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Here we give the proofs of Theorem 1 and other necessary lemmas or corol-
laries.

Lemma 1 (Reachability) Any two trees y,y' are reachable to each other.
Specifically, let my,ma,--- ,m, be the bottom-up list of nodes in tree y, then
there exists a pathy = y© — yM — ... = 4 =/ in which y® is obtained
by changing the head of m;, i.e. y®(m;) = y'(m;), and this change always
results in a valid tree (which has no circle).

Proof: We show y(*) is always a valid tree and therefore y € T (y=1, m;),
because y* and y~V differs at most at the head of m; (y=(m;) = y(m;)
but y® (m;) = 1/'(m;)). Proof by induction on i = 1,--- ,n.

e i=1: my must be leaf node in y because mq,---,m, is a bottom-up
(reverse DFS) order. Changing its head to any node cannot results in
a circle. Therefore y is a tree when i = 1.

e i>1: Now let’s change the head of m; in tree =Y. Consider the
subtree with root m; in y~Y. We now prove that any node z inside
this subtree is already processed and its head is already changed, i.e.,
v € {my, - ,mi_1} and y"Y(z) = y/(r). This can be shown by
contradiction. Assume a node x inside this subtree is not processed,
and its head h has not been changed yet, i.c., y(x) = y Y (x) = h.
This implies the node h has not been processed neither, because all
nodes are processed in bottom-up order. Repeat the same idea and we
know that z,y(x),y(y(x)), -+ ,y(y(..y(x)..)) = m; are not processed.
This contradicts to the fact that m; is the next immediate unprocessed
node in the bottom-up list, because its descendants are not processed.



Function CountOptima(G = (V, E))
V = {wo,wy, -+ ,w,} are the root (wy) and n words

E = {e;; € R} are the arc scores

Return: the number of local optima

10:
11:
12:
13:

Let y(0) = 0 and y(i) = arg max; ejy;
if y is a tree (no circle) then return 1;
Find a circle C C V in y;
cnt = 0;
// contract the circle
create a vertex ws;
Vi ¢ C: e = maxgec €xj;
for each vertex w; € C' do
Vid¢C:ej=ej;
V' =V U{w.}\C;
E' = EU{ej, e | V) ¢ C}
cnt += CountOptima(G’ = (V' E'));
end for
return cnt;

Figure 1: A recursive algorithm for counting local optima for a sentence with
, Wy, in first-order case. The idea is very similar to the Chu-Liu-
Edmond algorithm for finding only the maximum directed spanning tree.

words wyq, - - -

So all nodes in the subtree are processed and all arcs appear in the
subtree are already arcs in 3/. Changing the head of m; cannot results
in a circle (i.e., the new head of m;, y'(m;) can not be a node inside
this subtree, otherwise it implies there is a circle in tree 3, which is
not possible). Thus 3 is a valid tree.

Finally y™ = v because y™(z) = ¢/(x) for all node z. In sum, y' is
accessible via the path y = y(© — ... — y(™ =4/



To prove Theorem 1, we start by proving the correctness of the recursive
algorithm for counting local optima:

Definitions Let G = (V, E) be a directed weighted graph of size n + 1,
where vertices V' = {wy, -+ ,w,} represent a pseudo root node w, and n
words wy, - -+ ,w, in a sentence, and weights £ = {e;; € R} represent the
first-order scores associated with individual arcs ¢ — j. A local optimum
tree in GG is a directed tree with root wy, such that changing any single head
cannot result in a better tree with higher score.!

Lemma 2 Let y(0) = 0 and y(i) be the index of the best possible head for
word w;, i.e., y(i) = argmax; ej;. Then: (a) y is the unique local optimum
in G ify is a tree; (b) otherwise let C' be a circle iny, then any local optimum
tree § € G contains exactly |C| — 1 arcs in the circle C.

Proof: (a) Simply by the definition of y.

(b) Proof by contradiction. Assume y € G is a local optimum tree that
contains less than |C| — 1 arcs in the circle C. Consider a top-down order of
nodes in g, and let u € C be the first node (in the circle) in this top-down
list. Now define ¢ as follows,

v Jglx) z¢Corx=u
y(x)—{z(x) reCand xz#u

It’s easy to verify that 3 is a tree. Note that ¢ has exactly |C| — 1 arcs of
the circle C'. By Lemma 1, there is a path from ¢ to ¢ that never decreases
the tree score, because the heads of y is strictly better than those of g, i.e.,
€h(x)e = €j(z)z- Lhis contradicts to the assumption that g is a local optimum
tree. |

Now according to Lemma 2, one way to get the local optimum trees in G is as
follows: (1) enumerate and pick a node u € C'; (2) remove the arc y(u) — u
in the circle C' and it becomes a chain; (3) fix these heads and arcs in the
chain; (4) contract this chain and search for local optima in a smaller graph
by applying Lemma 1 repeatedly:

'We assume there is no tie when comparing scores, trees or heads. If there is a tie, we
can always break it by taking the tree (or head) that ranks higher in terms of aphabetic
order.



Definitions Let G, y and C be a graph, the set of best heads and the circle
in y respectively. Without loss of generality, let wq,--- ,w. be the nodes in
the circle C', where ¢ = |C|. Define graph G = (V@ E®) (i =1,.-- ¢) as
the contraction of graph G at w; € C' as follows:

VO = v u{w®}\C
E® = {6}k}

where
6;*26]‘1‘, VJEV\C
e, = max ey, VieV\C
ey, = €ji Vi,ke V\C

Lemma 3 Any local optimum tree §j € G% is also a local optium tree in G
(by uncontracting the node w, back to the chain); and vice versa, i.e., any
local optimum tree § € G is also a local optimum tree in one of GY for
1=1,---,c.

Proof: By Lemma 2 and the definitions of G and y. Details omitted
here. |

Corollary 1 Let F(G) be the number of local optimum tree in graph G: (a)
F(G) = 1ify is a tree that has no circle; (b) F(G) =Y, F(GY) ify contains
a circle C.

Proof: By Lemma 2 and Lemma 3. |}

Corollary 2 The recursive algorithm in Figure 1 returns the number of local
optima in graph G. Its complexity is linear to the number of local optima.

Proof: By Lemma 2, Lemma 3 and Corollary 1. |



Theorem 1 (Local Optima Bound) For any first-order score function that
factorizes into the sum of arc scores S(x,y) = > Sarc(y(m),m): (a) the num-
ber of local optimum trees is at most 2"~ for n words; (b) this upper bound
18 tight.

Proof: (a) Let F(m) be the maximum number of local optimum trees in
any graph of size m. By Corollary 1, we have:

=sh

(2)=1

(m) < max F(m—c+1)xc Vm > 2
2<c<m—1

=sh

Solving this we get F (m) < 2™72. For a sentence with n words, the corre-
sponding graph has size m = n + 1, therefore the upper bound is 2"

(b) For any n > 0, construct a graph G,, = (V, E) as follows:

V = {w07w17”' 7wn}
E = {e;}
where
eij:eji:i VO§'L<]§n

Note that w,,_; — w, — w,_1 is a circle of length 2 in G,, and y. Then it can
be shown by induction on n and Corollary 1 that F(G,) = F(Gp-1) X 2 =
2n71. I



