Low-Rank Tensors for Scoring Dependency Structures

Tao Lei

Yu Xin, Yuan Zhang, Regina Barzilay, Tommi Jaakkola

CSAIL, MIT

Dependency Parsing

Dependency parsing as maximization problem:

$$y^* = \underset{y \in T(x)}{\operatorname{argmax}} S(x, y; \theta)$$

- Key aspects of a parsing system:
 - 1. Accurate scoring function $S(x, y; \theta) \longrightarrow Our Goal$
 - 2. Efficient decoding procedure argmax

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

High-dim. sparse vector $\phi(x,y) \in \mathbb{R}^L$

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

High-dim. sparse vector $\phi(x,y) \in \mathbb{R}^L$

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

High-dim. sparse vector $\phi(x,y) \in \mathbb{R}^L$

Parameter vector $\theta \in \mathbb{R}^L$

$$S_{\theta}(x, y) = \langle \theta, \phi(x, y) \rangle$$

 Features and templates are manually-selected concatenations of atomic features, in traditional vector-based scoring:

 Features and templates are manually-selected concatenations of atomic features, in traditional vector-based scoring:

 Features and templates are manually-selected concatenations of atomic features, in traditional vector-based scoring:

Problem: very difficult to pick the best subset of concatenations

Too few templates

Lose performance

Too many templates

Too many parameters to estimate

Searching the best set?

Features are correlated
Choices are exponential

- Our approach: use low-rank tensor (i.e. multi-way array)
 - Capture a whole range of feature combinations
 - Keep the parameter estimation problem in control

• Formulate *ALL possible* concatenations as a rank-1 tensor

• Formulate *ALL possible* concatenations as a rank-1 tensor

• Formulate ALL possible concatenations as a rank-1 tensor

Formulate the parameters as a tensor as well

$$\theta \in \mathbb{R}^L$$
: $S_{\theta}(h \to m) = \langle \theta, \phi_{h \to m} \rangle$ (vector-based)
$$A \in \mathbb{R}^{n \times n \times d}$$
: $S_{tensor}(h \to m) = \langle A, \phi_h \otimes \phi_m \otimes \phi_{h,m} \rangle$ (tensor-based)

Involves features not in θ

Can be huge. On English: $n \times n \times d \approx 10^{11}$

• Formulate *ALL possible* concatenations as a rank-1 tensor

Formulate the parameters as a low-rank tensor

$$\theta \in \mathbb{R}^L$$
: $S_{\theta}(h \to m) = \langle \theta, \phi_{h \to m} \rangle$ (vector-based)
$$A \in \mathbb{R}^{n \times n \times d}$$
: $S_{tensor}(h \to m) = \langle A, \phi_h \otimes \phi_m \otimes \phi_{h,m} \rangle$ (tensor-based)

 $U, V \in \mathbb{R}^{r \times n}, W \in \mathbb{R}^{r \times d}$: $A = \sum_{i=1}^{n} U(i) \otimes V(i) \otimes W(i)$ Low-rank tensor

$$A = \sum_{i=1}^{r} U(i) \otimes V(i) \otimes W(i) \qquad \Longrightarrow \qquad \begin{cases} S_{tensor}(h \to m) = \langle A, \phi_h \otimes \phi_m \otimes \phi_{h,m} \rangle \\ = \sum_{i=1}^{r} \left[U \phi_h \right]_i [V \phi_m]_i [W \phi_{h,m}]_i \end{cases}$$

$$A = \sum_{i=1}^{r} U(i) \otimes V(i) \otimes W(i) \qquad \Longrightarrow \qquad \begin{cases} S_{tensor}(h \to m) = \langle A, \phi_h \otimes \phi_m \otimes \phi_{h,m} \rangle \\ = \sum_{i=1}^{r} \left[U \phi_h \right]_i [V \phi_m]_i [W \phi_{h,m}]_i \end{cases}$$

Dense low-dim representations: $U\phi_h V\phi_m W\phi_{h,m} \in \mathbb{R}^r$

Element-wise products: $[U\phi_h]_i[V\phi_m]_i[W\phi_{h,m}]_i$

Sum over these products: $\sum_{i=1}^{\infty} [U\phi_h]_i [V\phi_m]_i [W\phi_{h,m}]_i$

Intuition and Explanations

- Ratings not completely independent
- Items share hidden properties ("price" and "quality")
- Users have hidden preferences over properties

Intuition and Explanations

$$A = U^{\mathrm{T}}V = \sum U(i) \otimes V(i)$$

of parameters: $n \times m$ (n+m)r

Intuition: Data and parameters can be approximately characterized by a small number of hidden factors,

Intuition and Explanations

$$A = \sum U(i) \otimes V(i) \otimes W(i)$$

- Hidden properties associated with each word
- Share parameter values via the hidden properties

Low-Rank Tensor Scoring: Summary

- Naturally captures full feature expansion (concatenations)
 - -- Without mannually specifying a bunch of feature templates

- Controlled feature expansion by low-rank (small r)
 - -- better feature tuning and optimization

- Easily add and utilize new, auxiliary features
 - -- Simply append them as atomic features

Combined Scoring

Combining traditional and tensor scoring in $S_{\nu}(x,y)$:

$$\gamma \cdot \frac{S_{\theta}(x, y)}{S_{\theta}(x, y)} + (1 - \gamma) \cdot S_{tensor}(x, y)$$
 $\gamma \in [0, 1]$

selected features

Set of manual Full feature expansion controlled by low-rank

Similar "sparse+low-rank" idea for matrix decomposition: Tao and Yuan, 2011; Zhou and Tao, 2011; Waters et al., 2011; Chandrasekaran et al., 2011

Final maximization problem given parameters θ , U, V, W:

$$y^* = \underset{y \in T(x)}{\operatorname{argmax}} S_{\gamma}(x, y; \theta, U, V, W)$$

Learning Problem

- Given training set $D = \{(\hat{x}_i, \hat{y}_i)\}_{i=1}^N$
- Search for parameter values that score the gold trees higher than others:

$$\forall y \in \mathbf{Tree}(x_i): \quad S(\hat{x}_i, \hat{y}_i) \ge S(\hat{x}_i, y) + |\hat{y}_i - y| - \xi_i$$

• The training objective:

Non-negative loss unsatisfied constraints are penalized against

$$\min_{\theta, U, V, W, \xi_i \ge 0} C \sum_{i} \xi_i + ||U||^2 + ||V||^2 + ||W||^2 + ||\theta||^2$$

Training loss

Regularization

Calculating the loss requires to solve the expensive maximization problem; Following common practices, adopt online learning framework.

Online Learning

Use passive-aggressive algorithm (Crammer et al. 2006) tailored to our tensor setting

(i) Iterate over training samples successively:

$$(\hat{x}_1,\hat{y}_1) \quad \cdots \quad \longrightarrow \quad (\hat{x}_i,\hat{y}_i) \quad \longrightarrow \quad \cdots \quad (\hat{x}_N,\hat{y}_N)$$
 revise parameter values for i-th training sample
$$\sum_{i=1}^r [U\phi_h]_i [V\phi_m]_i [W\phi_{h,m}]_i$$
 is not linear nor convex

(ii) choose to update a pair of sets (θ, U) , (θ, V) or (θ, W) :

Increments:
$$\theta^{(t+1)} = \theta^{(t)} + \Delta\theta$$
, $U^{(t+1)} = U^{(t)} + \Delta U$

Sub-problem:
$$\min_{\Delta\theta,\Delta U} \frac{1}{2} ||\Delta\theta||^2 + \frac{1}{2} ||\Delta U||^2 + C\xi_i$$

Efficient parameter update via closed-form solution

Experiment Setup

Datasets

■ 14 languages in CoNLL 2006 & 2008 shared tasks

Features

- Only 16 atomic word features for tensor
- Combine with 1st-order (single arc) and up to 3rd-order (three arcs) features used in MST/Turbo parsers

Unigram features:		
form	form-p	form-n
lemma	lemma-p	lemma-n
pos	pos-p	pos-n
morph	bias	
Bigram features:		
pos-p, pos		
pos, pos-n		
pos, lemma		
morph, lemma		
Trigram features:		
pos-p, pos, pos-n		

Experiment Setup

Datasets

■ 14 languages in CoNLL 2006 & 2008 shared tasks

Features

- Only 16 atomic word features for tensor
- Combine with 1st-order (single arc) and up to 3rd-order (three arcs) features used in MST/Turbo parsers

Implementation

- By default, rank of the tensor r=50
- 3-way tensor captures only 1st-order arc-based features
- Train 10 iterations for all 14 languages

Baselines and Evaluation Measure

MST and Turbo Parsers

representative graph-based parsers; use similar set of features

NT-1st and NT-3rd

variants of our model by removing the tensor component; reimplementation of MST and Turbo Parser features

Unlabeled Attachment Score (UAS) evaluated without punctuations

Overall 1st-order Results

- > 0.7% average improvement
- Outperforms on 11 out of 14 languages

Impact of Tensor Component

Impact of Tensor Component

• Tensor component achieves better generalization on test data

Impact of Tensor Component

- Tensor component achieves better generalization on test data
- Combined scoring outperforms single components

- No tensor $(\gamma = 1)$
- Tensor only $(\gamma = 0)$
- Combined ($\gamma = 0.3$)

Overall 3rd-order Results

 Our traditional scoring component is just as good as the state-of-the-art system

Overall 3rd-order Results

- The 1st-order tensor component remains useful on high-order parsing
- Outperforms state-of-the-art single system
- Achieves best published results on 5 languages

Leveraging Auxiliary Features

- Unsupervised word embeddings publicly available*

 English, German and Swedish have word embeddings in this dataset
- Append the embeddings of <u>current</u>, <u>previous</u> and <u>next</u> words into ϕ_h , ϕ_m $\phi_h \otimes \phi_m$ involves more than $(50 \times 3)^2$ values for 50-dimensional embeddings!

³²

Conclusion

- Modeling: we introduced a low-rank tensor factorization model for scoring dependency arcs
- Learning: we proposed an online learning method that directly optimizes the low-rank factorization for parsing performance, achieving state-of-the-art results
- Opportunities & Challenges: we hope to apply this idea to other structures and NLP problems.

Source code available at:

https://github.com/taolei87/RBGParser

Rank of the Tensor

Choices of Gamma

