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Motivation

The success of deep learning often derives from well-
chosen operational building blocks. 

Question: can we design neural network components 
better for text processing?

This work

Motivated by previous NLP methods like string 
kernels, we revise the feature mapping operation 
(i.e. convolution operation) of CNNs

➡ Use tensor algebra to capture n-gram interactions

➡ Directly handles non-consecutive n-gram 
patterns, e.g. “not nearly as good” etc.

Example

Consider generating the feature representation of the following 
sentence:

“the movie is not that good”
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Our code and data are available at  

https://github.com/taolei87/text_convnet

Apply the “string kernel” idea to CNN feature mapping. 2gram case:
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(i) non-linear high-order filters
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(ii) averaging non-consecutive ngrams
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Results

(iii) linear time dynamic programming possible when T is low-rank factorized!

Architecture

➡ Directly plug into CNNs for 
feature extraction

➡ Can be stacked or feed into 
activation cells

Model evaluated on sentiment analysis task, 
newswire and POS classification tasks.

Model Fine Binary Time
 DCNN [1] 48.5 86.9 -
 DNN-MC  [2] 47.4 88.1 156
 RLSTM [3] 51.0 88.0 164
 Ours  (best) 52.7 88.6 28
           (avg.) 51.4 88.4

Table 1: Results on Stanford Sentiment Treebank. 
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Figure 1: Analysis of our model. (a) better acc% when handles non-
consecutive ngrams; (b) deeper model gives better acc%.
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