
LECTURE 9

LECTURE OUTLINE

• Minimax problems and zero-sum games

• Min Common / Max Crossing duality for min-
imax and zero-sum games

• Min Common / Max Crossing duality theorems

• Strong duality conditions

• Existence of dual optimal solutions

Reading: Sections 3.4, 4.3, 4.4, 5.1
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REVIEW OF THE MC/MC FRAMEWORK

• Given set M ⊂ �n+1,

w∗ = inf
(0,w)∈M

w, q∗ = sup
µ∈�n

q(µ) �= inf
(u,w)∈M

{w+µ�u}

• Weak Duality: q∗ ≤ w∗

• Important special case: M = epi(p). Then
w∗ = p(0), q∗ = p��(0), so we have w∗ = q∗ if p
is closed, proper, convex.

• Some applications:
− Constrained optimization: minx∈X, g(x)≤0 f(x),

with p(u) = infx∈X, g(x)≤u f(x)
− Other optimization problems: Fenchel and

conic optimization
− Useful theorems related to optimization: Farkas’

lemma, theorems of the alternative
− Subgradient theory
− Minimax problems, 0-sum games

• Strong Duality: q∗ = w∗. Requires that
M have some convexity structure, among other
conditions



MINIMAX PROBLEMS

Given φ : X × Z �→ �, where X ⊂ �n, Z ⊂ �m

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

or
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.

• Some important contexts:
− Constrained optimization duality theory
− Zero sum game theory

• We always have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

• Key question: When does equality hold?



CONSTRAINED OPTIMIZATION DUALITY

• For the problem

minimize f(x)
subject to x ∈ X, g(x) ≤ 0

introduce the Lagrangian function

L(x, µ) = f(x) + µ�g(x)

• Primal problem (equivalent to the original)

min
x∈X

sup
µ≥0

L(x, µ) =






f(x) if g(x) ≤ 0,

∞ otherwise,

• Dual problem

max
µ≥0

inf
x∈X

L(x, µ)

• Key duality question: Is it true that

inf
x∈�n

sup
µ≥0

L(x, µ) = w∗
?
=

q∗ = sup
µ≥0

inf
x∈�n

L(x, µ)



ZERO SUM GAMES

• Two players: 1st chooses i ∈ {1, . . . , n}, 2nd
chooses j ∈ {1, . . . ,m}.
• If i and j are selected, the 1st player gives aij

to the 2nd.

• Mixed strategies are allowed: The two players
select probability distributions

x = (x1, . . . , xn), z = (z1, . . . , zm)

over their possible choices.

• Probability of (i, j) is xizj , so the expected
amount to be paid by the 1st player

x�Az =
�

i,j

aijxizj

where A is the n×m matrix with elements aij .

• Each player optimizes his choice against the
worst possible selection by the other player. So
− 1st player minimizes maxz x�Az

− 2nd player maximizes minx x�Az



SADDLE POINTS

Definition: (x∗, z∗) is called a saddle point of φ
if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z

Proposition: (x∗, z∗) is a saddle point if and only
if the minimax equality holds and

x∗ ∈ arg min
x∈X

sup
z∈Z

φ(x, z), z∗ ∈ arg max
z∈Z

inf
x∈X

φ(x, z) (*)

Proof: If (x∗, z∗) is a saddle point, then

inf
x∈X

sup
z∈Z

φ(x, z) ≤ sup
z∈Z

φ(x∗, z) = φ(x∗, z∗)

= inf
x∈X

φ(x, z∗) ≤ sup
z∈Z

inf
x∈X

φ(x, z)

By the minimax inequality, the above holds as an
equality throughout, so the minimax equality and
Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

φ(x, z∗) ≤ φ(x∗, z∗)

≤ sup
z∈Z

φ(x∗, z) = inf
x∈X

sup
z∈Z

φ(x, z)

Using the minimax equ., (x∗, z∗) is a saddle point.



VISUALIZATION

x

z

Curve of maxima

Curve of minima

f (x,z)

Saddle point
(x*,z*)

^f (x(z),z)

f (x,z(x))^

The curve of maxima f(x, ẑ(x)) lies above the
curve of minima f(x̂(z), z), where

ẑ(x) = arg max
z

f(x, z), x̂(z) = arg min
x

f(x, z)

Saddle points correspond to points where these
two curves meet.



MINIMAX MC/MC FRAMEWORK

• Introduce perturbation function p : �m �→
[−∞,∞]

p(u) = inf
x∈X

sup
z∈Z

�
φ(x, z)− u�z

�
, u ∈ �m

• Apply the MC/MC framework with M = epi(p).
If p is convex, closed, and proper, no duality gap.

• Introduce ĉlφ, the concave closure of φ viewed
as a function of z for fixed x

• We have

sup
z∈Z

φ(x, z) = sup
z∈�m

(ĉlφ)(x, z),
so

w∗ = p(0) = inf
x∈X

sup
z∈�m

(ĉl φ)(x, z).

• The dual function can be shown to be

q(µ) = inf
x∈X

(ĉl φ)(x, µ), ∀ µ ∈ �m

so if φ(x, ·) is concave and closed,

w∗ = inf
x∈X

sup
z∈�m

φ(x, z), q∗ = sup
z∈�m

inf
x∈X

φ(x, z)



PROOF OF FORM OF DUAL FUNCTION

• Write p(u) = infx∈X px(u), where

px(u) = sup
z∈Z

�
φ(x, z)− u�z

�
, x ∈ X,

and note that

inf
u∈�m

�
px(u)+u�µ

�
= − sup

u∈�m

�
u�(−µ)−px(u)

�
= −p�

x(−µ)

Except for a sign change, px is the conjugate of
(−φ)(x, ·) [assuming (−ĉlφ)(x, ·) is proper], so

p�
x(−µ) = −(ĉl φ)(x, µ).

Hence, for all µ ∈ �m,

q(µ) = inf
u∈�m

�
p(u) + u�µ

�

= inf
u∈�m

inf
x∈X

�
px(u) + u�µ

�

= inf
x∈X

inf
u∈�m

�
px(u) + u�µ

�

= inf
x∈X

�
− p�

x(−µ)
�

= inf
x∈X

(ĉlφ)(x, µ)



DUALITY THEOREMS

• Assume that w∗ <∞ and that the set

M =
�

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
�

is convex.

• Min Common/Max Crossing Theorem I:
We have q∗ = w∗ if and only if for every sequence�
(uk, wk)

�
⊂M with uk → 0, there holds

w∗ ≤ lim inf
k→∞

wk.
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Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

To describe mathematically the max crossing problem, we recall that
a nonvertical hyperplane in �n+1 is specified by its normal vector (µ, 1) ∈
�n+1, and a scalar ξ as

Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
.

Such a hyperplane crosses the (n+1)st axis at (0, ξ). For M to be contained
in the “upper” closed halfspace that corresponds to Hµ,ξ [the one that
contains the vertical halfline

�
(0, w) | w ≥ 0

�
in its recession cone], it is

necessary and sufficient that

ξ ≤ w + µ�u, ∀ (u, w) ∈ M,

or equivalently
ξ ≤ inf

(u,w)∈M
{w + µ�u}.

For a fixed normal (µ, 1), the maximum crossing level ξ over all hyperplanes
Hµ,ξ is denoted by q(µ) and is given by

q(µ) = inf
(u,w)∈M

{w + µ�u}; (4.2)

(see Fig. 4.1.2). The max crossing problem is to maximize over all µ ∈ �n

the maximum crossing level corresponding to µ, i.e.,

maximize q(µ)
subject to µ ∈ �n.

(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
µ∈�n

q(µ),

and we refer to q(µ) as the crossing or dual function.
Note that both w∗ and q∗ remain unaffected if M is replaced by its

“upwards extension”

M = M +
�
(0, w) | w ≥ 0

�

=
�
(u, w) | there exists w with w ≤ w and (u, w) ∈ M

� (4.4)

(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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• Corollary: If M = epi(p) where p is closed
proper convex and p(0) <∞, then q∗ = w∗.
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Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

To describe mathematically the max crossing problem, we recall that
a nonvertical hyperplane in �n+1 is specified by its normal vector (µ, 1) ∈
�n+1, and a scalar ξ as

Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
.

Such a hyperplane crosses the (n+1)st axis at (0, ξ). For M to be contained
in the “upper” closed halfspace that corresponds to Hµ,ξ [the one that
contains the vertical halfline

�
(0, w) | w ≥ 0

�
in its recession cone], it is

necessary and sufficient that

ξ ≤ w + µ�u, ∀ (u, w) ∈ M,

or equivalently
ξ ≤ inf

(u,w)∈M
{w + µ�u}.

For a fixed normal (µ, 1), the maximum crossing level ξ over all hyperplanes
Hµ,ξ is denoted by q(µ) and is given by

q(µ) = inf
(u,w)∈M

{w + µ�u}; (4.2)

(see Fig. 4.1.2). The max crossing problem is to maximize over all µ ∈ �n

the maximum crossing level corresponding to µ, i.e.,

maximize q(µ)
subject to µ ∈ �n.

(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
µ∈�n

q(µ),

and we refer to q(µ) as the crossing or dual function.
Note that both w∗ and q∗ remain unaffected if M is replaced by its

“upwards extension”

M = M +
�
(0, w) | w ≥ 0

�

=
�
(u, w) | there exists w with w ≤ w and (u, w) ∈ M

� (4.4)

(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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• Furthermore, the set {µ | q(µ) = q∗} is nonempty
and compact if and only if D contains the origin
in its interior.

• Min Common/Max Crossing Theorem
III: Involves polyhedral assumptions, and will be
developed later.
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• Assume that q∗ = w∗. Let
�
(uk, wk)

�
⊂ M be

such that uk → 0. Then,

q(µ) = inf
(u,w)∈M

{w+µ�u} ≤ wk+µ�uk, ∀ k, ∀ µ ∈ �n

Taking the limit as k → ∞, we obtain q(µ) ≤
lim infk→∞ wk, for all µ ∈ �n, implying that

w∗ = q∗ = sup
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q(µ) ≤ lim inf
k→∞
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Conversely, assume that for every sequence�
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�
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. If w∗ = −∞, then q∗ = −∞, by
weak duality, so assume that −∞ < w∗. Steps:

• Step 1: (0, w∗ − �) /∈ cl(M) for any � > 0.
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Its optimal value is denoted by w∗, i.e.,

w∗ = inf
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(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
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Note that both w∗ and q∗ remain unaffected if M is replaced by its
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�
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� (4.4)

(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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• Step 2: M does not contain any vertical lines.
If this were not so, (0,−1) would be a direction
of recession of cl(M). Because (0, w∗) ∈ cl(M),
the entire halfline

�
(0, w∗ − �) | � ≥ 0

�
belongs to

cl(M), contradicting Step 1.

• Step 3: For any � > 0, since (0, w∗−�) /∈ cl(M),
there exists a nonvertical hyperplane strictly sepa-
rating (0, w∗− �) and M . This hyperplane crosses
the (n + 1)st axis at a vector (0, ξ) with w∗ − � ≤
ξ ≤ w∗, so w∗ − � ≤ q∗ ≤ w∗. Since � can be
arbitrarily small, it follows that q∗ = w∗.
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Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
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fx(d) d
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Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave

1

�
g(x), f(x)

�
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1 (y) f�
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Primal description: Values f(x) Dual description: Crossing points f�(y)
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f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
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inf
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Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave

1



PROOF OF THEOREM II

• Note that (0, w∗) is not a relative interior point
of M . Therefore, by the Proper Separation The-
orem, there is a hyperplane that passes through
(0, w∗), contains M in one of its closed halfspaces,
but does not fully contain M , i.e., for some (µ, β) �=
(0, 0)

βw∗ ≤ µ�u + βw, ∀ (u,w) ∈M,

βw∗ < sup
(u,w)∈M

{µ�u + βw}

Will show that the hyperplane is nonvertical.

• Since for any (u,w) ∈M , the set M contains the
halfline

�
(u,w) | w ≤ w

�
, it follows that β ≥ 0. If

β = 0, then 0 ≤ µ�u for all u ∈ D. Since 0 ∈ ri(D)
by assumption, we must have µ�u = 0 for all u ∈ D
a contradiction. Therefore, β > 0, and we can
assume that β = 1. It follows that

w∗ ≤ inf
(u,w)∈M

{µ�u + w} = q(µ) ≤ q∗

Since the inequality q∗ ≤ w∗ holds always, we
must have q(µ) = q∗ = w∗.



NONLINEAR FARKAS’ LEMMA

• Let X ⊂ �n, f : X �→ �, and gj : X �→ �,
j = 1, . . . , r, be convex. Assume that

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0

Let

Q∗ =
�
µ | µ ≥ 0, f(x) + µ�g(x) ≥ 0, ∀ x ∈ X

�
.

Then Q∗ is nonempty and compact if and only if
there exists a vector x ∈ X such that gj(x) < 0
for all j = 1, . . . , r.
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: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈�n
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f(x) − x�y
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=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)
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Outer Linearization of f
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x∈X
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Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w
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q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
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• The lemma asserts the existence of a nonverti-
cal hyperplane in �r+1, with normal (µ, 1), that
passes through the origin and contains the set

��
g(x), f(x)

�
| x ∈ X

�

in its positive halfspace.
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Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z
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x∈X
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z∈Z
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x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
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z∈Z
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Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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1

• M is equal to M and is formed as the union of
positive orthants translated to points

�
g(x), f(x)

�
,

x ∈ X.

• The convexity of X, f , and gj implies convexity
of M .

• MC/MC Theorem II applies: we have

D =
�
u | there exists w ∈ � with (u,w) ∈M

�

and 0 ∈ int(D), because
�
g(x), f(x)

�
∈M .


