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Example

The success of deep learning often derives from well-
chosen operational building blocks.

Question: can we design neural network components
better for text processing?

Motivated by previous NLP methods like string
kernels, we revise the feature mapping operation
(i.e. convolution operation) of CNNs

= Directly handles non-consecutive n-gram
patterns, e.g. “not nearly as good” etc.

= Use tensor algebra to capture n-gram interactions

Our code and data are available at
https://github.com/taolei87/text convnet

Model

Consider generating the feature representation of the following

sentence:
“the movie is not that good”
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(iii) linear time dynamic programming possible when T is low-rank factorized!

idea to CNN feature mapping. 2gram case:

newswire and POS classification tasks.

(ii) averaging non-consecutive ngrams
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Model Fine Binary | Time
DCNN[1] | 485 869 | -
DNN-MC [2] | 474 88.1 |..156
RLSTM[3] | . 510 . . 830 | 164
Ours (best) | 52.7 | 88.6 28

(avg.) 514 88.4

Table 1: Results on Stanford Sentiment Treebank.
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Model evaluated on sentiment analysis task,
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consecutive ngrams; (b) deeper model gives better acc%.
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Figure 1: Analysis of our model. (a) better acc% when handles non-
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