LECTURE 10

LECTURE OUTLINE

- Min Common/Max Crossing Th. III
- Nonlinear Farkas Lemma/Linear Constraints
- Linear Programming Duality
- Convex Programming Duality
- Optimality Conditions

Reading: Sections 4.5, 5.1,5.2, 5.3.1, 5.3.2
Recall the MC/MC Theorem II: If $-\infty<w^{*}$ and
$0 \in \operatorname{ri}(D)=\{u \mid$ there exists $w \in \Re$ with $(u, w) \in \bar{M}\}$
then $q^{*}=w^{*}$ and there exists μ s. t. $q(\mu)=q^{*}$.

MC/MC TH. III - POLYHEDRAL

- Consider the MC/MC problems, and assume that $-\infty<w^{*}$ and:
(1) \bar{M} is a "horizontal translation" of \tilde{M} by $-P$,

$$
\bar{M}=\tilde{M}-\{(u, 0) \mid u \in P\}
$$

where P : polyhedral and \tilde{M} : convex.

(2) We have $\operatorname{ri}(\tilde{D}) \cap P \neq \varnothing$, where

$$
\tilde{D}=\{u \mid \text { there exists } w \in \Re \text { with }(u, w) \in \tilde{M}\}
$$

Then $q^{*}=w^{*}$, there is a max crossing solution, and all max crossing solutions $\bar{\mu}$ satisfy $\bar{\mu}^{\prime} d \leq 0$ for all $d \in R_{P}$.

- Comparison with Th. II: Since $D=\tilde{D}-P$, the condition $0 \in \operatorname{ri}(D)$ of Theorem II is

$$
\operatorname{ri}(\tilde{D}) \cap \operatorname{ri}(P) \neq \varnothing
$$

PROOF OF MC/MC TH. III

- Consider the disjoint convex sets $C_{1}=\{(u, v) \mid$ $v>w$ for some $(u, w) \in \tilde{M}\}$ and $C_{2}=\left\{\left(u, w^{*}\right) \mid\right.$ $u \in P\}\left[u \in P\right.$ and $(u, w) \in \tilde{M}$ with $w^{*}>w$ contradicts the definition of w^{*}]

- Since C_{2} is polyhedral, there exists a separating hyperplane not containing C_{1}, i.e., a $(\bar{\mu}, \beta) \neq$ $(0,0)$ such that

$$
\begin{gathered}
\beta w^{*}+\bar{\mu}^{\prime} z \leq \beta v+\bar{\mu}^{\prime} x, \quad \forall(x, v) \in C_{1}, \forall z \in P \\
\inf _{(x, v) \in C_{1}}\left\{\beta v+\bar{\mu}^{\prime} x\right\}<\sup _{(x, v) \in C_{1}}\left\{\beta v+\bar{\mu}^{\prime} x\right\}
\end{gathered}
$$

Since $(0,1)$ is a direction of recession of C_{1}, we see that $\beta \geq 0$. Because of the relative interior point assumption, $\beta \neq 0$, so we may assume that $\beta=1$.

PROOF (CONTINUED)

- Hence,

$$
w^{*}+\bar{\mu}^{\prime} z \leq \inf _{(u, v) \in C_{1}}\left\{v+\bar{\mu}^{\prime} u\right\}, \quad \forall z \in P
$$

so that

$$
\begin{aligned}
w^{*} & \leq \inf _{(u, v) \in C_{1}, z \in P}\left\{v+\bar{\mu}^{\prime}(u-z)\right\} \\
& =\inf _{(u, v) \in \tilde{M}-P}\left\{v+\bar{\mu}^{\prime} u\right\} \\
& =\inf _{(u, v) \in \bar{M}}\left\{v+\bar{\mu}^{\prime} u\right\} \\
& =q(\bar{\mu})
\end{aligned}
$$

Using $q^{*} \leq w^{*}$ (weak duality), we have $q(\bar{\mu})=$ $q^{*}=w^{*}$.

Proof that all max crossing solutions $\bar{\mu}$ satisfy $\bar{\mu}^{\prime} d \leq 0$ for all $d \in R_{P}$: follows from

$$
q(\mu)=\inf _{(u, v) \in C_{1}, z \in P}\left\{v+\mu^{\prime}(u-z)\right\}
$$

so that $q(\mu)=-\infty$ if $\mu^{\prime} d>0$. Q.E.D.

- Geometrical intuition: every $(0,-d)$ with $d \in$ R_{P}, is direction of recession of \bar{M}.

MC/MC TH. III - A SPECIAL CASE

- Consider the MC/MC framework, and assume:
(1) For a convex function $f: \Re^{m} \mapsto(-\infty, \infty]$, an $r \times m$ matrix A, and a vector $b \in \Re^{r}$:
$\bar{M}=\{(u, w) \mid$ for some $(x, w) \in \operatorname{epi}(f), A x-b \leq u\}$
so $\bar{M}=\tilde{M}+$ Positive Orthant, where

$$
\tilde{M}=\{(A x-b, w) \mid(x, w) \in \operatorname{epi}(f)\}
$$

(2) There is an $\bar{x} \in \operatorname{ri}(\operatorname{dom}(f))$ s. t. $A \bar{x}-b \leq 0$. Then $q^{*}=w^{*}$ and there is a $\mu \geq 0$ with $q(\mu)=q^{*}$.

- Also $\bar{M}=M \approx \operatorname{epi}(p)$, where $p(u)=\inf _{A x-b \leq u} f(x)$.
- We have $w^{*}=p(0)=\inf _{A x-b \leq 0} f(x)$.

NONL. FARKAS' L. - POLYHEDRAL ASSUM.

- Let $X \subset \Re^{n}$ be convex, and $f: X \mapsto \Re$ and g_{j} : $\Re^{n} \mapsto \Re, j=1, \ldots, r$, be linear so $g(x)=A x-b$ for some A and b. Assume that

$$
f(x) \geq 0, \quad \forall x \in X \text { with } A x-b \leq 0
$$

Let
$Q^{*}=\left\{\mu \mid \mu \geq 0, f(x)+\mu^{\prime}(A x-b) \geq 0, \forall x \in X\right\}$.
Assume that there exists a vector $\bar{x} \in \operatorname{ri}(X)$ such that $A \bar{x}-b \leq 0$. Then Q^{*} is nonempty.

Proof: As before, apply special case of MC/MC Th. III of preceding slide, using the fact $w^{*} \geq 0$, implied by the assumption.

(LINEAR) FARKAS' LEMMA

- Let A be an $m \times n$ matrix and $c \in \Re^{m}$. The system $A y=c, y \geq 0$ has a solution if and only if

$$
\begin{equation*}
A^{\prime} x \leq 0 \quad \Rightarrow \quad c^{\prime} x \leq 0 \tag{*}
\end{equation*}
$$

- Alternative/Equivalent Statement: If $P=$ cone $\left\{a_{1}, \ldots, a_{n}\right\}$, where a_{1}, \ldots, a_{n} are the columns of A, then $P=\left(P^{*}\right)^{*}$ (Polar Cone Theorem).

Proof: If $y \in \Re^{n}$ is such that $A y=c, y \geq 0$, then $y^{\prime} A^{\prime} x=c^{\prime} x$ for all $x \in \Re^{m}$, which implies Eq. $\left(^{*}\right)$. Conversely, apply the Nonlinear Farkas' Lemma with $f(x)=-c^{\prime} x, g(x)=A^{\prime} x$, and $X=\Re^{m}$. Condition (*) implies the existence of $\mu \geq 0$ such that

$$
-c^{\prime} x+\mu^{\prime} A^{\prime} x \geq 0, \quad \forall x \in \Re^{m}
$$

or equivalently

$$
(A \mu-c)^{\prime} x \geq 0, \quad \forall x \in \Re^{m},
$$

or $A \mu=c$.

LINEAR PROGRAMMING DUALITY

- Consider the linear program
minimize $c^{\prime} x$
subject to $a_{j}^{\prime} x \geq b_{j}, \quad j=1, \ldots, r$,
where $c \in \Re^{n}, a_{j} \in \Re^{n}$, and $b_{j} \in \Re, j=1, \ldots, r$.
- The dual problem is
maximize $b^{\prime} \mu$
subject to $\quad \sum_{j=1}^{r} a_{j} \mu_{j}=c, \quad \mu \geq 0$.
- Linear Programming Duality Theorem:
(a) If either f^{*} or q^{*} is finite, then $f^{*}=q^{*}$ and both the primal and the dual problem have optimal solutions.
(b) If $f^{*}=-\infty$, then $q^{*}=-\infty$.
(c) If $q^{*}=\infty$, then $f^{*}=\infty$.

Proof: (b) and (c) follow from weak duality. For part (a): If f^{*} is finite, there is a primal optimal solution x^{*}, by existence of solutions of quadratic programs. Use Farkas' Lemma to construct a dual feasible μ^{*} such that $c^{\prime} x^{*}=b^{\prime} \mu^{*}$ (next slide).

PROOF OF LP DUALITY (CONTINUED)

- Let x^{*} be a primal optimal solution, and let $J=\left\{j \mid a_{j}^{\prime} x^{*}=b_{j}\right\}$. Then, $c^{\prime} y \geq 0$ for all y in the cone of "feasible directions"

$$
D=\left\{y \mid a_{j}^{\prime} y \geq 0, \forall j \in J\right\}
$$

By Farkas' Lemma, for some scalars $\mu_{j}^{*} \geq 0, c$ can be expressed as
$c=\sum_{j=1}^{r} \mu_{j}^{*} a_{j}, \quad \mu_{j}^{*} \geq 0, \forall j \in J, \quad \mu_{j}^{*}=0, \forall j \notin J$.
Taking inner product with x^{*}, we obtain $c^{\prime} x^{*}=$ $b^{\prime} \mu^{*}$, which in view of $q^{*} \leq f^{*}$, shows that $q^{*}=f^{*}$ and that μ^{*} is optimal.

LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors $\left(x^{*}, \mu^{*}\right)$ form a primal and dual optimal solution pair if and only if x^{*} is primalfeasible, μ^{*} is dual-feasible, and

$$
\mu_{j}^{*}\left(b_{j}-a_{j}^{\prime} x^{*}\right)=0, \quad \forall j=1, \ldots, r . \quad(*)
$$

Proof: If x^{*} is primal-feasible and μ^{*} is dualfeasible, then

$$
\begin{aligned}
b^{\prime} \mu^{*} & =\sum_{j=1}^{r} b_{j} \mu_{j}^{*}+\left(c-\sum_{j=1}^{r} a_{j} \mu_{j}^{*}\right)^{\prime} x^{*} \\
& =c^{\prime} x^{*}+\sum_{j=1}^{r} \mu_{j}^{*}\left(b_{j}-a_{j}^{\prime} x^{*}\right)
\end{aligned}
$$

So if Eq. $\left(^{*}\right)$ holds, we have $b^{\prime} \mu^{*}=c^{\prime} x^{*}$, and weak duality implies that x^{*} is primal optimal and μ^{*} is dual optimal.

Conversely, if $\left(x^{*}, \mu^{*}\right)$ form a primal and dual optimal solution pair, then x^{*} is primal-feasible, μ^{*} is dual-feasible, and by the duality theorem, we have $b^{\prime} \mu^{*}=c^{\prime} x^{*}$. From Eq. ${ }^{(* *)}$, we obtain Eq. (*).

CONVEX PROGRAMMING

Consider the problem

minimize $f(x)$

subject to $x \in X, g_{j}(x) \leq 0, j=1, \ldots, r$,
where $X \subset \Re^{n}$ is convex, and $f: X \mapsto \Re$ and $g_{j}: X \mapsto \Re$ are convex. Assume f^{*} : finite.

- Recall the connection with the max crossing problem in the MC/MC framework where $M=$ epi (p) with

$$
p(u)=\inf _{x \in X, g(x) \leq u} f(x)
$$

- Consider the Lagrangian function

$$
L(x, \mu)=f(x)+\mu^{\prime} g(x),
$$

the dual function

$$
q(\mu)= \begin{cases}\inf _{x \in X} L(x, \mu) & \text { if } \mu \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

and the dual problem of maximizing $\inf _{x \in X} L(x, \mu)$ over $\mu \geq 0$.

STRONG DUALITY THEOREM

- Assume that f^{*} is finite, and that one of the following two conditions holds:
(1) There exists $\bar{x} \in X$ such that $g(\bar{x})<0$.
(2) The functions $g_{j}, j=1, \ldots, r$, are affine, and there exists $\bar{x} \in \operatorname{ri}(X)$ such that $g(\bar{x}) \leq 0$.

Then $q^{*}=f^{*}$ and the set of optimal solutions of the dual problem is nonempty. Under condition (1) this set is also compact.

- Proof: Replace $f(x)$ by $f(x)-f^{*}$ so that $f(x)-f^{*} \geq 0$ for all $x \in X \mathrm{w} / g(x) \leq 0$. Apply Nonlinear Farkas' Lemma. Then, there exist $\mu_{j}^{*} \geq 0$, s.t.

$$
f^{*} \leq f(x)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x), \quad \forall x \in X
$$

- It follows that

$$
f^{*} \leq \inf _{x \in X}\left\{f(x)+\mu^{* \prime} g(x)\right\} \leq \inf _{x \in X, g(x) \leq 0} f(x)=f^{*} .
$$

Thus equality holds throughout, and we have

$$
f^{*}=\inf _{x \in X}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x)\right\}=q\left(\mu^{*}\right)
$$

QUADRATIC PROGRAMMING DUALITY

- Consider the quadratic program

$$
\begin{aligned}
& \text { minimize } \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
& \text { subject to } A x \leq b,
\end{aligned}
$$

where Q is positive definite.

- If f^{*} is finite, then $f^{*}=q^{*}$ and there exist both primal and dual optimal solutions, since the constraints are linear.
- Calculation of dual function:

$$
q(\mu)=\inf _{x \in \Re^{n}}\left\{\frac{1}{2} x^{\prime} Q x+c^{\prime} x+\mu^{\prime}(A x-b)\right\}
$$

The infimum is attained for $x=-Q^{-1}\left(c+A^{\prime} \mu\right)$, and, after substitution and calculation,

$$
q(\mu)=-\frac{1}{2} \mu^{\prime} A Q^{-1} A^{\prime} \mu-\mu^{\prime}\left(b+A Q^{-1} c\right)-\frac{1}{2} c^{\prime} Q^{-1} c
$$

- The dual problem, after a sign change, is

$$
\begin{aligned}
& \operatorname{minimize} \quad \frac{1}{2} \mu^{\prime} P \mu+t^{\prime} \mu \\
& \text { subject to } \mu \geq 0,
\end{aligned}
$$

where $P=A Q^{-1} A^{\prime}$ and $t=b+A Q^{-1} c$.

OPTIMALITY CONDITIONS

- We have $q^{*}=f^{*}$, and the vectors x^{*} and μ^{*} are optimal solutions of the primal and dual problems, respectively, iff x^{*} is feasible, $\mu^{*} \geq 0$, and

$$
\begin{equation*}
x^{*} \in \arg \min _{x \in X} L\left(x, \mu^{*}\right), \quad \mu_{j}^{*} g_{j}\left(x^{*}\right)=0, \quad \forall j . \tag{1}
\end{equation*}
$$

Proof: If $q^{*}=f^{*}$, and x^{*}, μ^{*} are optimal, then

$$
\begin{aligned}
f^{*}=q^{*}=q\left(\mu^{*}\right) & =\inf _{x \in X} L\left(x, \mu^{*}\right) \leq L\left(x^{*}, \mu^{*}\right) \\
& =f\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}\left(x^{*}\right) \leq f\left(x^{*}\right)
\end{aligned}
$$

where the last inequality follows from $\mu_{j}^{*} \geq 0$ and $g_{j}\left(x^{*}\right) \leq 0$ for all j. Hence equality holds throughout above, and (1) holds.

Conversely, if x^{*}, μ^{*} are feasible, and (1) holds,

$$
\begin{aligned}
q\left(\mu^{*}\right) & =\inf _{x \in X} L\left(x, \mu^{*}\right)=L\left(x^{*}, \mu^{*}\right) \\
& =f\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}\left(x^{*}\right)=f\left(x^{*}\right),
\end{aligned}
$$

so $q^{*}=f^{*}$, and x^{*}, μ^{*} are optimal. Q.E.D.

QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program

$$
\begin{aligned}
& \text { minimize } \frac{1}{2} x^{\prime} Q x+c^{\prime} x \\
& \text { subject to } A x \leq b,
\end{aligned}
$$

where Q is positive definite, $\left(x^{*}, \mu^{*}\right)$ is a primal and dual optimal solution pair if and only if:

- Primal and dual feasibility holds:

$$
A x^{*} \leq b, \quad \mu^{*} \geq 0
$$

- Lagrangian optimality holds $\left[x^{*}\right.$ minimizes $L\left(x, \mu^{*}\right)$ over $\left.x \in \Re^{n}\right]$. This yields

$$
x^{*}=-Q^{-1}\left(c+A^{\prime} \mu^{*}\right)
$$

- Complementary slackness holds $\left[\left(A x^{*}-b\right)^{\prime} \mu^{*}=\right.$ $0]$. It can be written as

$$
\mu_{j}^{*}>0 \quad \Rightarrow \quad a_{j}^{\prime} x^{*}=b_{j}, \quad \forall j=1, \ldots, r,
$$

where a_{j}^{\prime} is the j th row of A, and b_{j} is the j th component of b.

LINEAR EQUALITY CONSTRAINTS

- The problem is minimize $\quad f(x)$ subject to $x \in X, \quad g(x) \leq 0, \quad A x=b$,
where X is convex, $g(x)=\left(g_{1}(x), \ldots, g_{r}(x)\right)^{\prime}, f$: $X \mapsto \Re$ and $g_{j}: X \mapsto \Re, j=1, \ldots, r$, are convex.
- Convert the constraint $A x=b$ to $A x \leq b$ and $-A x \leq-b$, with corresponding dual variables $\lambda^{+} \geq 0$ and $\lambda^{-} \geq 0$.
- The Lagrangian function is

$$
f(x)+\mu^{\prime} g(x)+\left(\lambda^{+}-\lambda^{-}\right)^{\prime}(A x-b),
$$

and by introducing a dual variable $\lambda=\lambda^{+}-\lambda^{-}$, with no sign restriction, it can be written as

$$
L(x, \mu, \lambda)=f(x)+\mu^{\prime} g(x)+\lambda^{\prime}(A x-b) .
$$

- The dual problem is
maximize $\quad q(\mu, \lambda) \equiv \inf _{x \in X} L(x, \mu, \lambda)$ subject to $\mu \geq 0, \lambda \in \Re^{m}$.

DUALITY AND OPTIMALITY COND.

- Pure equality constraints:
(a) Assume that f^{*} : finite and there exists $\bar{x} \in$ $\operatorname{ri}(X)$ such that $A \bar{x}=b$. Then $f^{*}=q^{*}$ and there exists a dual optimal solution.
(b) $f^{*}=q^{*}$, and $\left(x^{*}, \lambda^{*}\right)$ are a primal and dual optimal solution pair if and only if x^{*} is feasible, and

$$
x^{*} \in \arg \min _{x \in X} L\left(x, \lambda^{*}\right)
$$

Note: No complementary slackness for equality constraints.

- Linear and nonlinear constraints:
(a) Assume f^{*} : finite, that there exists $\bar{x} \in X$ such that $A \bar{x}=b$ and $g(\bar{x})<0$, and that there exists $\tilde{x} \in \operatorname{ri}(X)$ such that $A \tilde{x}=b$. Then $q^{*}=f^{*}$ and there exists a dual optimal solution.
(b) $f^{*}=q^{*}$, and $\left(x^{*}, \mu^{*}, \lambda^{*}\right)$ are a primal and dual optimal solution pair if and only if x^{*} is feasible, $\mu^{*} \geq 0$, and

$$
x^{*} \in \arg \min _{x \in X} L\left(x, \mu^{*}, \lambda^{*}\right), \mu_{j}^{*} g_{j}\left(x^{*}\right)=0, \quad \forall j
$$

