
LECTURE 10

LECTURE OUTLINE

• Min Common/Max Crossing Th. III

• Nonlinear Farkas Lemma/Linear Constraints

• Linear Programming Duality

• Convex Programming Duality

• Optimality Conditions

Reading: Sections 4.5, 5.1,5.2, 5.3.1, 5.3.2

Recall the MC/MC Theorem II: If −∞ < w∗
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Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets
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Duality Gap Decomposition
Convex and concave part can be estimated separately

1

�
(uk, wk)

�
⊂M, uk → 0, w∗ ≤ lim inf

k→∞
wk D

�
(uk, wk)

�
⊂M, uk → 0, w∗ > lim inf

k→∞
wk

(uk, wk) (uk+1, wk+1) w∗ q∗ w∗ = q∗

min
x

�
f1(x) + f2(x)

�
= max

y

�
− f�

1 (y)− f�
2 (−y)

�

f̄�
2,Xk

(−λ)

�B(x) ��B(x) S �� < �

Boundary of S

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

To describe mathematically the max crossing problem, we recall that
a nonvertical hyperplane in �n+1 is specified by its normal vector (µ, 1) ∈
�n+1, and a scalar ξ as

Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
.

Such a hyperplane crosses the (n+1)st axis at (0, ξ). For M to be contained
in the “upper” closed halfspace that corresponds to Hµ,ξ [the one that
contains the vertical halfline

�
(0, w) | w ≥ 0

�
in its recession cone], it is

necessary and sufficient that

ξ ≤ w + µ�u, ∀ (u, w) ∈ M,

or equivalently
ξ ≤ inf

(u,w)∈M
{w + µ�u}.

For a fixed normal (µ, 1), the maximum crossing level ξ over all hyperplanes
Hµ,ξ is denoted by q(µ) and is given by

q(µ) = inf
(u,w)∈M

{w + µ�u}; (4.2)

(see Fig. 4.1.2). The max crossing problem is to maximize over all µ ∈ �n

the maximum crossing level corresponding to µ, i.e.,

maximize q(µ)
subject to µ ∈ �n.

(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
µ∈�n

q(µ),

and we refer to q(µ) as the crossing or dual function.
Note that both w∗ and q∗ remain unaffected if M is replaced by its

“upwards extension”
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�
(0, w) | w ≥ 0

�
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�
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� (4.4)

(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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Ĉ = C + S⊥

Nonvertical Vertical

Hyperplane

Level Sets of f Constancy Space Lf ∩∞k=0Ck Rf

Level Sets of f β α −1 1
(µ, 0) cl(C)

1

Negative Halfspace {x | a�x ≥ b}
Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

σX(y)/�y�

x M M Wk y C2 C C2
k+1 yk AC
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q∗ = (čl )p(0) ≤ p(0) = w∗

1

4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)
3 5 9 11 1

3 4 10 1/6
Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1



MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume
that −∞ < w∗ and:

(1) M is a “horizontal translation” of M̃ by −P ,

M = M̃ −
�
(u, 0) | u ∈ P

�
,

where P : polyhedral and M̃ : convex.

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
�
(Θ − θ̂)2

�
= var(Θ) +

�
E[Θ]− θ̂

�2
,

E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})

{x | a�
jx ≤ 0, j = 1, . . . , r}

{x | a�
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
�
(Θ − θ̂)2

�
= var(Θ) +

�
E[Θ]− θ̂

�2
,

E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})

{x | a�
jx ≤ 0, j = 1, . . . , r}

{x | a�
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

epi(f)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)
3 5 9 11 1

3 4 10 1/6
Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template

epi(f) w
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)
3 5 9 11 1

3 4 10 1/6
Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
�
(Θ − θ̂)2

�
= var(Θ) +

�
E[Θ]− θ̂

�2
,

E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})

{x | a�
jx ≤ 0, j = 1, . . . , r}

{x | a�
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
�
(Θ − θ̂)2

�
= var(Θ) +

�
E[Θ]− θ̂

�2
,

E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})

{x | a�
jx ≤ 0, j = 1, . . . , r}

{x | a�
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

epi(f)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)
3 5 9 11 1

3 4 10 1/6
Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template

epi(f) w
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)
3 5 9 11 1

3 4 10 1/6
Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)
3 5 9 11 1

3 4 10 1/6
Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)
3 5 9 11 1

3 4 10 1/6
Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y�x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template
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Polyhedral Convexity Template
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�
(u, 0) | u ∈ P

�
P
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cone
�
{a1, a2, a3}

�
{x | a�
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1a1 + µ∗

2a2
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�
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�
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�
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(u,w) | g(x) ≤ u, f(x) ≤ w for some x ∈ C

�
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�

0 if |y| ≤ 1
∞ if |y| > 1

h(y) =
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β if y = α
∞ if y �= α
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3 4 10 1/6

1
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�
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�

C = aff(C)∩ (Closed Halfspace Containing C)
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�
(u,w) | there exists x ∈ X such that g(x) ≤ u, f(x) ≤ w

�
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(u,w) | g(x) ≤ u, f(x) ≤ w for some x ∈ C
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Separating Hyperplane H that Properly Separates C and D C and P
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1

(2) We have ri(D̃) ∩ P �= Ø, where

D̃ =
�
u | there exists w ∈ � with (u,w) ∈ M̃}

Then q∗ = w∗, there is a max crossing solution,
and all max crossing solutions µ satisfy µ�d ≤ 0
for all d ∈ RP .

• Comparison with Th. II: Since D = D̃−P ,
the condition 0 ∈ ri(D) of Theorem II is

ri(D̃) ∩ ri(P ) �= Ø



PROOF OF MC/MC TH. III

• Consider the disjoint convex sets C1 =
�
(u, v) |

v > w for some (u,w) ∈ M̃
�

and C2 =
�
(u,w∗) |

u ∈ P
�

[u ∈ P and (u,w) ∈ M̃ with w∗ > w
contradicts the definition of w∗]

(µ, β)

0} u

v

C1

C2

M̃

w∗

P

• Since C2 is polyhedral, there exists a separat-
ing hyperplane not containing C1, i.e., a (µ, β) �=
(0, 0) such that

βw∗ + µ�z ≤ βv + µ�x, ∀ (x, v) ∈ C1, ∀ z ∈ P

inf
(x,v)∈C1

�
βv + µ�x

�
< sup

(x,v)∈C1

�
βv + µ�x

�

Since (0, 1) is a direction of recession of C1, we see
that β ≥ 0. Because of the relative interior point
assumption, β �= 0, so we may assume that β = 1.



PROOF (CONTINUED)

• Hence,

w∗ + µ�z ≤ inf
(u,v)∈C1

{v + µ�u}, ∀ z ∈ P,

so that

w∗ ≤ inf
(u,v)∈C1, z∈P

�
v + µ�(u− z)

�

= inf
(u,v)∈M̃−P

{v + µ�u}

= inf
(u,v)∈M

{v + µ�u}

= q(µ)

Using q∗ ≤ w∗ (weak duality), we have q(µ) =
q∗ = w∗.

Proof that all max crossing solutions µ sat-
isfy µ�d ≤ 0 for all d ∈ RP : follows from

q(µ) = inf
(u,v)∈C1, z∈P

�
v + µ�(u− z)

�

so that q(µ) = −∞ if µ�d > 0. Q.E.D.

• Geometrical intuition: every (0,−d) with d ∈
RP , is direction of recession of M .



MC/MC TH. III - A SPECIAL CASE

• Consider the MC/MC framework, and assume:

(1) For a convex function f : �m �→ (−∞,∞],
an r ×m matrix A, and a vector b ∈ �r:

M =
�
(u, w) | for some (x, w) ∈ epi(f), Ax− b ≤ u

�

so M = M̃ + Positive Orthant, where

M̃ =
�
(Ax− b, w) | (x,w) ∈ epi(f)

�

0} x

epi(f)

w

0} u

M̃

w∗

w

u0}

w∗

(µ, 1)

q(µ)

Ax ≤ b

(x∗, w∗) (x,w) �→ (Ax− b, w)

p(u) = inf
Ax−b≤u

f(x)

�
(u,w) | p(u) < w

�
⊂M ⊂ epi(p)

M

(2) There is an x ∈ ri(dom(f)) s. t. Ax− b ≤ 0.

Then q∗ = w∗ and there is a µ ≥ 0 with q(µ) = q∗.

• Also M = M ≈ epi(p), where p(u) = infAx−b≤u f(x).

• We have w∗ = p(0) = infAx−b≤0 f(x).



NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

• Let X ⊂ �n be convex, and f : X �→ � and gj :
�n �→ �, j = 1, . . . , r, be linear so g(x) = Ax− b
for some A and b. Assume that

f(x) ≥ 0, ∀ x ∈ X with Ax− b ≤ 0

Let

Q∗ =
�
µ | µ ≥ 0, f(x)+µ�(Ax−b) ≥ 0, ∀ x ∈ X

�
.

Assume that there exists a vector x ∈ ri(X) such
that Ax− b ≤ 0. Then Q∗ is nonempty.

Proof: As before, apply special case of MC/MC
Th. III of preceding slide, using the fact w∗ ≥ 0,
implied by the assumption.
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Polyhedral Convexity Template
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Polyhedral Convexity Template
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f(x) − x�y

�
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−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗
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�
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M =
�
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�

�
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�

�
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�
− β w∗ − � (uk, wk) (uk+1, wk+1) lim inf

k→∞
wk

(0, w∗ − �) (0, w∗) q(µ) (0, ξ)

Strictly Separating Hyperplane

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

1
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(LINEAR) FARKAS’ LEMMA

• Let A be an m × n matrix and c ∈ �m. The
system Ay = c, y ≥ 0 has a solution if and only if

A�x ≤ 0 ⇒ c�x ≤ 0. (∗)

• Alternative/Equivalent Statement: If P =
cone{a1, . . . , an}, where a1, . . . , an are the columns
of A, then P = (P ∗)∗ (Polar Cone Theorem).

Proof: If y ∈ �n is such that Ay = c, y ≥ 0, then
y�A�x = c�x for all x ∈ �m, which implies Eq. (*).

Conversely, apply the Nonlinear Farkas’ Lemma
with f(x) = −c�x, g(x) = A�x, and X = �m.
Condition (*) implies the existence of µ ≥ 0 such
that

−c�x + µ�A�x ≥ 0, ∀ x ∈ �m,

or equivalently

(Aµ− c)�x ≥ 0, ∀ x ∈ �m,

or Aµ = c.



LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c�x

subject to a�jx ≥ bj , j = 1, . . . , r,

where c ∈ �n, aj ∈ �n, and bj ∈ �, j = 1, . . . , r.

• The dual problem is

maximize b�µ

subject to
r�

j=1

ajµj = c, µ ≥ 0.

• Linear Programming Duality Theorem:

(a) If either f∗ or q∗ is finite, then f∗ = q∗ and
both the primal and the dual problem have
optimal solutions.

(b) If f∗ = −∞, then q∗ = −∞.

(c) If q∗ = ∞, then f∗ = ∞.

Proof: (b) and (c) follow from weak duality. For
part (a): If f∗ is finite, there is a primal optimal
solution x∗, by existence of solutions of quadratic
programs. Use Farkas’ Lemma to construct a dual
feasible µ∗ such that c�x∗ = b�µ∗ (next slide).



PROOF OF LP DUALITY (CONTINUED)

Feasible Set

x∗

a1
a2

c = µ∗
1a1 + µ∗

2a2

Cone D (translated to x∗)

• Let x∗ be a primal optimal solution, and let
J = {j | a�jx

∗ = bj}. Then, c�y ≥ 0 for all y in the
cone of “feasible directions”

D = {y | a�jy ≥ 0, ∀ j ∈ J}

By Farkas’ Lemma, for some scalars µ∗j ≥ 0, c can
be expressed as

c =
r�

j=1

µ∗jaj , µ∗j ≥ 0, ∀ j ∈ J, µ∗j = 0, ∀ j /∈ J.

Taking inner product with x∗, we obtain c�x∗ =
b�µ∗, which in view of q∗ ≤ f∗, shows that q∗ = f∗

and that µ∗ is optimal.



LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (x∗, µ∗) form a primal and dual
optimal solution pair if and only if x∗ is primal-
feasible, µ∗ is dual-feasible, and

µ∗j (bj − a�jx
∗) = 0, ∀ j = 1, . . . , r. (∗)

Proof: If x∗ is primal-feasible and µ∗ is dual-
feasible, then

b�µ∗ =
r�

j=1

bjµ∗j +



c−
r�

j=1

ajµ∗j




�

x∗

= c�x∗ +
r�

j=1

µ∗j (bj − a�jx
∗)

(∗∗)

So if Eq. (*) holds, we have b�µ∗ = c�x∗, and weak
duality implies that x∗ is primal optimal and µ∗

is dual optimal.
Conversely, if (x∗, µ∗) form a primal and dual

optimal solution pair, then x∗ is primal-feasible,
µ∗ is dual-feasible, and by the duality theorem, we
have b�µ∗ = c�x∗. From Eq. (**), we obtain Eq.
(*).



CONVEX PROGRAMMING

Consider the problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X ⊂ �n is convex, and f : X �→ � and
gj : X �→ � are convex. Assume f∗: finite.

• Recall the connection with the max crossing
problem in the MC/MC framework where M =
epi(p) with

p(u) = inf
x∈X, g(x)≤u

f(x)

• Consider the Lagrangian function

L(x, µ) = f(x) + µ�g(x),

the dual function

q(µ) =
�

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise

and the dual problem of maximizing infx∈X L(x, µ)
over µ ≥ 0.



STRONG DUALITY THEOREM

• Assume that f∗ is finite, and that one of the
following two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are affine, and
there exists x ∈ ri(X) such that g(x) ≤ 0.

Then q∗ = f∗ and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

• Proof: Replace f(x) by f(x) − f∗ so that
f(x) − f∗ ≥ 0 for all x ∈ X w/ g(x) ≤ 0. Ap-
ply Nonlinear Farkas’ Lemma. Then, there exist
µ∗j ≥ 0, s.t.

f∗ ≤ f(x) +
r�

j=1

µ∗jgj(x), ∀ x ∈ X

• It follows that

f∗ ≤ inf
x∈X

�
f(x)+µ∗�g(x)

�
≤ inf

x∈X, g(x)≤0
f(x) = f∗.

Thus equality holds throughout, and we have

f∗ = inf
x∈X




f(x) +
r�

j=1

µ∗jgj(x)




 = q(µ∗)



QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program
minimize 1

2x�Qx + c�x

subject to Ax ≤ b,

where Q is positive definite.

• If f∗ is finite, then f∗ = q∗ and there exist
both primal and dual optimal solutions, since the
constraints are linear.

• Calculation of dual function:

q(µ) = inf
x∈�n

{ 1
2x�Qx + c�x + µ�(Ax− b)}

The infimum is attained for x = −Q−1(c + A�µ),
and, after substitution and calculation,

q(µ) = − 1
2µ�AQ−1A�µ−µ�(b+AQ−1c)− 1

2c�Q−1c

• The dual problem, after a sign change, is
minimize 1

2µ�Pµ + t�µ

subject to µ ≥ 0,

where P = AQ−1A� and t = b + AQ−1c.



OPTIMALITY CONDITIONS

• We have q∗ = f∗, and the vectors x∗ and µ∗ are
optimal solutions of the primal and dual problems,
respectively, iff x∗ is feasible, µ∗ ≥ 0, and

x∗ ∈ arg min
x∈X

L(x, µ∗), µ∗jgj(x∗) = 0, ∀ j.

(1)
Proof: If q∗ = f∗, and x∗, µ∗ are optimal, then

f∗ = q∗ = q(µ∗) = inf
x∈X

L(x, µ∗) ≤ L(x∗, µ∗)

= f(x∗) +
r�

j=1

µ∗jgj(x∗) ≤ f(x∗),

where the last inequality follows from µ∗j ≥ 0 and
gj(x∗) ≤ 0 for all j. Hence equality holds through-
out above, and (1) holds.

Conversely, if x∗, µ∗ are feasible, and (1) holds,

q(µ∗) = inf
x∈X

L(x, µ∗) = L(x∗, µ∗)

= f(x∗) +
r�

j=1

µ∗jgj(x∗) = f(x∗),

so q∗ = f∗, and x∗, µ∗ are optimal. Q.E.D.



QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program
minimize 1

2x�Qx + c�x

subject to Ax ≤ b,

where Q is positive definite, (x∗, µ∗) is a primal
and dual optimal solution pair if and only if:

• Primal and dual feasibility holds:

Ax∗ ≤ b, µ∗ ≥ 0

• Lagrangian optimality holds [x∗ minimizes L(x, µ∗)
over x ∈ �n]. This yields

x∗ = −Q−1(c + A�µ∗)

• Complementary slackness holds [(Ax∗−b)�µ∗ =
0]. It can be written as

µ∗j > 0 ⇒ a�jx
∗ = bj , ∀ j = 1, . . . , r,

where a�j is the jth row of A, and bj is the jth
component of b.



LINEAR EQUALITY CONSTRAINTS

• The problem is

minimize f(x)
subject to x ∈ X, g(x) ≤ 0, Ax = b,

where X is convex, g(x) =
�
g1(x), . . . , gr(x)

��, f :
X �→ � and gj : X �→ �, j = 1, . . . , r, are convex.

• Convert the constraint Ax = b to Ax ≤ b
and −Ax ≤ −b, with corresponding dual variables
λ+ ≥ 0 and λ− ≥ 0.

• The Lagrangian function is

f(x) + µ�g(x) + (λ+ − λ−)�(Ax− b),

and by introducing a dual variable λ = λ+ − λ−,
with no sign restriction, it can be written as

L(x, µ, λ) = f(x) + µ�g(x) + λ�(Ax− b).

• The dual problem is

maximize q(µ, λ) ≡ inf
x∈X

L(x, µ, λ)

subject to µ ≥ 0, λ ∈ �m.



DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

(a) Assume that f∗: finite and there exists x ∈
ri(X) such that Ax = b. Then f∗ = q∗ and
there exists a dual optimal solution.

(b) f∗ = q∗, and (x∗, λ∗) are a primal and dual
optimal solution pair if and only if x∗ is fea-
sible, and

x∗ ∈ arg min
x∈X

L(x, λ∗)

Note: No complementary slackness for equality
constraints.

• Linear and nonlinear constraints:

(a) Assume f∗: finite, that there exists x ∈ X
such that Ax = b and g(x) < 0, and that
there exists x̃ ∈ ri(X) such that Ax̃ = b.
Then q∗ = f∗ and there exists a dual optimal
solution.

(b) f∗ = q∗, and (x∗, µ∗, λ∗) are a primal and
dual optimal solution pair if and only if x∗

is feasible, µ∗ ≥ 0, and

x∗ ∈ arg min
x∈X

L(x, µ∗, λ∗), µ∗jgj(x∗) = 0, ∀ j


