LECTURE 9

LECTURE OUTLINE

e Minimax problems and zero-sum games

e Min Common / Max Crossing duality for min-
imax and zero-sum games

e Min Common / Max Crossing duality theorems
e Strong duality conditions

e Existence of dual optimal solutions

Reading: Sections 3.4, 4.3, 4.4, 5.1
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REVIEW OF THE MC/MC FRAMEWORK

e Given set M C Rntl,

1>

w* = inf w, ¢g*= sup q(u inf {w+p'u
(O,w)EM LERT ( ) (u,w)EM{ }

¢ Weak Duality: ¢* < w*

e Important special case: M = epi(p). Then
w* = p(0), ¢* = p**(0), so we have w* = ¢* if p
is closed, proper, convex.

e Some applications:

— Constrained optimization: minge x 4(z)<o0 f(),
with p(U) — infocEX, g(x)<u f(ﬂi‘)

— Other optimization problems: Fenchel and
conic optimization

Y

— Useful theorems related to optimization: Farkas
lemma, theorems of the alternative

— Subgradient theory
— Minimax problems, 0-sum games
e Strong Duality: ¢* = w*. Requires that

M have some convexity structure, among other
conditions



MINIMAX PROBLEMS

Given ¢ : X X Z — R, where X C R, Z C ™

consider
minimize sup ¢(z, 2)
z€/

subject to x € X

or
maximize inf ¢(x, z)
reX

subject to z € Z.

e Some important contexts:
— Constrained optimization duality theory

— Zero sum game theory

e We always have

sup inf o¢(x,z) < inf sup ¢(x, z
ez xTeEX Qb( ) x€X ez ( )

e Key question: When does equality hold?



CONSTRAINED OPTIMIZATION DUALITY

e For the problem

minimize f(x)
subject to x € X, g(x) <0

introduce the Lagrangian function
Lz, p) = f(z) + p'g()

e Primal problem (equivalent to the original)

([ f(z) if g(z) <0,

min sup L(x, i) = <
rzeX u>0 ( ,U)

00 otherwise,

e Dual problem

inf L
el SR

e Key duality question: Is it true that

0
inf sup L(z, n) = w* g¢g* =sup inf L(x,
nf, sup (z, ) @7 =sup il (, )



ZERO SUM GAMES

e Two players: 1st chooses i € {1,...,n}, 2nd
chooses j € {1,...,m}.

e If 7 and j are selected, the 1st player gives a;;
to the 2nd.

e Mixed strategies are allowed: The two players
select probability distributions

T = (T1,...,%Tn), 2= (21,...,2m)

over their possible choices.

e Probability of (i,j) is x;z;, so the expected
amount to be paid by the 1st player

v/ Az = E Qi Ti%j
2]

where A is the n x m matrix with elements a;;.

e Fach player optimizes his choice against the

worst possible selection by the other player. So
— 1st player minimizes max, x’/ Az

— 2nd player maximizes min, 2’ Az



SADDLE POINTS

Definition: (z*,2*) is called a saddle point of ¢
if
d(x*, z) < p(x*, 2*) < oz, 2%), Vee X, Vzes

Proposition: (x*, z*) is a saddle point if and only
if the minimax equality holds and

x™ € arg min sup ¢(z,z), z* € argmax inf ¢(x,z) (*)
xe€X ez z€Z zeX

Proof: If (z*,2*) is a saddle point, then

inf sup ¢(z,2) < sup p(z*, 2) = p(a*, 2")

xeX ez zeZ
= inf ¢(z,2") < sup inf ¢(x, 2)

By the minimax inequality, the above holds as an
equality throughout, so the minimax equality and
Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup inf ¢(z,z) = inf p(z,z") < B(z", ")
zezx€eX zeX

< sup ¢(z”,2) = inf sup ¢(z, 2)
z€ 4 zeX ez

Using the minimax equ., (x*, z*) is a saddle point.



VISUALIZATION

The curve of maxima f(x,Z(x)) lies above the
curve of minima f(z(z), z), where

A

Z(z) = arg max f(zx, 2), z(z) = arg ml@n f(z, 2)

Saddle points correspond to points where these
two curves meet.



MINIMAX MC/MC FRAMEWORK

e Introduce perturbation function p : R™ —
[—O0,00]

p(u) = inf sup{d(z,z) — 'z}, u € RNM
TEX 2cZ

e Apply the MC/MC framework with M = epi(p).
If p is convex, closed, and proper, no duality gap.

e Introduce élgb, the concave closure of ¢ viewed
as a function of z for fixed x

e We have
sup 6(z,2) = sup (A)(x, ),
z€Z zeR™m
SO A
w* = p(0) = inf sup (cl¢)(zx, 2).
TEX ZeRpm

e The dual function can be shown to be

q(n) = inf (cl§)(z,p), ¥ p€Rm

so if ¢(x,-) is concave and closed,

w* = inf sup o(x, 2), g* = sup inf ¢(x, 2
TEX LeRm (2] ceRm v€X (@2)



PROOF OF FORM OF DUAL FUNCTION
e Write p(u) = inf__ ps(u), where

po(u) = Sup{qb(a:, z) — u’z}, x e X,
zZE€L

and note that

nf {pa(u)+u'pf = - sup {v (=) —pz(u) } = —pi(—p)

Except for a sign change, p; is the conjugate of
(—¢)(x, ) |assuming (—cl ¢)(z,-) is proper], so

pi(—p) = —(cl@)(x, ).
Hence, for all u € R,

q(p) = inf 1p(u) +u'p}

inf inf {ps(u) + w'p}
ueR™ xeX

inf inf {ps(u)+wpu}
reX ueR™

inf { —pi(—p)}

reX

— inf (A1) (z, 1)
reX



DUALITY THEOREMS

e Assume that w* < oo and that the set

M = {(u, w) | there exists w with w < w and (u,w) € M}

1S convex.

¢ Min Common/Max Crossing Theorem I:

We have ¢* = w* if and only if for every sequence
{(uk, wk)} C M with ug — 0, there holds

w* < lim inf wy,.
k— o0

M

w* = q* e o(Ukt1, Wyt1)
o (up, wy)

® o(Upy1, Wry1)

q* o (ug, wg)
M
!

0 U

{(uk,wk)} C M, up — 0, w* < liminf wg {(uk,wk)} C M, uxp — 0, w* > liminf wy

k—oo k—o0

e Corollary: If M = epi(p) where p is closed
proper convex and p(0) < oo, then ¢* = w*.



DUALITY THEOREMS (CONTINUED)

¢ Min Common/Max Crossing Theorem II:
Assume in addition that —oo < w* and that

D = {u | there exists w € R with (u,w) € M}

contains the origin in its relative interior. Then
qg* = w* and there exists yu such that q(u) = g*.

e Furthermore, the set {u | ¢(p) = ¢*} is nonempty
and compact if and only if D contains the origin
In 1ts interior.

¢ Min Common/Max Crossing Theorem
I1I: Involves polyhedral assumptions, and will be
developed later.



PROOF OF THEOREM 1

e Assume that ¢* = w*. Let {(uk,wk)} C M be

such that ug — 0. Then,

q(p) = : i%f M{w+u’u} < wgp+pug, Vk, VpeR?
u,w)E

Taking the limit as £k — oo, we obtain gq(u) <

liminfy .. wy, for all © € N7, implying that

w* = q* = sup q(u) < liminf wy
pER™ k— o0

Conversely, assume that for every sequence
{(uk,wk)} C M with u; — 0, there holds w* <
liminfr oo wg. If w* = —o0, then ¢* = —o0, by
weak duality, so assume that —oo < w*. Steps:

e Step 1: (0,w* —¢) & cl(M) for any € > 0.

o(UL+1, wk:+1)

w* — 6:
lim inf w;
k—oo

o o °(ur, W)

(Ukt1, Wrt1)




PROOF OF THEOREM I (CONTINUED)

e Step 2: M does not contain any vertical lines.
If this were not so, (0, —1) would be a direction

of recession of cl(M). Because (0,w*) € cl(M),
the entire halfline {(0,w* —¢€) | e > 0} belongs to

cl(M), contradicting Step 1.

e Step 3: For any € > 0, since (0, w*—e¢) ¢ cl(M),
there exists a nonvertical hyperplane strictly sepa-
rating (0, w* — ¢) and M. This hyperplane crosses
the (n 4 1)st axis at a vector (0, &) with w* —e <
£ < w*, so w* —e < g < w*. Since € can be
arbitrarily small, it follows that ¢* = w*.
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PROOF OF THEOREM 11

e Note that (0, w*) is not a relative interior point
of M. Therefore, by the Proper Separation The-
orem, there is a hyperplane that passes through
(0, w*), contains M in one of its closed halfspaces,
but does not fully contain M, i.e., for some (u, 3) #
(0,0)

Bw* < p'u + Pw, V (u,w) € M,

Bw* < sup {p'u+ fw}
(u,w)eM

Will show that the hyperplane is nonvertical.

e Since for any (u,w) € M, the set M contains the
halfline {(u,w) | w < w}, it follows that 3 > 0. If
B =0, then 0 < p/u for all w € D. Since 0 € ri(D)
by assumption, we must have p/u = 0 for allu € D
a contradiction. Therefore, 3 > 0, and we can
assume that 3 = 1. It follows that

w* < inf  {p'u+wh=q(p) < g*
(w,w)eM

Since the inequality ¢* < w* holds always, we
must have q(u) = ¢* = w*.



NONLINEAR FARKAS’ LEMMA

o let X CR" f:X+— R and g; : X — R,
7 =1,...,r, be convex. Assume that

f(x) >0, Ve X with g(x) <0
Let

Q*={u|p>0, f(z)+pg(x) >0,Vze X}

Then Q* is nonempty and compact if and only if
there exists a vector T € X such that g;(Z) < 0
forall j =1,...,r.

A A A
{W@f@)ze X} {G@ff@)|zeX}  {(g@)|f@)|zexX)

(b) ()

e The lemma asserts the existence of a nonverti-
cal hyperplane in ®7+1 with normal (u, 1), that
passes through the origin and contains the set

{(9(2), f(z)) |z € X}

in its positive halfspace.



PROOF OF NONLINEAR FARKAS’ LEMMA

e Apply MC/MC to

M = {(u,w) | there is x € X s. t. g(x) < u, f(x) < w}

wih

M = {(u,w) | there exists z € X
such that g(z) <u, f(z) < w}

L
\/(u, 1) b

e M is equal to M and is formed as the union of
positive orthants translated to points (g(z), f(z)),
e X,

e The convexity of X, f, and g; implies convexity
of M.

e MC/MC Theorem II applies: we have
D = {u | there exists w € R with (u,w) € M}

and 0 € int(D), because (¢(Z), f(T)) € M.



