
Extending a Reactive Expression Language with Data
Update Actions for End-User Application Authoring

Lea Verou
MIT CSAIL

leaverou@mit.edu

Tarfah Alrashed
MIT CSAIL

tarfah@mit.edu

David Karger
MIT CSAIL

karger@mit.edu

ABSTRACT
Mavo is a small extension to the HTML language that em-
powers non-programmers to create simple web applications.
Authors can mark up any normal HTML document with at-
tributes that specify data elements that Mavo makes editable
and persists. But while applications authored with Mavo al-
low users to edit individual data items, they do not offer any
programmatic data actions that can act in customizable ways
on large collections of data simultaneously or that modify
data according to a computation. We explore an extension to
the Mavo language that enables non-programmers to author
these richer data update actions. We show that it lets authors
create a more powerful set of applications than they could
previously, while adding little additional complexity to the
authoring process. Through user evaluations, we assess how
closely our data update syntax matches how novice authors
would instinctively express such actions, and how well they
are able to use the syntax we provided.

Author Keywords
Web design; End-user programming; Information
architecture; Semantic publishing; Dynamic Media; Web;
Query languages; Data updates; Reactive Programming.

INTRODUCTION
Many systems and languages exist for assisting novice pro-
grammers to manage information, and/or create CRUD ap-
plications for this purpose. They range from the well known
commercial spreadsheet systems to more complex application
builders [8, 5] or simplified declarative languages [16, 2].

These usually generate an editing interface for elementary data
manipulations (editing a data unit, inserting items, deleting
items) and a mechanism for lightweight reactive data compu-
tation. As an example, in spreadsheets the editing interface is
the grid itself, and the computation is the spreadsheet formula.

These tools typically offer only direct editing of specific data
items by the end user. Affordances may also be provided for
aggregating certain kinds of commonly needed mass modifi-
cations. A few examples of these would be selecting multiple
items for deletion or move, adding multiple rows or columns,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: https://doi.org/10.1145/3242587.3242663

<body mv-app="todo" mv-storage="local">
 <p>My tasks: [count(done)] done, [count(task)] total
 <li property="task" mv-multiple>
 <input type="checkbox" property="done" />
 Do stuff

 <button mv-action="delete(task where done)">
 Clear Completed</button>
</body>

Figure 1: The complete HTML for a fully-functional To-Do
app made with Mavo, with a data update action for deleting
completed items. No Javascript is needed.

or the spreadsheet fill handle. However, the set of potential
data mutations is infinite, and it is not practical to predefine
controls for every possible case. For more complex automa-
tion of data edits, users are typically directed to scripting or
SQL queries. Learning a scripting language is almost as hard
as learning a programming language, and SQL queries quickly
become complicated when nested schemas are involved, which
are represented by multiple tables and foreign keys [6].

Mavo [16] is an HTML language extension for defining CRUD
Web applications by annotating a static HTML mockup to
separate UI from data. A property attribute indicates that
an element is data, and an mv-multiple attribute makes it
repeatable i.e. turns it into a collection. Based on this markup,
Mavo generates a suitable editing interface. Mavo stores its
data locally or on a cloud service.

https://doi.org/10.1145/3242587.3242663

Many applications benefit from presenting values computed
from their data, so Mavo implements a reactive expression
language called MavoScript, similar to what can be found in
spreadsheets, for lightweight computation. Expressions can
be placed anywhere in the HTML and are denoted by square
brackets ([]) or certain attributes(mv-if, mv-value etc). An
expression can reference properties, with its evaluation depend-
ing on the location of the expression relative to the referenced
properties in the data tree. Referencing a multi-valued prop-
erty on or inside a collection item resolves to its local value
on that item, whereas referencing that property name outside
the collection resolves to all values. All operators and most
functions can be used with both single values and lists. This
makes many common expressions concise.

Our previous work [16] provided evidence that Mavo empow-
ered users with no programming experience to author fully
functional CRUD applications. But Mavo offered only direct
editing of individual data items, while many applications call
for richer, programmatic modification of large collections of
data simultaneously. For example, while a simple To-Do list
could be easily implemented with a few lines of HTML+Mavo,
clearing all completed items was not possible. Mavo did offer
controls for deleting individual items, but no way to specify
such actions that programmatically delete certain items.

Our Contribution
In this work, we extended Mavo with a new HTML attribute,
mv-action, for specifying programmatic data updates. Its
value describes the data mutation as an expression, and it is
placed on the element that will trigger the action by clicking.
The expression leverages Mavo’s existing expression syntax as
much as possible, but adds functions that modify the data. We
also implemented functions and operators to filter and define
data in Mavo expressions, to increase the expressiveness of
such expressions. A short example implementing bulk deletion
can be seen in Figure 1.

Our hypotheses are that (a) the set of primitives we have cho-
sen is expressive enough to meaningfully broaden the class
of data management applications that can be created without
undue complexity, and (b) novice web authors can easily learn
to specify programmatic data mutations. To examine the first
hypothesis, we list a number of case studies of common inter-
actions and how they would be expressed with our data update
syntax. To examine the second hypothesis, we conducted a
user study with 20 novice web developers writing a variety of
data mutations, using first their own imagined syntax and then
ours. We found that the majority of users were easily able to
learn and apply these data mutation expressions with 90% of
our participants getting two thirds of the questions right on
first try, with no iteration. We also found that in many cases,
our syntax was very close to their imagined syntax.

Although the presentation of information is an important part
of Mavo, our work here focuses on and extends the computa-
tional power of MavoScript, an expression language similar
to that of spreadsheet functions. While we consider Mavo, we
believe our work suggests more broadly a way to increase the
power of such functional reactive programming environments,
including spreadsheets, for novice users.

RELATED WORK
Our work extends the Mavo language [16]. A full discussion
of related work can be found there. In summary, many plat-
forms and systems have been developed over the past few
decades to help web authors build web applications. Some
of these tools were targeted for web developers with limited
programming and database knowledge [4, 17], allowing them
to make programmatic changes to the data using SQL queries.
Others were developed for novice web designers who are inter-
ested in rapid development of web applications [1, 13, 7], with
spreadsheet as a back-end, but with limited or no mechanism
to make data updates programmatically.

MAVO DATA UPDATE LANGUAGE

The mv-action HTML attribute
Data updates are specified via an mv-action HTML attribute,
which can be placed on any element. Its value is an expression
that describes the action that will be performed. The action is
triggered by clicking (or focusing and pressing spacebar, for
keyboard accessibility), as that appears to be the most common
way to invoke an action on most types of GUIs.

Data mutation functions
We extended Mavo’s expression language with four data mofi-
ciation functions (brackets indicate optional arguments):

• set(reference, value)
• delete(ref1, [, ref2 [, ref3, ...])
• add(collection [, data] [, position])
• move(from, to)

The first three are analogous to the SQL primitives UPDATE,
INSERT, DELETE, whereas the latter is a composite muta-
tion (delete, then add). These functions are only available in
expressions specified with the mv-action attribute. Regular
Mavo expressions remain side-effect free.

We kept these functions minimal, to delegate selection and fil-
tering logic to Mavo expressions. This maximizes the amount
of computation specified in a reactive fashion.

Defining literal data in expressions
Originally in Mavo, data was created either in the HTML at ap-
plication authoring time, or by the user’s direct manipulations.
However, with programmatic data mutations, it is sometimes
necessary to specify new or changed data programmatically.
To support expressions describing literal complex structures,
we defined a : (colon) operator, and two functions: group()
for objects and list() for arrays. By combining these with
existing literals, any JSON structure can be specified.

The : (colon) operator is used for defining key:value pairs,
which the group() function can then combine in a single
object. The list() function produces arrays, like those that
Mavo list-valued properties return.

Other additions
Update actions often consist of multiple elementary updates,
executed sequentially. The DICE ROLLER in Figure 3 demon-
strates an example (add(), then set()). To facilitate this, we
extended MavoScript to support multiple function calls in

the same expression. These can be separated by commas,
semicolons, whitespace, or even nothing at all.

To enable filtering of list-valued properties, we implemented
a where operator. In imperative languages, such filtering is
not as essential, because programmers are expected to collect
the target data by looping. However, in declarative data up-
date languages (like ours or SQL), filtering is more important,
because data is operated on all at once. The operator has low
precedence, so parentheses are rarely needed, e.g. person
where age > 30 and name = 'Lea'.

EXAMPLE USE CASES
Part of our argument is that Mavo data actions have sufficient
power to easily specify a broad range of programmatic data
manipulations in applications. To support that argument, we
outline a few common interactions below. None of these can
be implemented with the original Mavo alone. In each case,
we show the source code, primarily HTML and original Mavo
syntax; we highlight the code leveraging data actions.

Generalizing existing Mavo data updates
All Mavo data update controls except drag and drop can be
expressed concisely as data actions, which facilitates UI cus-
tomization. The following examples assume the updates are
modifying a collection with property="item". Note that
index (or $index) is a built-in Mavo variable that resolves to
the index of the closest collection item, starting from 0.

Action Data update Expression

Add new item button (outside collection) add(item)

Add new item after current add(item)

Duplicate current item add(item, item)

Delete current item delete(item)

Move up move(item, index - 1)

Move down move(item, index + 1)

Common Interactions and Widgets
One natural class of use cases for data actions is in creating rich
new UI widgets. These widgets generally present underlying
data from the traditional model in some novel fashion. But
the widgets also tend to come with their own internal view
model describing the state of their presentation. Data actions
can be used to control the state of the view model, and thus to
manage the widget’s data presentation.

Select All
It is common to offer an affordance to simultaneously check
or uncheck all items in a list.
<button mv-action="set(selected, true)" >Select All</button>

<button mv-action="set(selected, false)" >Unselect All</button>
<div property="item" mv-multiple>

<input type="checkbox" property="selected" />
<!-- other content -->

</div>

Accordion / Tabs
An accordion permits a user to show one of
several distinct sections of content, while
the rest are hidden. The same markup, with
different CSS, could also be used to implement a tabbed view.

<details property="prop" mv-multiple open="[open]"

mv-action="set(open.$all, false) set(open, true)" ">

<summary property="title"></summary>
<meta property="open" />
<!-- content -->

</details>

Pagination / Slideshow / Carousel

The following markup implements a working pagination wid-
get and the content it paginates. It uses the Mavo mv-value
attribute to generate a dynamic collection of page markers,
then mv-action to make them clickable. An expression on
each item controls whether it should be displayed based on the
current page. The common slideshow and carousel paradigms
can be implemented much the same way, essentially paginat-
ing one item per page.
<meta property="cur" content="1"> <!-- = Current page -->
<meta property="per" content="10"> <!-- = Items per page -->
<meta property="pages" content="[ceil(count(item) / per)]">

<a mv-action="set(cur, cur - 1)" mv-if="cur > 1">J
<a mv-multiple mv-value="1 .. pages"

mv-action="set(cur, page)" >1

<a mv-action="set(cur, cur + 1)" mv-if="cur < pages">I

<!-- Content to be paginated: -->
<div property="post" mv-multiple hidden="[page != cur]">

<meta property="page" content="[ceil((index + 1) / per)]">
<!-- content of one item -->

</div>

Sorting table by clicking on column header
Mavo provides an mv-sort attribute whose
value is the property name(s) to sort by. Data
actions can dynamically change that via a
helper property that holds the property name.
<meta property="sortBy" content="">
<table>
<tr>

<th mv-action="set(sortBy, 'name')" >Name</th>

<th mv-action="set(sortBy, 'age')" >Age</th>
</tr>
<tr property="person" mv-multiple mv-sort="[sortBy]">

<td property="name"></td>
<td property="age"></td>

</tr>
</table>

An alternative solution would be to overwrite the collection
with a sorted version of itself each time the header is clicked:
<th mv-action="set(person, sort(person, name)" >Name</th>

<th mv-action="set(person, sort(person, age)" >Age</th>

Adding events to a map
This example positions each collection
item over a 720 × 360 equirectangular
map by storing the mouse position at the
time of clicking. Similar logic can be used
for adding events to a calendar view.

Figure 2: The people application, used for a variety of tasks

<meta property="hoverPos" content="group(
lat: 90 - $mouse.y / 2, lon: $mouse.x / 2 - 180)">

<div property="place" mv-multiple
style="top: [2 * (90-lat)]px; left: [2 * (lon+180)]px">

<meta property="lat" /> <meta property="lon" />
<!-- other properties -->

</div>

Heterogeneous collections
With data actions, Mavo can simulate heterogeneous collec-
tions using a hidden property for the type of item and separate
Add buttons for each type. An example of a heterogeneous
collection is a blog with two types of posts: text and picture.
<article property="post" mv-multiple>
<meta property="type">
<h2 property="title"></h2>

<div property="text" mv-if="type = 'text'">

</article>
<button mv-action="add(post, type: 'image')" >New </button>

<button mv-action="add(post, type: 'text')" >New </button>

E-shop: Add to Cart button
Mavo supports direct manipulation to move an item from one
collection to another by dragging it. But data actions enable
authors to specify more natural mechanisms for common cases,
such as the "Add to Cart" button of an e-shop.
<div property="product" mv-multiple>

<!-- name, image etc properties -->

<button mv-action="add(cart, product)" >Add to cart</button>
</div>
<div property="cart" mv-multiple>
<!-- subset of product properties -->

</div>

EVALUATION
To design a data update language that feels natural to novice
programmers, we took a two-pronged approach. First, we
attempted an unconstrained elicitiation [11] of a syntax that
users find natural. Second, we used our prototype language
in a constrained elicitation, as we expected different insights
from unconstrained responses compared to a prototype.

Preparation
We recruited 20 participants (age µ = 36.2, σ = 9.25; 60%
female, 40% male) by publishing a call to participation on
social media and local web design meetup groups. Their

HTML CSS JavaScript JSON

Not at all 0 0 6 4
Beginner 1 1 5 3
Intermediate 5 3 9 8
Advanced 12 11 0 5
Expert 2 5 0

Table 1: Participants’ familiarity with web technologies.

(self-reported) skill levels in HTML and CSS ranged from
beginner to expert, but intermediate or below in JavaScript.
11/20 described themselves as beginners or worse in any pro-
gramming language, while 9/20 were intermediate. Regarding
data concepts, 5/20 stated they could write JSON, 4/20 could
write SQL, and none could write HTML metadata (RDFa,
Microdata, Microformats). We asked our participants to read
through the Mavo Primer1 and optionally to create a shopping
list application with Mavo before coming in for the study.

Study Design
Sessions were conducted one-on-one, in person and were lim-
ited to 90 minutes. Participants were shown a Mavo applica-
tion with two collections (men and women) each containing
a name, an age and a collection of hobbies (Figure 2). We
decided on this schema because it is nested, and the properties
have an obvious natural meaning.

First, participants were asked to write expressions that com-
pute counts for five questions of increasing difficulty, starting
from the simplest (“Count all men”) down to filtered counts
(e.g. “count women older than 30”, "count women who have
‘Coding’ as a hobby", etc), which participants found problem-
atic in the first Mavo study [16]. Participants were discouraged
from iterating on their expressions, and were told we wanted
to capture their initial thinking.

The purpose of this part of the study was three-fold: (a) to
assess their understanding of existing Mavo capabilities, (b)
to verify whether filtered counts were indeed harder, and (c)
to prime them into thinking in terms of declarative functional
expressions for the study that was yet to follow.

The second part was a natural programming elicitation
study [11]. We briefly explained the problem that Mavo data
updates are solving, as well as our idea for addressing it on a
high level. More specifically, we mentioned the mv-action
attribute, as well as the set(), delete(), add(), and move()
functions, but presented this as ideas whose syntax we are
not sure about and had not developed yet. We then asked
participants to answer 17 data update questions of increasing
complexity (Table 2) by writing the syntax that felt more natu-
ral to them. They were also encouraged to even use different
function names, if that felt more natural to them.

After this stage, we revealed our language prototype so that
they could experiment with it during the study. After a brief
tutorial (5-10 minutes), participants had to answer the same
questions, in the same order, using our syntax. After this
1mavo.io/docs/primer

Question Type

1 Delete all men delete
2 Add new man (with no info filled in) add
3 Delete all people delete
4 Add a new man and a new woman add
5 Delete current man delete
6 Make current man 1 year older set
7 Make everyone 1 year older set
8 Set everyone’s name to their age set
9 Delete women older than 30 years old delete X

10 Move the current woman to the collection of men move
11 Add a woman with the name "Mary" and age of 30 add
12 Add a woman with the name "Mary" and age of 30

to the beginning of the women collection
add

13 Delete "Dining" as a hobby from everyone delete X

14 Rename every man with age > 40 to "Chris" set X

15 Move the current woman to the beginning move
16 Change the age of the woman named "Mary" to 50 set X

17 Move all men to the collection of women move

Table 2: All 17 data manipulation questions. The third column
indicates whether filtering was needed to answer the question.

section, participants were asked to choose 4 questions, one
from each action type (set, add, move, delete) and try them out
as a training task for the next part. Researchers would alert
them to any mistakes and help correct them.

The final part of the study consisted of two sets of hands-
on tasks where participants would try authoring data updates
to complete the functionality of two different applications
using our syntax prototype. For the first set, participants were
randomly assigned one of two applications: a DICE ROLLER
application with a history of past dice rolls, and a language
learning WORD GAME where users click on words in the right
order to match a hidden sentence, both having three tasks.
The second set was the same for all users and extended a
shopping list application, either one they made, or our template.
For all hands-on tasks (Figure 3), participants were given the
HTML, CSS and (original) Mavo markup, and only had to add
mv-action attributes to complete their functionality.

After finishing all tasks, participants were asked a few ques-
tions about their experience in the form of a brief semi-
structured interview, completed a SUS [3] questionnaire, and
a few demographics and background questions.

RESULTS & DISCUSSION

Counting questions
All participants correctly answered all simple counting ques-
tions, even when they had to count a scoped property (counting
all hobbies from outside both collections of men and women).
Also, they seemed to have no trouble with filtered aggregates
like count(age > 3) with 17/20 getting them right, and the
remaining three making only minor syntax errors.

Participants had trouble disambiguating between scoped prop-
erties with the same name across two collections (e.g. getting
only women’s ages or men’s hobbies). Mavo (like SQL) uses

dot notation for this (woman.age only returns women’s ages),
which only 8/20 participants used. However, as there was no
example of this in the Mavo Primer, we did not consider these
failures a sign of poor understanding of Mavo functionality.

Free-form Syntax
In this part of the study, we wanted to explore what syntax
participants found natural, with the only suggestion being that
they had to use the four functions (set, add, move, delete). This
suggestion was introduced to put participants in the mindset
of writing expressions instead of natural language. They were
even encouraged to use different function names if they wished
to, and 6 did so at least once (half of them inconsistently).

Despite emphasizing that constraint, 6/20 participants did not
use any functions for answering at least one of the 17 questions
but wrote statements instead (such as age = age+1) and 4
more used a hybrid approach, with some parameters outside
the function call, such as add(woman) name=Mary age=30.

Scope
We previously mentioned that in Mavo expressions, prop-
erty names can be used anywhere and resolve to the local
value or all values depending on the expression placement,
enabling very concise references for common cases. Thus,
delete(man) used “inside” a particular item in a collection of
man objects would delete only that item, while delete(man)
“outside” the collection would delete all those man objects.

However, in their own syntax, many subjects wanted to make
this distinction explicit. 8/20 used a keyword or function to
refer to all items (e.g. man.all) at least once, and 8/20 used
an explicit keyword or function for the current item, such
as woman.current or this. Only 3 participants did both.
Interestingly, none followed their own referencing schemes
consistently, using these explicit references only in some of
the questions or some of the arguments, and plain property
names elsewhere. This may indicate one reason why this
referencing scheme is useful: it eliminates error conditions.

More work is needed to understand why our subjects attempted
this more verbose language when the more concise one would
work. Based on participant answers to probing questions, the
survey format may have played a role: they were writing their
answers in text fields, separately from the HTML, so the con-
text of their expression was removed. In that setting, it may
have been jarring to write the same expression as an answer
to completely different questions (e.g. “Delete all men” and
“Delete current man” are both delete(man) with our syntax).
Perhaps if they’d been writing Mavo expressions inside ac-
tual HTML, the disambiguation through context would have
eliminated the desire to disambiguate through syntax.

Another possibility is that novice programmers prefer ver-
bosity. Pane et al. [12] showed that 32% of non-programmers
constructed collections by using the keywords every or all.
The use of such verbose syntax could be seen as a form of
commenting, adding clarity over more concise code. It is easy
to provide syntactic sugar to allow such explicit references. In
fact, Mavo already defines special all and this variables that
work in a similar way although we did not mention this.

<div class="[if(join(orderedWord, ' ') = solution, correct)]">

 <button >Clear</button>
 <button >Undo</button>
</div>
<span mv-multiple="word" mv-value="shuffle(split(solution))"
 >

mv-action="delete(orderedWord)"
mv-action="delete(last(orderedWord))"

mv-action="add(orderedWord, word)"

<div property="diceHistory" mv-multiple class="dice-[diceHistory]"></div>
<div property="dice" class="dice-[dice]">6</div>
<button >Roll dice</button>mv-action="add(diceHistory, dice), set(dice, random(1,6))"

<fieldset><legend>Common items</legend>
 <div property="common" mv-multiple ></div>
</fieldset>
<li property="item" mv-multiple>
 <input type="checkbox" property="bought">

 <button >+ common items</button>

mv-action="add(item, common)"

mv-action="add(common, item)"

Figure 3: The hands on tasks with their solutions. From top to bottom: Words game, Dice Roller, our Shopping List (for
participants who did not bring their own).

We also observed the reverse, of users trying to be more con-
cise. 7/20 participants indicated that the target of their action
is the current item by omitting a parameter, such as writing
delete() for deleting the current item or move(man) for mov-
ing the current woman to the collection of men.

Underspecified expressions
Stylistic choices such as punctuation should be distinguished
from expressions which must be regarded as incorrect because
they are missing necessary information for the operation. How-
ever, even in those cases, it is hard to be certain that there is a
logic error at play. Are the missing parameters actually miss-
ing, or did the participant have a clever heuristic in mind for
inferring them? And if not, is it a logic error, or merely a slip?
In this section, we describe some of the most common patterns
of (ostensibly) underspecified expressions that we observed.

By far the most common one was delete(<PREDICATE>)
with no reference to the item(s) to be deleted. For exam-
ple, delete(woman.age>30) for deleting women older than
30, delete(hobby='Dining') to remove the hobby “Dining”
from all people. 18/20 participants did this at least once, and
10 did so in both of the conditional delete questions (Q9, Q13).
One possible interpretation would be that the set targeted for
removal is specified by the first token in the expression—e.g.
"woman" and "hobby" in the above examples. But this seems
likely to be fragile in general use—for example, does the sec-
ond expression above try to delete all "Dining" hobbies, or
does it try to delete all women who have dining as a hobby?

Another common pattern was using set(age+1) to increment
all ages. 15/20 participants used a variation of this syntax.
This is consistent with the proposed interpretation above, that
the update target is the first named token. Interestingly, there
was no such underspecification in Q8, which involved two
properties. None of the participants realized the inconsistency

when they answered the latter and did not think to back and
change their answer to the former. Asking a subset of partici-
pants about this at the end revealed that some of them thought
of age+1 as an increment operator (like C’s age++) whereas
for others, omitting the property to be modified was a slip.

Both patterns may indicate a distaste for parameter repetition,
which is on par with natural language: “parameters” are only
explicitly specified when different and are otherwise implied.

5/20 participants wrote their expressions as if the “name” prop-
erty had a special meaning, i.e. was an implied primary key.
For example they would use Mary as a way to refer to the per-
son that has name=“Mary”, without specifying “name” any-
where in their expression. This did not seem to correlate with
a lack of (self-reported) programming skill, as only one of
them had not been exposed to programming at all. It is unclear
whether this has to do with the word “name” itself, or with the
fact that names were indeed unique in the data we gave them.

Using objects as numbers was common, e.g. omitting “age”
from delete(woman>30) or set(man+1). Many participants
attempted it at first, and 4/20 submitted their answers with
it. In many cases this turned out to be a slip, but two partici-
pants articulated a consistent mental model: it automatically
operates on all numeric properties! In Pane et al. [12], 61%
of non-programmers modified the object itself instead of its
properties, which is higher than the percentage we observed.

Argument separation
While commas are likely the most widely used argument sep-
arator, they did not appear to be very natural to our subjects.
7/20 did not use any commas, but instead separated arguments
by other symbols, or even whitespace. 5/20 only used commas
for repetition of the same argument type (e.g. delete(man,
woman)). From the remaining 8 subjects, only 2 used commas

exclusively to separate arguments. The rest combined commas
with separators that were more related to the task at hand.

16/20 subjects used “=” to separate arguments at least once,
most commonly in set(). 9/20 used “to”, primarily in set()
and move(). Other separators (whitespace, colons, and paren-
theses) were used by 3 people or fewer.

Sequencing function calls
Only 8/20 participants used multiple function calls in an ex-
pression (such as add(man) add(woman). The rest tried to
express compound actions via arguments of one function call
(such as add(man, woman), even when this was inconsistent
with their later responses.

In spreadsheets, expressions have no side effects and only
produce one output, therefore there is never a need for multi-
ple adjacent function calls. Therefore, using more than one
function call may feel foreign and unnatural to these users.

Filtering
Four of our questions required filtering on a collection (cases
where the corresponding SQL query would need a WHERE
or HAVING condition). Half of our participants defined a
language-level filtering syntax, such as if or where keywords,
or parentheses (e.g. woman(age>30)). 6/20 expected that the
data update functions would allow a filtering argument.

5/20 expected that predicates would act as a filter of the closest
collection item and consistently used them in that fashion. For
example, they expected that man.age > 40 would return a
list of men whose age was larger than 40, and wrote expres-
sions like set((man.age > 40).name to "Chris") for Q16.
However, in Mavo currently the inner expression returns a list
of booleans corresponding to the comparison for each man.

Relationship to prototype syntax
Participant free-form syntax was consistent with our current
prototype syntax (would have produced the correct result)
with no changes in 4.35/17 answers on average (σ = 2.16) and
with minor changes (different symbols or removing redundant
tokens) in 8.6/17 answers on average (σ = 2.06).

Prototype Syntax
In this part, we revealed our syntax prototype to participants
and asked them to answer the same questions, but this time
using our syntax, to test the learnability and usability of our
prototype. Participants were not allowed to test their expres-
sions, and were discouraged from iterating because we wanted
to capture their initial thinking. Therefore, correct answers in
this section are equivalent to participants getting the answer
right on first try and with no preceding training tasks.

Overall, 11 out of 17 questions had a correctness rate of 75%
or above with 8 (Q1-3, Q5, Q8-10, Q17) having 90% or above,
i.e almost every participant got them right on first try.

The most prominent patterns from the previous step persisted,
though to a lesser extent. 7/20 participants remained unable
to use a sequence of two function calls for Q4 despite this
being covered in the tutorial, and wrote add(man, woman) or
a variation. Curiously, based on later answers, all seemed to
understand that the second parameter of add() holds initial

data, but none realized the inconsistency. Similarly, 4/20 par-
ticipants still used set(age+1) to increment ages, 2/20 used
objects as numbers, and 8/20 used delete(<PREDICATE>).

Almost all failures in “add with initial data” questions (Q11-
12) were related to grouping the key-value pairs, or incorrectly
using equals signs (=) instead of colons (:) to separate them.

Two questions asked participants to delete items with a filter,
but had vastly different success rates. 18/20 participants got
Q9 correct, while only 9/20 got Q13 right, despite the super-
ficial similarity of the two questions. Participants had a very
hard time using hobby twice in Q13 (The correct answer is
delete(hobby where hobby = ’Dining’) and even those
that got it right hesitated a lot before writing it.

By far the hardest questions were Q14 and Q16, where partic-
ipants had to filter on one property and set another. Only 7/18
of participants answered them correctly. All knew which func-
tion to use, and almost all used where correctly for filtering,
but were then stuck at where to place the property they were
setting. In Q14, a common answer was set(man where age
> 40, "Chris"). Users when then unsure where to put name.
The correct syntax in this case (if using where) would have
been set(man.name where age > 40, ’Chris’), which is
indeed confusing as one would expect the property being set
to be grouped with its value, not with the filtering predicate.

Hands-on Tasks
16 participants completed the hands-on section of the study
(see Figure 3). Half were randomly assigned to the DICE
ROLLER application, and the rest to the WORDS GAME appli-
cation. 13 also completed the Shopping List tasks.

Dice Roller Application
All 8 participants solved the first two tasks correctly and were
able to display a random dice roll (task 1) within a median
time of 55 seconds and to display it in the history (task 2)
within a median time of 70 seconds. 5/8 and 3/8 did so on first
try. 5/8 participants hesitated before using multiple function
calls in mv-action, even if they had answered Q4 with two
function calls in the survey, but they eventually got it right.

The third task was to prevent the current dice roll from showing
up in the history. Despite the second task being carefully
worded to avoid implying a particular order, all 8 participants
used add() after the set() they had written in the first task.
This places the current die in the history as well as the main
display. The opposite order would have rendered the third
task redundant, yet nobody realized this. Furthermore, only 1
participant was able to solve the third task. All they had to do
was use add() before set(), i.e. swap the order of the two
functions. This would add the dice to the history before they
replace its value with a new random value. None of the other 7
participants was able to figure out why this was happening, nor
how to fix it. Some participants thought that multiple function
calls are executed in parallel, a common misconception of
novice programmers [10]. This appears to be a general failure
of computational thinking, not specific to Mavo.

Words Game
This proved to be substantially easier than the dice roller. 6/8
participants succeeded in all three tasks. Clicking on words to
add them to the sentence took a median time of 220 seconds,
deleting the last word (Undo) took 43 seconds, and deleting all
words took 115 seconds. For the first task, a common mistake
(3/8 participants) was to use move() instead of add() to copy
the clicked word into the sentence. Even after realizing their
mistake, they were ambivalent about using add().

Shopping List
13 subjects carried out the SHOPPING LIST tasks, copying to
(task 1) and from (task 2) a “Common Items” collection. 6
participants brought their own application and 7 used ours.

Almost all participants succeeded in both tasks, with only
1/13 failing the first task and 3/13 failing the second one. It
took slightly longer for participants using their own app to get
started on the first task with a median of 133 seconds vs 55
seconds. By the second task the difference had been eliminated
(55 vs 50 seconds). Three participants were confused about
whether to use move() or add() to copy the shopping list item
to the common items, but quickly figured it out after trying.

System Usability Scale (SUS)
At the end of each session, subjects rated their subjective
experience on a 7-point SUS scale with 10 alternating positive
and negative questions. The answers were then coded on a
5-point scale and the SUS score was calculated according to
the algorithm in [3]. We removed one participant who had
selected “Agree” on all 10 questions (positive and negative),
indicating lack of attention, a common problem with SUS.

Our raw SUS score was 76.3 (σx̄ = 2.43), which is higher
than 77.5% of all 446 studies detailed by Sauro [15] Our raw
Learnability and Usability scores as defined by Lewis and
Sauro [9] were 78 and 69.7 respectively.

General Observations
The overall reactions to the data mutation functions ranged
from positive to enthusiastic. Several participants remarked
on the perceived intuitiveness of the syntax. One participant
answered several questions on the survey in one go, without
looking at the documentation, then paused and said “it’s so
intuitive, I don’t even need to look at the docs!”. Many other
participants remarked on expressiveness. “it is very easy to do
complex things!”, as one of our participants phrased it.

Most participants described our data update actions as easy,
even those who made several mistakes. One user said "This is
very application-centered, a page that can actually do some-
thing!". Another user commented on the data mutation func-
tions saying "I think they are very useful, easy, and approach-
able", and another user said "it is definitely more accessible
than having to program, so that’s pretty cool". Another one
said "They are easier and quicker to make things without wor-
rying about technicality. It is very easy to use"

As with the first Mavo study, many participants liked being
able to add these functionality by editing HTML as opposed
to editing in a separate file and/or language. One user said
"Interesting to be able to do these things from the HTML!"

and another said "It is interesting!...being able to do this in
HTML, I was able to use it pretty easily, once I knew what
functions there were and the syntax it has it was very easy."

Users also liked the fact that they can build applications that
typically require programming. One said "This is easier than
JavaScript! If I wanted to do something complicated I would
be frustrated to use JavaScript cause I’m not good at it, this is
easier". Another said "It’s easier and quicker to make things
without worrying about technicality. It’s very easy to use".

Several participants commented positively on the where op-
erator. “the where syntax is like natural language, I did not
expect it to be there and written as if I am saying it”.

FUTURE WORK

Improving the learnability of our syntax
We will apply the user study findings to iterate on our syntax
and make it more natural. Many participants wanted to use a
to keyword, which can be easily added. Several participants
were confused about the group() function, what it does, and
when it is needed, so we will examine whether it is possible to
design the language in such a way that group() is not required,
possibly by using a variable number of arguments in add() or
by requiring plain parentheses instead of group().

We may decide to special case certain patterns to match user
expectations: predicates will be allowed as the sole argument
in delete() and will target the closest item.set(a = b)
could be rewritten as set(a, b). Repetition in where can be
avoided by expanding property where value to property
where property = value. Underspecified assignments, such
as set(age + 1) could target the first named token.

We also need to improve the syntax for tasks which filter one
property and set another (Q14 and Q16), since our user study
indicated clear problems with the current syntax.

More Triggers
Currently, our data actions are primarily triggered by clicking.
In the future we are planning to add the ability to specify dif-
ferent triggers, such as double clicking, keyboard shortcuts,
dragging, or mousing over the element. This could be done
via an HTML attribute whose value would be an “event selec-
tor”, as defined by Satyanarayan et al. [14]. Event selectors
facilitate composing and sequencing events together, allowing
users to specify complex interactions very concisely.

CONCLUSION
This paper extends the Mavo language, adding programmatic
data updates that are triggered by user interaction. Our user
study showed that HTML authors can quickly learn to use
this syntax to specify a variety of data mutations, significantly
expanding the set of possible applications they can build, with
only a little increase in language complexity.

ACKNOWLEDGEMENTS
We thank Eirik Bakke for his help with SUS. We would also
like to thank our study participants and pilots for their time
and hard work, and our reviewers for their deep, thoughtful
feedback and theirhelpfulguidancetowardsshorteningthepaper.

REFERENCES
1. Edward Benson and David R Karger. 2014. End-users

publishing structured information on the web: an
observational study of what, why, and how. In
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems. ACM, 1265–1274.

2. Edward Benson, Amy X. Zhang, and David R. Karger.
2014. Spreadsheet Driven Web Applications. In
Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology (UIST ’14). ACM,
New York, NY, USA, 97–106. DOI:
http://dx.doi.org/10.1145/2642918.2647387

3. John Brooke and others. 1996. SUS-A quick and dirty
usability scale. Usability evaluation in industry 189, 194
(1996), 4–7.

4. Stefano Ceri, Piero Fraternali, and Aldo Bongio. 2000.
Web Modeling Language (WebML): a modeling language
for designing Web sites. Computer Networks 33, 1-6
(2000), 137–157.

5. Kerry Shih-Ping Chang and Brad A Myers. 2017. Gneiss:
spreadsheet programming using structured web service
data. Journal of Visual Languages & Computing 39
(2017), 41–50.

6. HV Jagadish, Adriane Chapman, Aaron Elkiss, Magesh
Jayapandian, Yunyao Li, Arnab Nandi, and Cong Yu.
2007. Making database systems usable. In Proceedings of
the 2007 ACM SIGMOD international conference on
Management of data. ACM, 13–24.

7. David R Karger, Scott Ostler, and Ryan Lee. 2009. The
web page as a WYSIWYG end-user customizable
database-backed information management application. In
Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM, 257–260.

8. Keith Kowalzcykowski, Alin Deutsch, Kian Win Ong,
Yannis Papakonstantinou, Kevin Keliang Zhao, and
Michalis Petropoulos. 2009. Do-It-Yourself
database-driven web applications. In Proceedings of the
4th Biennial Conference on Innovative Data Systems
Research (CIDR’09). Citeseer.

9. James R Lewis and Jeff Sauro. 2009. The factor structure
of the system usability scale. In International conference
on human centered design. Springer, 94–103.

10. Linxiao Ma, John Ferguson, Marc Roper, and Murray
Wood. 2011. Investigating and improving the models of
programming concepts held by novice programmers.
Computer Science Education 21, 1 (2011), 57–80.

11. Brad A Myers, Andrew J Ko, Thomas D LaToza, and
YoungSeok Yoon. 2016. Programmers are users too:
Human-centered methods for improving programming
tools. Computer 49, 7 (2016), 44–52.

12. John F Pane, Brad A Myers, and others. 2001. Studying
the language and structure in non-programmers’ solutions
to programming problems. International Journal of
Human-Computer Studies 54, 2 (2001), 237–264.

13. Dennis Quan, David Huynh, and David R Karger. 2003.
Haystack: A platform for authoring end user semantic
web applications. In The semantic web-ISWC 2003.
Springer, 738–753.

14. Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and
Jeffrey Heer. 2016. Reactive vega: A streaming dataflow
architecture for declarative interactive visualization.
IEEE transactions on visualization and computer
graphics 22, 1 (2016), 659–668.

15. Jeff Sauro. 2011. A practical guide to the System
Usability Scale: Background, benchmarks & best
practices. Measuring Usability LLC.

16. Lea Verou, Amy X Zhang, and David R Karger. 2016.
Mavo: creating interactive data-driven web applications
by authoring HTML. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology.
ACM, 483–496.

17. Fan Yang, Nitin Gupta, Chavdar Botev, Elizabeth F
Churchill, George Levchenko, and Jayavel
Shanmugasundaram. 2008. Wysiwyg development of
data driven web applications. Proceedings of the VLDB
Endowment 1, 1 (2008), 163–175.

http://dx.doi.org/10.1145/2642918.2647387

	Introduction
	Our Contribution

	Related Work
	Mavo Data Update Language
	The mv-action HTML attribute
	Data mutation functions
	Defining literal data in expressions
	Other additions

	Example Use Cases
	Generalizing existing Mavo data updates
	Common Interactions and Widgets
	Select All
	Accordion / Tabs
	Pagination / Slideshow / Carousel
	Sorting table by clicking on column header
	Adding events to a map

	Heterogeneous collections
	E-shop: Add to Cart button

	Evaluation
	Preparation
	Study Design

	Results & Discussion
	Counting questions
	Free-form Syntax
	Scope
	Underspecified expressions
	Argument separation
	Sequencing function calls
	Filtering
	Relationship to prototype syntax

	Prototype Syntax
	Hands-on Tasks
	Dice Roller Application
	Words Game
	Shopping List

	System Usability Scale (SUS)
	General Observations

	Future Work
	Improving the learnability of our syntax
	More Triggers

	Conclusion
	Acknowledgements
	References

