X}\left\{p_{x}(u)+u^{\prime} \mu\right\} \\
& =\inf _{x \in X} \inf _{u \in \Re^{m}}\left\{p_{x}(u)+u^{\prime} \mu\right\} \\
& =\inf _{x \in X}\left\{-p_{x}^{\star}(-\mu)\right\} \\
& =\inf _{x \in X}(\hat{\operatorname{cll}} \phi)(x, \mu)
\end{aligned}
$$

DUALITY THEOREMS

- Assume that $w^{*}<\infty$ and that the set

$$
\bar{M}=\{(u, w) \mid \text { there exists } \bar{w} \text { with } \bar{w} \leq w \text { and }(u, \bar{w}) \in M\}
$$

is convex.

- Min Common/Max Crossing Theorem I: We have $q^{*}=w^{*}$ if and only if for every sequence $\left\{\left(u_{k}, w_{k}\right)\right\} \subset M$ with $u_{k} \rightarrow 0$, there holds

$$
w^{*} \leq \liminf _{k \rightarrow \infty} w_{k} .
$$

- Corollary: If $M=\operatorname{epi}(p)$ where p is closed proper convex and $p(0)<\infty$, then $q^{*}=w^{*}$.

DUALITY THEOREMS (CONTINUED)

- Min Common/Max Crossing Theorem II: Assume in addition that $-\infty<w^{*}$ and that

$$
D=\{u \mid \text { there exists } w \in \Re \text { with }(u, w) \in \bar{M}\}
$$

contains the origin in its relative interior. Then $q^{*}=w^{*}$ and there exists μ such that $q(\mu)=q^{*}$.

- Furthermore, the set $\left\{\mu \mid q(\mu)=q^{*}\right\}$ is nonempty and compact if and only if D contains the origin in its interior.
- Min Common/Max Crossing Theorem III: Involves polyhedral assumptions, and will be developed later.

PROOF OF THEOREM I

- Assume that $q^{*}=w^{*}$. Let $\left\{\left(u_{k}, w_{k}\right)\right\} \subset M$ be such that $u_{k} \rightarrow 0$. Then,
$q(\mu)=\inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\} \leq w_{k}+\mu^{\prime} u_{k}, \quad \forall k, \forall \mu \in \Re^{n}$
Taking the limit as $k \rightarrow \infty$, we obtain $q(\mu) \leq$ $\liminf _{k \rightarrow \infty} w_{k}$, for all $\mu \in \Re^{n}$, implying that

$$
w^{*}=q^{*}=\sup _{\mu \in \Re^{n}} q(\mu) \leq \liminf _{k \rightarrow \infty} w_{k}
$$

Conversely, assume that for every sequence $\left\{\left(u_{k}, w_{k}\right)\right\} \subset M$ with $u_{k} \rightarrow 0$, there holds $w^{*} \leq$ $\lim \inf _{k \rightarrow \infty} w_{k}$. If $w^{*}=-\infty$, then $q^{*}=-\infty$, by weak duality, so assume that $-\infty<w^{*}$. Steps:

- Step 1: $\left(0, w^{*}-\epsilon\right) \notin \operatorname{cl}(\bar{M})$ for any $\epsilon>0$.

PROOF OF THEOREM I (CONTINUED)

- Step 2: \bar{M} does not contain any vertical lines. If this were not so, $(0,-1)$ would be a direction of recession of $\operatorname{cl}(\bar{M})$. Because $\left(0, w^{*}\right) \in \operatorname{cl}(\bar{M})$, the entire halfline $\left\{\left(0, w^{*}-\epsilon\right) \mid \epsilon \geq 0\right\}$ belongs to $\mathrm{cl}(\bar{M})$, contradicting Step 1 .
- Step 3: For any $\epsilon>0$, since $\left(0, w^{*}-\epsilon\right) \notin \operatorname{cl}(\bar{M})$, there exists a nonvertical hyperplane strictly separating $\left(0, w^{*}-\epsilon\right)$ and \bar{M}. This hyperplane crosses the $(n+1)$ st axis at a vector $(0, \xi)$ with $w^{*}-\epsilon \leq$ $\xi \leq w^{*}$, so $w^{*}-\epsilon \leq q^{*} \leq w^{*}$. Since ϵ can be arbitrarily small, it follows that $q^{*}=w^{*}$.

PROOF OF THEOREM II

- Note that $\left(0, w^{*}\right)$ is not a relative interior point of \bar{M}. Therefore, by the Proper Separation Theorem, there is a hyperplane that passes through $\left(0, w^{*}\right)$, contains \bar{M} in one of its closed halfspaces, but does not fully contain \bar{M}, i.e., for some $(\mu, \beta) \neq$ $(0,0)$

$$
\begin{gathered}
\beta w^{*} \leq \mu^{\prime} u+\beta w, \quad \forall(u, w) \in \bar{M}, \\
\beta w^{*}<\sup _{(u, w) \in \bar{M}}\left\{\mu^{\prime} u+\beta w\right\}
\end{gathered}
$$

Will show that the hyperplane is nonvertical.

- Since for any $(\bar{u}, \bar{w}) \in M$, the set \bar{M} contains the halfline $\{(\bar{u}, w) \mid \bar{w} \leq w\}$, it follows that $\beta \geq 0$. If $\beta=0$, then $0 \leq \mu^{\prime} u$ for all $u \in D$. Since $0 \in \operatorname{ri}(D)$ by assumption, we must have $\mu^{\prime} u=0$ for all $u \in D$ a contradiction. Therefore, $\beta>0$, and we can assume that $\beta=1$. It follows that

$$
w^{*} \leq \inf _{(u, w) \in \bar{M}}\left\{\mu^{\prime} u+w\right\}=q(\mu) \leq q^{*}
$$

Since the inequality $q^{*} \leq w^{*}$ holds always, we must have $q(\mu)=q^{*}=w^{*}$.

NONLINEAR FARKAS' LEMMA

- Let $X \subset \Re^{n}, f: X \mapsto \Re$, and $g_{j}: X \mapsto \Re$, $j=1, \ldots, r$, be convex. Assume that

$$
f(x) \geq 0, \quad \forall x \in X \text { with } g(x) \leq 0
$$

Let

$$
Q^{*}=\left\{\mu \mid \mu \geq 0, f(x)+\mu^{\prime} g(x) \geq 0, \forall x \in X\right\} .
$$

Then Q^{*} is nonempty and compact if and only if there exists a vector $\bar{x} \in X$ such that $g_{j}(\bar{x})<0$ for all $j=1, \ldots, r$.

- The lemma asserts the existence of a nonvertical hyperplane in \Re^{r+1}, with normal $(\mu, 1)$, that passes through the origin and contains the set

$$
\{(g(x), f(x)) \mid x \in X\}
$$

in its positive halfspace.

PROOF OF NONLINEAR FARKAS' LEMMA

- Apply MC/MC to $M=\{(u, w) \mid$ there is $x \in X$ s. t. $g(x) \leq u, f(x) \leq w\}$

- M is equal to \bar{M} and is formed as the union of positive orthants translated to points $(g(x), f(x))$, $x \in X$.
- The convexity of X, f, and g_{j} implies convexity of M.
- MC/MC Theorem II applies: we have

$$
D=\{u \mid \text { there exists } w \in \Re \text { with }(u, w) \in \bar{M}\}
$$

