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Sparsity Problem

* Datasparsity makes parsing harder
— due to less frequent/unseen words and dependency arcs in data
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Sparsity Problem

* Prediction is worse when the arc is not seen in the training data
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Sparsity Problem

* Prediction is worse when the arc is not seen in the training data
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Sparsity Problem

* Feature weights are zeros when the features are not seen

_— T

eat with/\frosting
VB IN NN

eat@INDfrosting VBAINGNN eat@INDNN

0 + 1.1 + 0.9 = 2.0

unseenin

training data 7 NN
cake with frosting

NN IN NN

cake@®INDfrosting NNDINEDNN cake@INDNN

0 + 1.2 + 0.5 = 1.7



Opportunity and Challenge

To deal with sparsity problem, we will

* Make the model flexible to add various rich features
— E.g., words, coarse-to-fine POS tags and word embeddings

— Feature selection: adjust complexity based on how much training
data it has

 Model interactions between feature weights
— E.g. propagating weights frem-seentfeaturesto-unseentfeatures
— E.g. propogating weights between features



Motivating Example: Matrix Completion

* Learn a matrix (or high-order tensor) that has a lot of unseen entries
— Example: image
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image with missing values re-constructed image

— Example: Netflix problem
Users give only a few movie ratings. Predict unseen ratings



Motivating Example

* Inourcase: learn a parameter matrix (or tensor) from sparse feature
observations
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* Inourcase: learn a parameter matrix (or tensor) from sparse feature

Motivating Example

observations
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Motivating Example

* Inourcase: learn a parameter matrix (or tensor) from sparse feature
observations
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Motivating Example

* Inourcase: learn a parameter matrix (or tensor) from sparse feature
observations

eatAbanana
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Goal: learn a low rank parameter matrix



Preliminary (Matrix Norm)

* Goal: learn alow rank matrix Z™<"
— Directly learning decomposition Z = UKV X" s hard -- non-convex

* Using matrix norm constraint instead
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Formulation

Recall first-order decoding objective:

~

y; = argmax S(y;)
Yi€T (x;)

= argmax z s(h, ¢)
Yi€T(x;) (hOey;

Define score as matrix (tensor) inner product:

s(h,c) =0 @ ¢(h,c)

s(th,c) =wpTAw, +n'd(h,c)

Model Parameters: 0 ={An}
Feature Matrix/Vector: thcT d(h,c)
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Formulation

Minimize the loss of training data:
. 1 ~
min L(D;A,n) = N{)(xi,yl')

s.t. [|All, + A <C
141l 7l Force A to be low-rank using
nuclear norm constraint

— onlinelearningalgorithm available
(Jaggi & Sulovsky, 2010) (Hazan, 2008)

Initialize ZY := wgel for arbitrary unit vector v.
For k=1+to 1 do
1 T T i i - l:..-
Compute »p := ApproxkV (—T_fltf'j'-']. T})

el [

Set oy =
Set ZUHH = ZUF 4 oy (ool — ZWF)).

End for
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Formulation

Minimize the loss of training data:

. 1 .
min L(D;A,n) = Ni’(xi,yi)

<G )

— onlinelearningalgorithm available
(Jaggi & Sulovsky, 2010) (Hazan, 2008)

< C Force Ato be low-rank using
* nuclear norm constraint

Initialize ZY := wgel for arbitrary unit vector v.

For k=1 to 1T do
Compute vy := ApproxkEV (_T_HEEHJ. fﬁ)

el [

Set oy =
Set ZUHH = ZUF 4 oy (ool — ZWF)).

End for
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Results

Results on CoNLL shared task (up to 2000 sentences)
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MST parser:

Low-rank parser:
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Results

Adding unsupervised word embeddings to English
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MST+label: MST parser trained with labeled dependencies

Other models are trained with only unlabeled dependencies.
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Thanks

Current implementation available at:
http://people.csail.mit.edu/taolei/muri/lowrankparser.zip
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