Learning to Parse Using a Tiny Corpus

Tao Lei, Yu Xin Regina Barzilay, Tommi Jaakkola

CSAIL, MIT

- Data sparsity makes parsing harder
 - due to less frequent/unseen words and dependency arcs in data

• Prediction is worse when the arc is **not seen** in the training data

Seen Arc:Seen Words:Unseen:

See dependency arc in the training data See the words in training but arc unseen At least one word not in training

• Prediction is worse when the arc is not seen in the training data

• Feature weights are zeros when the features are not seen

Opportunity and Challenge

To deal with sparsity problem, we will

- Make the model flexible to add various rich features
 - E.g., words, coarse-to-fine POS tags and word embeddings
 - Feature selection: adjust complexity based on how much training data it has

- Model interactions between feature weights
 - E.g. propagating weights from seen features to unseen features
 - E.g. propogating weights between features

Motivating Example: Matrix Completion

- Learn a matrix (or high-order tensor) that has a lot of unseen entries
 - Example: image

Input image with missing values **Output** re-constructed image

– Example: Netflix problem

Users give only a few movie ratings. Predict unseen ratings

• In our case: learn a parameter matrix (or tensor) from sparse feature observations

	2		•••	4
	0	0		
	0	0		
	1	0.9		5
•••	0.1	0.1		

= 12

Feature Matrix

Parameter Matrix

• In our case: learn a parameter matrix (or tensor) from sparse feature observations

Feature Matrix

Parameter Matrix

• In our case: learn a parameter matrix (or tensor) from sparse feature observations

Feature Matrix

Parameter Matrix

• In our case: learn a parameter matrix (or tensor) from sparse feature observations

Goal: learn a low rank parameter matrix

Preliminary (Matrix Norm)

- Goal: learn a low rank matrix $Z^{n \times n}$
 - Directly learning decomposition $Z = U^{n \times k} V^{k \times n}$ is hard -- non-convex
- Using *matrix norm* constraint instead

Vector Case v_i	Matrix Case M _{ij}	
L1 norm:	Nuclear norm _* :	
$\sum_{i} v_{i} $	$\sum_k \sigma_k$	
L2 norm:	Frobenous norm $\ \ _F$:	
$\sum_i v_i^2$	$\sum_{ij} M_{ij}^2 = \sum_k \sigma_k^2$	
L∞ norm:	Spectral norm ∥ ∥ _∞ :	
$\max_i v_i $	$\max_k \sigma_k$	

Formulation

• Recall first-order decoding objective:

$$\widetilde{y}_{i} = \underset{y_{i} \in T(x_{i})}{\operatorname{argmax}} S(y_{i})$$
$$= \underset{y_{i} \in T(x_{i})}{\operatorname{argmax}} \sum_{(h,c) \in y_{i}} s(h,c)$$

• Define score as matrix (tensor) inner product:

 $s(h,c) = \boldsymbol{\theta} \otimes \phi(h,c)$ $s(h,c) = w_h^T \boldsymbol{A} w_c + \boldsymbol{\eta}^T d(h,c)$

Model Parameters: θ =

$$\boldsymbol{\theta} = \{\boldsymbol{A}, \boldsymbol{\eta}\}$$

Feature Matrix/Vector: $w_h w_c^{\mathrm{T}}$ d(h, c)

Formulation

• Minimize the loss of training data:

$$\min_{A,\eta} \mathcal{L}(D; A, \eta) = \frac{1}{N} \ell(x_i, \widehat{y}_i)$$

s.t. $||A||_* + \lambda ||\eta|| \le C$
For

Force A to be low-rank using nuclear norm constraint

- online learning algorithm available

(Jaggi & Sulovsky, 2010) (Hazan, 2008)

Initialize $Z^{(1)} := v_0 v_0^T$ for arbitrary unit vector v. For k = 1 to T do Compute $v_k := \text{ApproxEV}\left(-\nabla f(Z^{(k)}), \frac{C_f}{k^2}\right)$. Set $\alpha_k := \frac{2}{k}$. Set $Z^{(k+1)} := Z^{(k)} + \alpha_k \left(v_k v_k^T - Z^{(k)}\right)$. End for

Formulation

• Minimize the loss of training data:

$$\min_{A,\eta} \mathcal{L}(D; A, \eta) = \frac{1}{N} \ell(x_i, \widehat{y}_i)$$

s.t. $\left\| \begin{pmatrix} A & 0 \\ 0 & \lambda \eta \end{pmatrix} \right\|_* \le C$

Force A to be low-rank using nuclear norm constraint

- online learning algorithm available

(Jaggi & Sulovsky, 2010) (Hazan, 2008)

Initialize $Z^{(1)} := v_0 v_0^T$ for arbitrary unit vector v. For k = 1 to T do Compute $v_k := \text{ApproxEV}\left(-\nabla f(Z^{(k)}), \frac{C_f}{k^2}\right)$. Set $\alpha_k := \frac{2}{k}$. Set $Z^{(k+1)} := Z^{(k)} + \alpha_k \left(v_k v_k^T - Z^{(k)}\right)$. End for

• Results on CoNLL shared task (up to 2000 sentences)

- MST parser:
- Low-rank parser:

Seen Arc: See dependency in the training data
Seen Words: See the words in training but arc unseen
Unseen: At least one word not in training

• Adding unsupervised word embeddings to English

	MST	MST+label	LowRank	LowRank+wv
100	72.5%	72.4%	76.3%	76.6% (+0.3%)
200	75.8%	75.8%	77.7%	78.0% (+0.3%)
500	79.4%	79.5%	80.8%	81.4% (+0.6%)
1000	80.9%	80.8%	82.8%	82.8% (+0.0%)
2000	83.7%	84.5%	85.1%	85.8% (+0.7%)

- **MST+label:** MST parser trained with labeled dependencies
- Other models are trained with only unlabeled dependencies.

Thanks

 Current implementation available at: http://people.csail.mit.edu/taolei/muri/lowrankparser.zip