LECTURE 10

LECTURE OUTLINE

- Min Common/Max Crossing Th. III
- Nonlinear Farkas Lemma/Linear Constraints
- Linear Programming Duality
- Convex Programming Duality
- Optimality Conditions

Reading: Sections 4.5, 5.1,5.2, 5.3.1, 5.3.2

Recall the MC/MC Theorem II: If $-\infty < w^*$ and

 $0 \in \operatorname{ri}(D) = \{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in \overline{M} \}$

then $q^* = w^*$ and there exists μ s. t. $q(\mu) = q^*$.

MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume that $-\infty < w^*$ and:

(1) \overline{M} is a "horizontal translation" of \tilde{M} by -P,

$$\overline{M} = \tilde{M} - \{(u,0) \mid u \in P\},\$$

where P: polyhedral and \tilde{M} : convex.

(2) We have $\operatorname{ri}(\tilde{D}) \cap P \neq \emptyset$, where

 $\tilde{D} = \left\{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in \tilde{M} \right\}$

Then $q^* = w^*$, there is a max crossing solution, and all max crossing solutions $\overline{\mu}$ satisfy $\overline{\mu}' d \leq 0$ for all $d \in R_P$.

• Comparison with Th. II: Since $D = \tilde{D} - P$, the condition $0 \in ri(D)$ of Theorem II is

 $\operatorname{ri}(\tilde{D}) \cap \operatorname{ri}(P) \neq \emptyset$

PROOF OF MC/MC TH. III

• Consider the disjoint convex sets $C_1 = \{(u, v) \mid v > w \text{ for some } (u, w) \in \tilde{M} \}$ and $C_2 = \{(u, w^*) \mid u \in P \}$ $[u \in P \text{ and } (u, w) \in \tilde{M} \text{ with } w^* > w \text{ contradicts the definition of } w^*]$

• Since C_2 is polyhedral, there exists a separating hyperplane not containing C_1 , i.e., a $(\overline{\mu}, \beta) \neq$ (0,0) such that

$$\beta w^* + \overline{\mu}' z \le \beta v + \overline{\mu}' x, \quad \forall \ (x,v) \in C_1, \ \forall \ z \in P$$
$$\inf_{(x,v) \in C_1} \left\{ \beta v + \overline{\mu}' x \right\} < \sup_{(x,v) \in C_1} \left\{ \beta v + \overline{\mu}' x \right\}$$

Since (0, 1) is a direction of recession of C_1 , we see that $\beta \ge 0$. Because of the relative interior point assumption, $\beta \ne 0$, so we may assume that $\beta = 1$.

PROOF (CONTINUED)

• Hence,

$$w^* + \overline{\mu}' z \le \inf_{(u,v) \in C_1} \{ v + \overline{\mu}' u \}, \qquad \forall \ z \in P,$$

so that

$$w^* \leq \inf_{\substack{(u,v)\in C_1, z\in P}} \{v + \overline{\mu}'(u-z)\}$$
$$= \inf_{\substack{(u,v)\in \tilde{M}-P}} \{v + \overline{\mu}'u\}$$
$$= \inf_{\substack{(u,v)\in \overline{M}}} \{v + \overline{\mu}'u\}$$
$$= q(\overline{\mu})$$

Using $q^* \leq w^*$ (weak duality), we have $q(\overline{\mu}) = q^* = w^*$.

Proof that all max crossing solutions $\overline{\mu}$ satisfy $\overline{\mu}' d \leq 0$ for all $d \in R_P$: follows from

$$q(\mu) = \inf_{(u,v)\in C_1, z\in P} \{v + \mu'(u-z)\}$$

so that $q(\mu) = -\infty$ if $\mu' d > 0$. **Q.E.D.**

• Geometrical intuition: every (0, -d) with $d \in R_P$, is direction of recession of \overline{M} .

MC/MC TH. III - A SPECIAL CASE

Consider the MC/MC framework, and assume:
(1) For a convex function f : ℜ^m → (-∞, ∞], an r × m matrix A, and a vector b ∈ ℜ^r:

$$\overline{M} = \left\{ (u, w) \mid \text{for some } (x, w) \in \text{epi}(f), \ Ax - b \le u \right\}$$

so $\overline{M} = \tilde{M} + \text{Positive Orthant}$, where

(2) There is an $\overline{x} \in \operatorname{ri}(\operatorname{dom}(f))$ s. t. $A\overline{x} - b \leq 0$. Then $q^* = w^*$ and there is a $\mu \geq 0$ with $q(\mu) = q^*$.

- Also $\overline{M} = M \approx \operatorname{epi}(p)$, where $p(u) = \inf_{Ax-b \leq u} f(x)$.
- We have $w^* = p(0) = \inf_{Ax-b \le 0} f(x)$.

NONL. FARKAS' L. - POLYHEDRAL ASSUM.

• Let $X \subset \Re^n$ be convex, and $f: X \mapsto \Re$ and $g_j:$ $\Re^n \mapsto \Re, j = 1, \ldots, r$, be linear so g(x) = Ax - bfor some A and b. Assume that

$$f(x) \ge 0, \quad \forall x \in X \text{ with } Ax - b \le 0$$

Let

$$Q^* = \{ \mu \mid \mu \ge 0, \ f(x) + \mu'(Ax - b) \ge 0, \ \forall \ x \in X \}.$$

Assume that there exists a vector $\overline{x} \in \operatorname{ri}(X)$ such that $A\overline{x} - b \leq 0$. Then Q^* is nonempty.

Proof: As before, apply special case of MC/MC Th. III of preceding slide, using the fact $w^* \ge 0$, implied by the assumption.

(LINEAR) FARKAS' LEMMA

• Let A be an $m \times n$ matrix and $c \in \Re^m$. The system $Ay = c, y \ge 0$ has a solution if and only if

$$A'x \le 0 \qquad \Rightarrow \qquad c'x \le 0. \qquad (*)$$

• Alternative/Equivalent Statement: If $P = cone\{a_1, \ldots, a_n\}$, where a_1, \ldots, a_n are the columns of A, then $P = (P^*)^*$ (Polar Cone Theorem).

Proof: If $y \in \Re^n$ is such that $Ay = c, y \ge 0$, then y'A'x = c'x for all $x \in \Re^m$, which implies Eq. (*).

Conversely, apply the Nonlinear Farkas' Lemma with f(x) = -c'x, g(x) = A'x, and $X = \Re^m$. Condition (*) implies the existence of $\mu \ge 0$ such that

$$-c'x + \mu'A'x \ge 0, \qquad \forall \ x \in \Re^m,$$

or equivalently

$$(A\mu - c)' x \ge 0, \qquad \forall \ x \in \Re^m,$$

or $A\mu = c$.

LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c'xsubject to $a'_j x \ge b_j$, $j = 1, \dots, r$,

where $c \in \Re^n$, $a_j \in \Re^n$, and $b_j \in \Re$, $j = 1, \ldots, r$.

• The dual problem is

maximize
$$b'\mu$$

subject to $\sum_{j=1}^{r} a_j \mu_j = c, \quad \mu \ge 0.$

• Linear Programming Duality Theorem:

(a) If either f^* or q^* is finite, then $f^* = q^*$ and both the primal and the dual problem have optimal solutions.

(b) If
$$f^* = -\infty$$
, then $q^* = -\infty$.

(c) If $q^* = \infty$, then $f^* = \infty$.

Proof: (b) and (c) follow from weak duality. For part (a): If f^* is finite, there is a primal optimal solution x^* , by existence of solutions of quadratic programs. Use Farkas' Lemma to construct a dual feasible μ^* such that $c'x^* = b'\mu^*$ (next slide).

PROOF OF LP DUALITY (CONTINUED)

• Let x^* be a primal optimal solution, and let $J = \{j \mid a'_j x^* = b_j\}$. Then, $c'y \ge 0$ for all y in the cone of "feasible directions"

$$D = \{ y \mid a'_j y \ge 0, \forall j \in J \}$$

By Farkas' Lemma, for some scalars $\mu_j^* \ge 0$, c can be expressed as

$$c = \sum_{j=1}^{r} \mu_j^* a_j, \quad \mu_j^* \ge 0, \ \forall \ j \in J, \quad \mu_j^* = 0, \ \forall \ j \notin J.$$

Taking inner product with x^* , we obtain $c'x^* = b'\mu^*$, which in view of $q^* \leq f^*$, shows that $q^* = f^*$ and that μ^* is optimal.

LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (x^*, μ^*) form a primal and dual optimal solution pair if and only if x^* is primalfeasible, μ^* is dual-feasible, and

$$\mu_j^*(b_j - a'_j x^*) = 0, \quad \forall \ j = 1, \dots, r. \quad (*)$$

Proof: If x^* is primal-feasible and μ^* is dual-feasible, then

$$b'\mu^* = \sum_{j=1}^r b_j \mu_j^* + \left(c - \sum_{j=1}^r a_j \mu_j^*\right)' x^*$$

= $c'x^* + \sum_{j=1}^r \mu_j^* (b_j - a'_j x^*)$ (**)

So if Eq. (*) holds, we have $b'\mu^* = c'x^*$, and weak duality implies that x^* is primal optimal and μ^* is dual optimal.

Conversely, if (x^*, μ^*) form a primal and dual optimal solution pair, then x^* is primal-feasible, μ^* is dual-feasible, and by the duality theorem, we have $b'\mu^* = c'x^*$. From Eq. (**), we obtain Eq. (*).

CONVEX PROGRAMMING

Consider the problem

minimize f(x)subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \ldots, r$,

where $X \subset \Re^n$ is convex, and $f : X \mapsto \Re$ and $g_j : X \mapsto \Re$ are convex. Assume f^* : finite.

• Recall the connection with the max crossing problem in the MC/MC framework where M = epi(p) with

$$p(u) = \inf_{x \in X, \ g(x) \le u} f(x)$$

• Consider the Lagrangian function

$$L(x,\mu) = f(x) + \mu' g(x),$$

the dual function

$$q(\mu) = \begin{cases} \inf_{x \in X} L(x, \mu) & \text{if } \mu \ge 0, \\ -\infty & \text{otherwise} \end{cases}$$

and the dual problem of maximizing $\inf_{x \in X} L(x, \mu)$ over $\mu \ge 0$.

STRONG DUALITY THEOREM

• Assume that f^* is finite, and that one of the following two conditions holds:

- (1) There exists $\overline{x} \in X$ such that $g(\overline{x}) < 0$.
- (2) The functions $g_j, j = 1, ..., r$, are affine, and there exists $\overline{x} \in ri(X)$ such that $g(\overline{x}) \leq 0$.

Then $q^* = f^*$ and the set of optimal solutions of the dual problem is nonempty. Under condition (1) this set is also compact.

• **Proof:** Replace f(x) by $f(x) - f^*$ so that $f(x) - f^* \ge 0$ for all $x \in X$ w/ $g(x) \le 0$. Apply Nonlinear Farkas' Lemma. Then, there exist $\mu_j^* \ge 0$, s.t.

$$f^* \le f(x) + \sum_{j=1}^r \mu_j^* g_j(x), \qquad \forall \ x \in X$$

• It follows that

$$f^* \le \inf_{x \in X} \{ f(x) + {\mu^*}' g(x) \} \le \inf_{x \in X, \ g(x) \le 0} f(x) = f^*.$$

Thus equality holds throughout, and we have

$$f^* = \inf_{x \in X} \left\{ f(x) + \sum_{j=1}^r \mu_j^* g_j(x) \right\} = q(\mu^*)$$

QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

 $\begin{array}{ll} \text{minimize} & \frac{1}{2}x'Qx + c'x \\ \text{subject to} & Ax \leq b, \end{array}$

where Q is positive definite.

• If f^* is finite, then $f^* = q^*$ and there exist both primal and dual optimal solutions, since the constraints are linear.

• Calculation of dual function:

$$q(\mu) = \inf_{x \in \Re^n} \left\{ \frac{1}{2} x' Q x + c' x + \mu' (A x - b) \right\}$$

The infimum is attained for $x = -Q^{-1}(c + A'\mu)$, and, after substitution and calculation,

$$q(\mu) = -\frac{1}{2}\mu' AQ^{-1}A'\mu - \mu'(b + AQ^{-1}c) - \frac{1}{2}c'Q^{-1}c$$

• The dual problem, after a sign change, is minimize $\frac{1}{2}\mu' P\mu + t'\mu$ subject to $\mu \ge 0$,

where $P = AQ^{-1}A'$ and $t = b + AQ^{-1}c$.

OPTIMALITY CONDITIONS

• We have $q^* = f^*$, and the vectors x^* and μ^* are optimal solutions of the primal and dual problems, respectively, iff x^* is feasible, $\mu^* \ge 0$, and

$$x^* \in \arg\min_{x \in X} L(x, \mu^*), \qquad \mu_j^* g_j(x^*) = 0, \quad \forall \ j.$$
(1)

Proof: If $q^* = f^*$, and x^*, μ^* are optimal, then

$$f^* = q^* = q(\mu^*) = \inf_{x \in X} L(x, \mu^*) \le L(x^*, \mu^*)$$
$$= f(x^*) + \sum_{j=1}^r \mu_j^* g_j(x^*) \le f(x^*),$$

where the last inequality follows from $\mu_j^* \ge 0$ and $g_j(x^*) \le 0$ for all j. Hence equality holds throughout above, and (1) holds.

Conversely, if x^* , μ^* are feasible, and (1) holds,

$$q(\mu^*) = \inf_{x \in X} L(x, \mu^*) = L(x^*, \mu^*)$$
$$= f(x^*) + \sum_{j=1}^r \mu_j^* g_j(x^*) = f(x^*),$$

so $q^* = f^*$, and x^*, μ^* are optimal. **Q.E.D.**

QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program

 $\begin{array}{ll}\text{minimize} \quad \frac{1}{2}x'Qx + c'x\\ \text{subject to} \quad Ax \leq b, \end{array}$

where Q is positive definite, (x^*, μ^*) is a primal and dual optimal solution pair if and only if:

• Primal and dual feasibility holds:

$$Ax^* \le b, \qquad \mu^* \ge 0$$

• Lagrangian optimality holds $[x^* \text{ minimizes } L(x, \mu^*)$ over $x \in \Re^n$]. This yields

$$x^* = -Q^{-1}(c + A'\mu^*)$$

• Complementary slackness holds $[(Ax^* - b)'\mu^* = 0]$. It can be written as

$$\mu_j^* > 0 \qquad \Rightarrow \qquad a_j' x^* = b_j, \quad \forall \ j = 1, \dots, r,$$

where a'_j is the *j*th row of A, and b_j is the *j*th component of b.

LINEAR EQUALITY CONSTRAINTS

• The problem is

minimize f(x)subject to $x \in X$, $g(x) \le 0$, Ax = b,

where X is convex, $g(x) = (g_1(x), \dots, g_r(x))', f : X \mapsto \Re$ and $g_j : X \mapsto \Re, j = 1, \dots, r$, are convex.

• Convert the constraint Ax = b to $Ax \leq b$ and $-Ax \leq -b$, with corresponding dual variables $\lambda^+ \geq 0$ and $\lambda^- \geq 0$.

• The Lagrangian function is

$$f(x) + \mu' g(x) + (\lambda^+ - \lambda^-)' (Ax - b),$$

and by introducing a dual variable $\lambda = \lambda^+ - \lambda^-$, with no sign restriction, it can be written as

$$L(x, \mu, \lambda) = f(x) + \mu' g(x) + \lambda' (Ax - b).$$

• The dual problem is

 $\begin{array}{ll} \text{maximize} & q(\mu,\lambda) \equiv \inf_{x \in X} L(x,\mu,\lambda) \\ \text{subject to} & \mu \geq 0, \ \lambda \in \Re^m. \end{array}$

DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

- (a) Assume that f^* : finite and there exists $\overline{x} \in ri(X)$ such that $A\overline{x} = b$. Then $f^* = q^*$ and there exists a dual optimal solution.
- (b) $f^* = q^*$, and (x^*, λ^*) are a primal and dual optimal solution pair if and only if x^* is feasible, and

$$x^* \in \arg\min_{x \in X} L(x,\lambda^*)$$

Note: No complementary slackness for equality constraints.

• Linear and nonlinear constraints:

- (a) Assume f^* : finite, that there exists $\overline{x} \in X$ such that $A\overline{x} = b$ and $g(\overline{x}) < 0$, and that there exists $\tilde{x} \in \operatorname{ri}(X)$ such that $A\tilde{x} = b$. Then $q^* = f^*$ and there exists a dual optimal solution.
- (b) $f^* = q^*$, and (x^*, μ^*, λ^*) are a primal and dual optimal solution pair if and only if x^* is feasible, $\mu^* \ge 0$, and

$$x^* \in \arg\min_{x \in X} L(x, \mu^*, \lambda^*), \ \mu_j^* g_j(x^*) = 0, \quad \forall j$$