
Learning to Parse Using a Tiny Corpus

Tao Lei, Yu Xin

Regina Barzilay, Tommi Jaakkola

CSAIL, MIT

1

Sparsity Problem

2

Basque

Turkish

Spanish

Arabic

Japanese

Swedish

Bulgarian

Dutch
Czech

English

German

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 10 20 30 40 50 60

Avg. Frequency of Each Unique Word

CoNLL

Trend Line (Log.)

• Data sparsity makes parsing harder

– due to less frequent/unseen words and dependency arcs in data

Sparsity Problem

3

Seen Arc: See dependency arc in the training data
Seen Words: See the words in training but arc unseen
Unseen: At least one word not in training

40%

50%

60%

70%

80%

90%

100%

40 60 80 100 120

Malagasy

70%

75%

80%

85%

90%

95%

100%

40 80 120 160 200

Kinyarwanda

22.56%

13.62%
63.82%

• Prediction is worse when the arc is not seen in the training data

a large portion of
dependency arcs in
test is unseen

of Training Sent.

Sparsity Problem

4

40%

50%

60%

70%

80%

90%

100%

40 60 80 100 120

Malagasy

70%

75%

80%

85%

90%

95%

100%

40 80 120 160 200

Kinyarwanda

• Prediction is worse when the arc is not seen in the training data

40%

50%

60%

70%

80%

90%

0 300 600 900 1200

Slovene

60%

65%

70%

75%

80%

85%

90%

0 500 1000 1500 2000

English

Sparsity Problem

0 0.9 1.1 + + = 2.0

0 1.2 = 1.7 + + 0.5

unseen in
training data

• Feature weights are zeros when the features are not seen

5

I eat a cake with frosting
PRON VB DT NN IN NN

eat⨁IN⨁frosting VB⨁IN⨁NN eat⨁IN⨁NN …

I eat a cake with frosting
PRON VB DT NN IN NN

cake⨁IN⨁frosting NN⨁IN⨁NN cake⨁IN⨁NN …

Opportunity and Challenge

6

• Make the model flexible to add various rich features

– E.g., words, coarse-to-fine POS tags and word embeddings

– Feature selection: adjust complexity based on how much training
data it has

• Model interactions between feature weights

– E.g. propagating weights from seen features to unseen features

– E.g. propogating weights between features

To deal with sparsity problem, we will

Motivating Example: Matrix Completion

7

• Learn a matrix (or high-order tensor) that has a lot of unseen entries

– Example: image

– Example: Netflix problem

 Users give only a few movie ratings. Predict unseen ratings

Input
image with missing values

Output
re-constructed image

Motivating Example

8

• In our case: learn a parameter matrix (or tensor) from sparse feature
observations

1 1

1 1

eat

apple

banana

VB

NN

ea
t

ap
p

le

b
an

an
a

V
B

N
N

eat apple
VB NN

Dependency Arc

{ eat⊕apple, eat⊕NN, VB⊕apple, VB⨁NN }

Feature Strings

Feature Matrix

... 2 … … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

⊗ = 12

Parameter Matrix

Motivating Example

9

1 1

1 1

eat

apple

banana

VB

NN

ea
t

ap
p

le

b
an

an
a

V
B

N
N

eat banana
VB NN

Dependency Arc

{ eat⊕banana, eat⨁NN, VB⊕banana, VB⨁NN }

Feature Strings

Feature Matrix

... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

⊗

Parameter Matrix

unseen entry

• In our case: learn a parameter matrix (or tensor) from sparse feature
observations

Motivating Example

10

1 1

1 1

eat

apple

banana

VB

NN

ea
t

ap
p

le

b
an

an
a

V
B

N
N

eat banana
VB NN

Dependency Arc

{ eat⊕banana, eat⨁NN, VB⊕banana, VB⨁NN }

Feature Strings

Feature Matrix

... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

⊗

Parameter Matrix

similar columns because
“apple” and “banana” have
similar syntactic behavior

• In our case: learn a parameter matrix (or tensor) from sparse feature
observations

Motivating Example

11

1 1

1 1

eat

apple

banana

VB

NN

ea
t

ap
p

le

b
an

an
a

V
B

N
N

eat banana
VB NN

Dependency Arc

{ eat⊕banana, eat⨁NN, VB⊕banana, VB⨁NN }

Feature Strings

Feature Matrix

... 2 2 … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

⊗

Parameter Matrix

= 11.9

• In our case: learn a parameter matrix (or tensor) from sparse feature
observations

Goal: learn a low rank parameter matrix

Preliminary (Matrix Norm)

12

• Goal: learn a low rank matrix 𝑍𝑛×𝑛

– Directly learning decomposition 𝑍 = 𝑈𝑛×𝑘𝑉𝑘×𝑛 is hard -- non-convex

• Using matrix norm constraint instead

Vector Case 𝒗𝒊 Matrix Case 𝑴𝒊𝒋

L1 norm:

 𝑣𝑖
𝑖

Nuclear norm ∗ :

 𝜎𝑘
𝑘

L2 norm:

 𝑣𝑖
2

𝑖

Frobenous norm 𝐹 :

 𝑀𝑖𝑗
2

𝑖𝑗

= 𝜎𝑘
2

𝑘

L∞ norm:

max
𝑖

𝑣𝑖

Spectral norm ∞:

max
𝑘

𝜎𝑘

Formulation

13

• Recall first-order decoding objective:

• Define score as matrix (tensor) inner product:

𝑦𝑖 = argmax
𝑦𝑖∈𝑇 𝑥𝑖

𝑆 𝑦𝑖

 = argmax
𝑦𝑖∈𝑇 𝑥𝑖

 s ℎ, 𝑐

(ℎ,𝑐)∈𝑦𝑖

𝑠 ℎ, 𝑐 = 𝜽 ⊗ 𝜙 ℎ, 𝑐

𝜽 = *𝑨, 𝜼+ Model Parameters:

Feature Matrix/Vector: 𝑤ℎ𝑤𝑐
T

s ℎ, 𝑐 = 𝑤ℎ
𝑇𝑨 𝑤𝑐 + 𝜼T𝑑 ℎ, 𝑐

𝑑(ℎ, 𝑐)

Formulation

14

• Minimize the loss of training data:

– online learning algorithm available

 (Jaggi & Sulovsky, 2010) (Hazan, 2008)

s. t. 𝐴 ∗ + 𝜆 𝜂 ≤ 𝐶

min
𝐴,𝜂

ℒ 𝐷;𝐴, 𝜂 =
1

𝑁
ℓ 𝑥𝑖 , 𝑦𝑖

Force A to be low-rank using
nuclear norm constraint

http://people.csail.mit.edu/taolei/dokuwiki/doku.php?id=project:tensor_dp:draft
http://people.csail.mit.edu/taolei/dokuwiki/doku.php?id=project:tensor_dp:draft
http://people.csail.mit.edu/taolei/dokuwiki/doku.php?id=project:tensor_dp:draft

Formulation

15

• Minimize the loss of training data:

– online learning algorithm available

 (Jaggi & Sulovsky, 2010) (Hazan, 2008)

s. t.
𝐴 0
0 𝜆𝜂

∗
≤ 𝐶

min
𝐴,𝜂

ℒ 𝐷;𝐴, 𝜂 =
1

𝑁
ℓ 𝑥𝑖 , 𝑦𝑖

Force A to be low-rank using
nuclear norm constraint

http://people.csail.mit.edu/taolei/dokuwiki/doku.php?id=project:tensor_dp:draft
http://people.csail.mit.edu/taolei/dokuwiki/doku.php?id=project:tensor_dp:draft
http://people.csail.mit.edu/taolei/dokuwiki/doku.php?id=project:tensor_dp:draft

Results

17

• Results on CoNLL shared task (up to 2000 sentences)

70%

72%

74%

76%

78%

80%

82%

84%

86%

0 500 1000 1500 2000

64%

66%

68%

70%

72%

74%

76%

0 500 1000 1500 2000

72%

73%

74%

75%

76%

77%

78%

79%

80%

81%

82%

0 500 1000 1500 2000

64%

66%

68%

70%

72%

74%

76%

78%

80%

0 500 1000 1500

English Basque

Greek Slovene

 LowRank
 MST

Results

18

70%

72%

74%

76%

78%

80%

82%

84%

86%

0 500 1000 1500 2000

MST

MST (all bigram)

LowRank (MST feature only)

LowRank

Results

• MST parser: solid lines

• Low-rank parser: doted lines

19

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Seen Arc: See dependency in the training data
Seen Words: See the words in training but arc unseen
Unseen: At least one word not in training

Results

20

• Adding unsupervised word embeddings to English

• MST+label: MST parser trained with labeled dependencies

• Other models are trained with only unlabeled dependencies.

MST MST+label LowRank LowRank+wv

100 72.5% 72.4% 76.3% 76.6% (+0.3%)

200 75.8% 75.8% 77.7% 78.0% (+0.3%)

500 79.4% 79.5% 80.8% 81.4% (+0.6%)

1000 80.9% 80.8% 82.8% 82.8% (+0.0%)

2000 83.7% 84.5% 85.1% 85.8% (+0.7%)

Thanks

21

• Current implementation available at:

 http://people.csail.mit.edu/taolei/muri/lowrankparser.zip

