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Managing fine-grained provenance is a critical requirement for data stream management systems (DSMS),
not only for addressing complex applications that require diagnostic capabilities and assurance, but also for
providing advanced functionality, such as revision processing or query debugging. This article introduces
a novel approach that uses operator instrumentation, that is, modifying the behavior of operators, to gen-
erate and propagate fine-grained provenance through several operators of a query network. In addition to
applying this technique to compute provenance eagerly during query execution, we also study how to de-
couple provenance computation from query processing to reduce runtime overhead and avoid unnecessary
provenance retrieval. Our proposals include computing a concise superset of the provenance (to allow lazily
replaying a query and reconstruct its provenance) as well as lazy retrieval (to avoid unnecessary recon-
struction of provenance). We develop stream-specific compression methods to reduce the computational and
storage overhead of provenance generation and retrieval. Ariadne, our provenance-aware extension of the
Borealis DSMS implements these techniques. Our experiments confirm that Ariadne manages provenance
with minor overhead and clearly outperforms query rewrite, the current state of the art.
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1. INTRODUCTION

Detecting events on streaming data is a common task in areas like environmental
monitoring, smart manufacturing, compliance and security checking, as well as social
media [Alvanaki et al. 2012]. Similar to other applications on data streams, event detec-
tion requires diagnostic capabilities and support for human observation [Ali et al. 2009;
Glavic et al. 2011]. These requirements lead to the common need to provide fine-grained
provenance information (i.e., at the same level as in database provenance [Cheney et al.
2009]), to trace an output event back to the input events contributing to its existence.
There is a significant overlap in concepts, methods, and implementations between event
detection on streaming data and generic stream processing. Thus, it is often possible
to rely on the same foundations for provenance. In this article, we propose efficient
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fine-grained stream provenance management techniques that are generally applicable
to streaming applications, including real-time event detection.

1.1. Motivating Applications

We now provide a short overview on applications and technical means for streaming
event detection.

Trend and Story Detection in Social Media. Social media like Twitter or Facebook,
that have reached a significant coverage of population, act as social sensors [Sakaki
et al. 2010], providing insights into emerging and ongoing events that have not yet
been noticed by traditional media. Given the ever-increasing volume of interactions
on such social media (500 million Twitter messages per day1) and the required short
response times for event detection, scalable streaming approaches are required. The
community is addressing these challenges with a large number of algorithms and
systems (e.g., EnBlogue [Alvanaki et al. 2012]). Assessing correctness, reliability, and
trustworthiness of such detected events is of the utmost concern for the general public,
news media as well as decision makers, such as politicians. Therefore, an ability to
trace events back to their influencing factors is of great benefit. Since many of these
approaches utilize common stream processing techniques, provenance can easily be
mapped onto generic stream provenance techniques.

Sequence Pattern Matching. Many types of complex, higher-level events can be mod-
eled as a sequence of lower-level events, additionally correlated on their values or
times. Examples for such sequence-based event detection are fraud detection or finan-
cial market analysis [Lerner and Shasha 2003]. Models and implementations for such
complex event processing systems (aka CEP) found great interest in both academia
and industry. We observe two common implementation approaches which both provide
expressiveness and performance: (1) In systems like ZStream [Mei and Madden 2009],
the sequencing operations can be expressed using standard streaming operators. (2) In
systems like SASE [Agrawal et al. 2008], the correlations are expressed as an automa-
ton. Since these CEP systems work on sensitive applications, deal with high volumes
and rates, and express complex correlations, there is also significant need for tracing,
assurance, and explanation. Provenance for CEP systems based on standard stream-
ing operators can directly be expressed with the Ariadne approach. Adaptations of our
models can also be used for automata-based approaches. However, we would have to
adapt provenance computation to this type of execution model.

Environmental Monitoring and Sensor Data Management. Sensor systems have be-
come small and cheap enough to be routinely deployed in many environment monitor-
ing scenarios and in process monitoring. The means to transfer and process data from
these sensors are also affordable and reliable enough to permit continuous monitoring.
Sensor readings are processed by a DSMS in order to detect critical situations, such as
quality deviations, overheating of equipment, or fires. These detected events are then
used for automatic corrections as well as for notifying human supervisors. Human su-
pervisors need to understand why and how such events were triggered to be able to
assess their relevance and react appropriately. In addition, these observations may be
used to compute higher-level indicators and compliance with service-level agreements.

As a concrete example from this domain, Figure 1 shows a simplified continuous
query that detects overheating. Two sensors feed time-stamped temperature readings
to the query. Each sensor stream is filtered to remove outliers (i.e., temperature t
above 350◦C). The stream is aggregated by averaging the temperature over a sliding

1https://blog.twitter.com/2013/new-tweets-per-second-record-and-how.
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Fig. 1. Running example.

window of three temperature readings to further reduce the impact of sudden spikes.
These data cleaning steps are applied to each sensor stream individually. Afterwards,
readings from multiple sensors are combined for cross-validation (i.e., a union fol-
lowed by a sort operator to globally order on time). The final aggregation and selection
ensure that a fire alert will only be raised if at least three different sensors show aver-
age temperatures above 90◦C within two time units. In this example, the user would
want to understand which sensor readings caused an “overheating” event, that is, de-
termine the tuples that belong to the fine-grained provenance of this event. We will use
this example as our running example throughout the article.

1.2. Challenges and Opportunities

Tracking provenance to explore the reasons that led to a given query result has proven
to be an important functionality in many domains, such as scientific workflow sys-
tems [Davidson et al. 2007] and relational databases [Cheney et al. 2009]. However,
providing fine-grained provenance support over data streams introduces a number of
unique challenges that are not well addressed by traditional provenance management
techniques.

—Online and Infinite Data Arrival. Data streams could potentially be infinite; there-
fore, no global view on all items is possible. As a result, traditional methods that
reconstruct provenance from the query and input data on request are not applicable.

—Ordered Data Model. In contrast to relational data, data streams are typically mod-
eled as ordered sequences. This ordering can be exploited to provide optimized rep-
resentations of provenance.

—Window-Based Processing. In DSMSs, operators like aggregation and join are typi-
cally processed by grouping tuples from a stream into windows. Stream provenance
must deal with windowing behavior in order to trace the outputs of such operators
back to their sources correctly and efficiently. The prevalence of aggregations leads
to enormous amounts of provenance per result.

—Low-Latency Results. Performance requirements in most streaming applications are
strict; in particular, low latency should be maintained. Provenance generation has
to be efficient enough to not violate the application’s latency constraints.

—Non-determinism. Mechanisms for coping with high input rates (e.g., load shed-
ding [Reiss and Hellerstein 2005; Tatbul et al. 2003]) and certain operator defini-
tions, such as windowing on system time, result in outputs that are not determined
solely by the inputs. Provenance tracking should be able to cope with these types of
nondeterminism that are specific to stream processing.

Conventional provenance techniques (e.g., query rewrite [Glavic and Alonso 2009])
and naive solutions (e.g., taking advantage of fast storage by dumping all inputs and
inferring provenance from the complete stream data) are not sufficient to address all
of the challenges previously outlined.

1.3. Contributions and Outline

In this article, we propose a novel propagation-based approach for provenance gen-
eration, called operator instrumentation. We use a simple definition of fine-grained
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provenance that is similar to lineage in relational databases [Cheney et al. 2009]. Our
approach annotates regular data tuples with their provenance while they are being
processed by a network of streaming operators. Propagation of these provenance anno-
tations is realized by replacing the operators of the query network with operators that
create and propagate annotations in addition to producing regular data tuples (we refer
to this transformation as operator instrumentation). Previously, De Pauw et al. [2010]
proposed an annotation propagation approach for tracking fine-grained provenance to
be used in visual debugging of stream processing applications. Since the main focus is
on debugging, only single-step provenance is computed, and multistep provenance is
generated offline if requested. Our approach is more general and flexible, as it allows
for (a) both eager or lazy provenance generation and (b) direct provenance propagation
for partial as well as complete query networks. We represent provenance as sets of
tuple identifiers during provenance generation. A number of optimizations enable us
to decouple provenance management (generation and retrieval) from query processing.
Our work makes the following contributions.

—We introduce a novel provenance generation technique for DSMS based on anno-
tating and propagating provenance information through operator instrumentation,
which allows for generating provenance for networks and subnetworks without the
need to materialize data at each operator.

—We propose optimizations that decouple provenance computation from query
processing.

—We present Ariadne, the first DSMS providing support for fine-grained multistep
provenance.

—We provide an experimental evaluation of the proposed techniques using Ariadne.
The results demonstrate that providing fine-grained provenance via optimized
operator instrumentation has minor overhead and clearly outperforms query
rewrite, the current state of the art.

This article is an extension of our conference paper [Glavic et al. 2013], adding
(i) an analysis of streaming event detection cases and their provenance requirements,
(ii) a formalization of our provenance model, (iii) a description of provenance propa-
gation through query rewrite, and (iv) new experimental results. We refer interested
readers to the conference paper for a more thorough description of the implementation
and optimizations.

The remainder of this article is organized as follows: Section 2 gives an overview of
our approach for adding provenance generation and retrieval to a DSMS. We introduce
the stream, provenance, and annotation models underlying our approach as well as
the instrumentation mechanism in Section 3. Building upon this model, we present its
implementation in the Ariadne prototype in Section 4 and optimizations in Section 5.
We present experimental results in Section 6, discuss related work in Section 7, and
conclude in Section 8.

2. OVERVIEW OF OUR APPROACH

We generate and propagate provenance annotations by replacing query operators with
provenance-aware operators (we call this operator instrumentation). Our approach can
be used to compute either the provenance of a whole query network or just parts of
the network. Provenance is modeled as a set of tuples from the input streams that
are sufficient to produce a result tuple. Output tuples are annotated with sets of tuple
identifiers representing their provenance.

ACM Transactions on Internet Technology, Vol. 14, No. 1, Article 7, Publication date: July 2014.
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Fig. 2. Provenance generation methods.

2.1. Why Operator Instrumentation?

There are two well-known provenance generation techniques in the literature that
we considered as alternatives to operator instrumentation for generating DSMS
provenance: (1) computing inverses and (2) rewriting the query network to propagate
provenance annotations using the existing operators of the DSMS. Figure 2 shows a
summary of the trade-offs. Inversion (e.g., [Woodruff and Stonebraker 1997]) generates
provenance by applying the inverse (in the mathematical sense) of an operator.
For example, a join (without projection) is invertible, because the inputs can be
reconstructed from an output tuple. Inversion has very limited applicability to DSMSs,
because no real inverse exists for most nontrivial operators. Query rewrite, established
in relational systems such as Perm [Glavic and Alonso 2009], DBNotes [Bhagwat
et al. 2004], or Orchestra [Ives et al. 2008], generates provenance by rewriting a
query network Q into a network that generates the provenance of Q in addition to
the original network outputs. Query rewrite leads to significant additional runtime
overhead and incorrect provenance for nondeterministic operators. Rewrite techniques
have to duplicate parts of the query network to compute the provenance of operators,
such as windowed aggregation (see Section 6.1). Assume a subnetwork q that contains
nondeterministic operators is duplicated as q′. Networks q and q′ may produce
different results, leading to missing or incorrect provenance.

In summary, we believe that operator instrumentation is the best approach, as it is
applicable to a large class of queries while maintaining low overhead for provenance
computation and retrieval.

2.2. The Operator Instrumentation Approach

The key idea behind our operator instrumentation approach is to extend each operator
implementation so that the operator is able to annotate its output with provenance
information based on provenance annotations of its inputs. Under operator instrumen-
tation, provenance annotations are processed in line with the regular data. In other
words, the structure of the original query network is kept intact, because operators are
simply replaced with their instrumented counterparts. Provenance can be traced for a
single operator at a time, through a whole subnetwork, or for a complete network by
instrumenting only some or all operators of the network.

For example, consider an execution of the network from Figure 1 shown in Figure 3.
Here we have instrumented some operators, that is, the ones marked with PG or PP
(will be explained later), to compute the provenance of the last aggregation according
to the input of the b-sort operator. By propagating annotations (shown as sets on the
right of each tuple), we have annotated each output tuple of the aggregation with the
identifiers of tuples from stream 5 that are in its provenance.

Most issues caused by nondeterminism are dealt with in a natural way if operator
instrumentation is applied, because the execution of the original query network is
traced. However, the overhead introduced by provenance generation may affect tem-
poral conditions (e.g., system time windows). In general, this effect cannot be avoided
when modifying time-sensitive operations, because the output of such operations may
be affected by any modification introducing computational overhead. The only way
to avoid this is to execute the system in a fully simulated environment which is not
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Fig. 3. Query network evaluation with provenance-aware operators and provenance annotations.

Fig. 4. Trade-offs for eager vs. lazy.

practical. In contrast to the query rewrite and inversion alternatives, operator instru-
mentation does not modify the structure of the query network. Thus, while the result
of nondeterministic operations, such as a random number generator, may be affected
by the overhead introduced by provenance computation, the provenance of such an
operation will still correctly describe the origin of a tuple under the given result. As
explained in Section 2.1, this is not necessarily the case for query rewrite. The only
drawback of operator instrumentation is the need to extend all operators. However, as
we will demonstrate in Section 4.2, this extension can be implemented with reasonable
effort.

With operator instrumentation, provenance can be generated either eagerly during
query execution (our default approach) or lazily upon request. We support both types of
generation, because their performance characteristics in terms of storage, runtime, and
retrieval overhead are different (see Figure 4). This enables the user to trade runtime
overhead on the original query network for storage cost and runtime overhead when
retrieving provenance. However, for lack of space we will mostly focus on the eager
method in the remainder of this article.

Reduced-Eager. Figure 5 shows an example for how we instrument a network for ea-
ger provenance generation. We temporarily store the input tuples for the instrumented
parts of the network (e.g., for input streams S1 and S2, since we want provenance for
the entire query network). The tuples in the output stream of the instrumented net-
work carry provenance annotations as just described, that is, each output is annotated
with the set of identifiers of the tuples in its provenance. Using tuple identifiers as
an internal provenance representation reduces the size of provenance annotations in
comparison to full input tuples. However, these identifiers are meaningless to a user
and thus have to be replaced with actual tuples before returning the provenance to the
user. We reconstruct provenance for retrieval from the identifier annotations using a
new operator called p-join (�). For each output tuple t, this operator retrieves all input
tuples in the provenance using the set of identifiers from the provenance annotation
and outputs all combinations of t with a tuple from its provenance. Each of these combi-
nations is emitted as a single tuple to stream P. For example, consider the first output
tuple t = (1) of the final aggregation operator in Figure 3. The provenance annotation of
this tuple contains two tuple identifiers, 7:4 and 7:5 . If we feed this annotated stream
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Fig. 5. Reduced-eager operator instrumentation.

Fig. 6. Replay-lazy.

into a p-join operator, the operator would look up the tuples from the cached input
stream 5 using their identifiers. For tuple t, the p-join would generate two result tuples
(1, 1, 2) and (1, 2, 2) by combining t with the tuples (1, 2) and (2, 2) from stream 5.

We call this approach reduced-eager, because we are eagerly propagating a reduced
form of provenance (the tuple identifier sets) during query execution and lazily recon-
structing provenance independent of the execution of the original network. In compar-
ison with using sets of full tuples as annotations, this approach pays a price for storing
and reconstructing tuples. However, because compressed representations can be used,
this cost is offset by a significant reduction in provenance generation cost (in terms of
both runtime and latency). Since reconstruction is separate from generation, we can of-
ten avoid reconstructing complete provenance tuples during provenance retrieval (e.g.,
if the user only requests provenance for some results (query over provenance)).

Replay-Lazy. Instead of generating provenance eagerly while the query network is
running, we are also able to generate provenance lazily in order to decouple prove-
nance generation from the query network execution. Since DSMSs have to deal with
high input rates and low latency requirements, the runtime overhead to the critical
data processing path incurred by eager provenance computation may be too high for
some applications. Decoupling provenance computation from query processing enables
us to reduce the runtime overhead on the query network and outsource provenance
generation to a separate machine. This improves performance for both query processing
and provenance computation.

For deterministic networks, we can realize lazy generation, as shown in Figure 6.
We instrument the network in a similar fashion as for reduced eager by temporarily
storing input streams and propagating annotations. However, instead of using sets of
tuple identifiers, we annotate each tuple with intervals of tuple identifiers (one per
input stream) represented as the minimal and maximal identifiers of each interval.
These intervals are of constant size, can be computed efficiently, and are guaranteed to
be supersets of the actual provenance. To generate the actual provenance for a tuple t,
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we retrieve all input tuples contained in the intervals for t and replay them through a
copy of the original query network instrumented for provenance generation (e.g., using
the reduced eager instrumentation previously discussed). We call this approach replay-
lazy. For example, assume that we want to compute provenance for the output of the
aggregation operator producing stream 3 according to input stream S1 from Figure 3.
The first output tuple 5:1 of the aggregation is generated based on a window containing
the first three tuples of stream 1. These tuples are produced from tuples 1:2 , 1:3 , and
1:4 of stream 1. For replay-lazy, we annotate tuple 5:1 with the interval [1:2 , 1:4 ]
covering its provenance. To compute the provenance of t, we retrieve all tuples in this
interval from the temporary storage of stream 1 and replay them through a provenance
generating copy of the subnetwork containing streams 1 to 3. This will reproduce t
annotated with its correct provenance. Replay-lazy is only applicable to deterministic
networks. Using constant size intervals instead of full provenance annotations reduces
the runtime overhead, but results in higher retrieval costs due to the replay.

3. PROVENANCE PROPAGATION BY OPERATOR INSTRUMENTATION

Based on the stream data and query model of Borealis [Abadi et al. 2005], we now
introduce our stream provenance model and discuss how to instrument queries to an-
notate their outputs with provenance information. A thorough formal treatment can
be found in Glavic et al. [2012]. We first introduce our data and query model and then
introduce our definition of provenance. Next, focusing on a set of core streaming opera-
tors, we define instrumented operator versions that produce streams where each tuple
is annotated with its provenance and show that they produce provenance according to
our definition. Finally, we elaborate on how to extend our model for generic operators.

3.1. Data and Query Model

We model a stream S =< i1, i2, . . . > as a possibly infinite sequence of stream items:
A stream consists of a fixed type of stream items; either tuples, windows, or join-
windows. A tuple t = [a1, . . . , an] is an ordered list of attribute values (here each ai
denotes a value). We assume the existence of tuple-identifiers (TID) in the form of
stream-id:tuple-id that uniquely identify tuples within a query network. We use τ (t) to
denote the identifier of tuple t. A window w =< t1, . . . , tn > is a sequence of tuples, and
a join-window [t, w] is a pair of a tuple and a window. These types of stream items will
be used later in the definition of aggregation and join. For a stream S, we use S[i] to
denote the ith stream item in S and S[i, j] to denote the stream containing the ith up
to the jth stream item of S. We use H(S) (the head) as a shortcut for S[0] and T (S)
(the tail) as a shortcut for S[1,∞]. We use S1 || S2 to denote the concatenation of two
sequences (or an item and a sequence).

A query network is a directed acyclic graph (DAG) in which nodes and edges represent
streaming operators and input/output streams, respectively. Each stream operator in a
query network takes one or more streams as input and produces one or more streams
as output. The query algebra we use here covers all the streaming operators from Abadi
et al. [2005]. Each operator is defined recursively using the following notation.

Selection. A selection operator σC(S) with predicate C filters out tuples from an input
stream S that do not satisfy the predicate C.

σC(S) =
{

H(S) || σC(T (S)), if H(S) |= C,

σC(T (S)), else.

Projection. A projection operator πA(S) with a list of projection expressions A (e.g.,
attributes, function applications) projects each input tuple from stream S on the
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expressions from A.

πA(S) = H(S).A || πA(T (S)).

Aggregation. An aggregation operator αagg,ω(S) groups its input S into windows us-
ing the window function ω and computes the aggregation functions from list agg =
(agg1(a1), . . . , aggn(an)) over each window generated by ω. An aggregation function
aggi(ai) computes a single attribute value from all values of attribute ai in a window w.
We denote the application of an aggregation function agg to a window w as agg(w).

αagg,ω(S) = a(ω(S)),
a(S) = [agg1(H(S)), . . . , aggn(H(S))] || a(T (S)).

As an example for a typical window operator, consider the count-based window function
#(c, s) that groups a consecutive input tuple sequence (length c) into a window and
slides by a number of tuples s before opening the next window. The value-based window
function val(c, s, a) groups a consecutive sequence of tuples into a window if their values
in attribute a differ less than c from the attribute value of the first tuple in the window.
The slide s determines how far to slide on a before opening the next window. Note
that value-based windows subsume the concept of time-based windows by using a time
attribute as the attribute for determining the window boundaries.

#(c, s)(S) =< S[0, c] >|| #(c, s)(S[s,∞]),
val(c, s, a)(S) =< σa≤H(S).a+c(S) >|| val(c, s, a)(σa>H(S).a+s(S)).

Join. A join operator ��C,φ (S1, S2) joins two streams S1 and S2 by applying the join
window function φ to S1 and S2. A join window function models the buffering behavior
of stream joins. For each tuple t from the left input stream, a join window for t contains
all tuples from the right input stream that were in the buffer during the time tuple t
was in the buffer. For each join window j = [t, w], the join operator outputs all pairs of
tuples [t, t′] where t′ ∈ w, and the join condition C is fulfilled. The following definition of
join first groups the input into join windows (φ(S1, S2)) and then uses WINJOIN to iterate
over all combinations of tuple t with a tuple from window w for each join window
j = [t, w].

��C,φ (S1, S2) = JOIN(φ(S1, S2)),
JOIN(S) = WINJOIN(H(S)), || JOIN(T (S)),

WINJOIN( j) =
{

[ j.t, H( j.w)] || WINJOIN([ j.t, T ( j.w)]), if [ j.t, H( j.w)] |= C,

WINJOIN([ j.t, T ( j.w)]), else.

As an example for join-windowing, consider value-based join-windowing
( jval(a1, a2, s)) that groups each tuple t from the left stream with all tuples from the
right stream that have an a2 attribute value between t.a1 and t.a1 + s.

jval(a1, a2, s)(S1, S2) = [H(S1),< σC(S2) >] || jval(a1, a2, s)(T (S1), S2),
C = a2 ≥ H(S1).a1 ∧ a2 ≤ H(S1).a1 + s.

Union. A union operator ∪(S1, S2) merges tuples from two input streams S1 and
S2 into a single stream based on their arrival order. The arrival order of tuples may
depend on the input data and operator scheduling policies of the DSMS. There is no
clean way to model such behavior in an abstract and deterministic operator model. We
solve this problem by encapsulating the nondeterministic arrival order in a function O
that maps a tuple to its arrival time stamp (at the union operator). Using this function,
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union is defined as

∪(S1, S2) =
{

H(S1) || ∪(T (S1), S2), if O(H(S1)) < O(H(S2)),
H(S2) || ∪(S1, T (S2)), else.

B-Sort. A b-sort operator ρs,a(S) with slack s and an order-on attribute a applies a
bounded-pass sort with buffer size s + 1 on its input, that is, once the buffer is full, the
sort emits the smallest tuple in sort order from the buffer for every new arriving tuple.
Thus, it produces an output that is approximately sorted on a. Let SORT(S, a) denote a
function that sorts a sequence S on attribute a.

ρs,a(S) = BSORT(S, a, s, 0),
BSORT(S, a, s, i) = SORT(S[0, s + i], a)[i] || BSORT(S, a, s, i + 1).

Example 1. Figure 3 shows an execution of the network introduced in Figure 1 for
a given input. For now, ignore the annotations on operators and tuples in streams 6
to 8. Both input streams (S1 and S2) have the same schema with attributes time (ti),
location (l), and temperature (t). The leftmost selections drop temperature outliers.
The results of this step are grouped into windows of three tuples using slide one. For
each window, we compute the minimum of time (to assign each aggregated tuple a new
time value) and location (the location is fixed for one stream, thus, the minimum of the
location is the same as the input location), and average temperature. The aggregated
streams are merged into one stream (∪) and sorted on time. We then filter out tuples
with temperature values below the overheating threshold and compute the number of
distinct locations over windows of two time units. Tuples with fewer than two distinct
locations are filtered out in the last step. For instance, in the example execution shown
in Figure 3, the upper-left selection filters out the outlier tuple 1:1 (1, 1, 399). The
following aggregation groups the first three result tuples into a window and outputs
the average temperature (84.6), minimum time (2), and location (1).

3.2. Provenance Model and Annotated Streams

We use a simple provenance model that defines the provenance of a tuple t in a stream
S of a query network q as a set of tuples from input (or intermediate) streams of the
network. We use P(q, t, I) to denote the provenance set of a tuple t from one of the
streams of network q with respect to inputs from streams in a set I. For instance, if
t is a tuple in stream 3 of the example network shown in Figure 1, then P(q, t, {S1})
denotes the set of tuples from input stream S1 that contributed to t. We omit I if we
compute the provenance according to the input streams of the query network.

Note that we require I to be chosen such that the paths between streams in I and S
(the stream of t) form a proper query network. For instance, assume that t is a tuple
from stream 5 in the network shown in Figure 3. P(q, t, {1, 2}) denotes the set of tuples
from streams 1 and 2 that contributed to t. P(q, t, {2}) would be undefined, because
only one of the inputs of the union is included. For the remainder of this section we will
limit the discussion to query networks with a single output stream O and provenance of
tuples in that output stream. The concepts introduced in this section extend naturally
to networks with multiple output streams.

Formally, our work is based on a declarative characterization of provenance, which
is used to determine whether the provenance generated by instrumented networks
introduced in the next section captures intuitive properties of provenance. To simplify
the exposition, we will limit the discussion to computing the provenance of an output
stream according to the input streams of the query network. This discussion natu-
rally extends to provenance computations for a partial query network. The declarative
characterization of provenance captures two intuitive properties. (1) Sufficiency: the
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provenance of tuple t is sufficient for producing t, that is, if we evaluate the query
network over minimal prefixes of the input streams (a prefix of length n is a subse-
quence S[0, n] of a stream S, see Section 3.1) that include the provenance, then the
result will contain t. (2) Distinguishability: if t is the nth occurrence of a tuple with the
same values in a stream O, then replaying a minimal prefix including the provenance
will produce at least n duplicates of t. This guarantees that we actually capture the
provenance of t and not of another tuple from the same stream with the same values. To
be able to formalize these intuitions, we need to introduce some preliminary concepts
first. The minimal prefix S ↑ M of an input stream S of a query network q according
to a set of tuples M is the shortest prefix of S that includes all items of M, and if
q is executed over this prefix, only windows that also exist in the original execution
of q are produced. The requirement that only original windows are produced ensures
that, for example, the buffer of a b-sort operator is filled so that the necessary tuples
to produce an output can be emitted. We use the same notation for sets of streams I,
that is, I ↑ M. For example, the minimum prefix 7 ↑ {9:2 , 9:4 } of tuples 9:2 and 9:4
from stream 7 in the running example (Figure 3) contains tuples 9:1 to 9:4.

Definition 3.1 (Provenance Set). Let COUNT(S, t) denote the number of tuples in
stream S that are exact copies of t, that is, that differ from t only in their tuple identifier.
Similarly, DUPPOS(S, t) denotes the number of duplicates of t that are in the smallest
prefix of stream S that includes t. The provenance set P(q, t, I) of a tuple t from a
stream S of a query network q is a subset of tuples from I that fulfills the following
conditions.

—Tuple t is in the result of executing q over the minimal prefix of the provenance of t.

t ∈ q(I ↑ P(q, t, I)).

—Replaying minimal prefixes of streams in I that include the provenance produces
the correct number of copies of t before producing t.

COUNT(q(I ↑ P(q, t, I)), t) ≥ DUPPOS(S, t).

A possible way to define the provenance for our query operators based on this char-
acterization is as follows: for selection and projection, the provenance of t consists of
the provenance of the corresponding input tuple. The same is true for union and b-sort,
since only a single tuple is contributing to t. For example, tuple 9:1 in the network
shown in Figure 3 was generated by the selection from tuple 8:1 . Thus, the provenance
set of this tuple is {7:4 }, the same as the provenance set of tuple 8:1 . For join, the
union of the provenance sets of the join partners generating t constitutes the prove-
nance. Finally, the provenance set for t in the result of an aggregation is the union of
the provenance sets for all tuples from the window used to compute t.

Based on the concept of provenance sets, we define streams of tuples that are an-
notated with their provenance sets. For a query network q, the provenance annotated
stream (PAS) P(q, O, I) for a stream O according to a set of streams I is a copy of stream
O, where each tuple t is annotated with its corresponding provenance set P(q, t, I). In
the following, we will omit the query parameter q from provenance sets and PAS if it
is clear from the context.

Example 2. Consider the PAS P(6, {5}) for the output of the b-sort operator accord-
ing to its input shown in Figure 3 (provenance sets are shown on the right of tuples).
Each output t of the b-sort is annotated with a singleton set containing the corre-
sponding tuple from the b-sort’s input, for example, tuple 8:1 is derived from 7:4 .
Now consider the PAS for the output of the last aggregation in the query according
to the input of the b-sort (P(8, {5})). Each output is computed using information from
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a window containing two tuples with one tuple overlap between the individual prove-
nance sets. For example, tuple 10:2 is derived from a window with provenance {7:5 }
and {7:6 }, and tuple 10:3 is derived from a window with provenance {7:3 , 7:6 }. The
set P(q, 10:3 , {5}) = {7:3 , 7:6 } fulfills the two conditions of Definition 3.1. The mini-
mal prefix of stream 5 containing P(q, 10:3 , {5}) that does not produce new windows
is <7:1 , . . . , 7:6>. Replaying this prefix through the query network produces tuples
10:1 to 10:3 . Thus, the first condition, 10:3 being in the result of replaying the prefix,
is fulfilled. The second condition is also fulfilled, because 10:3 is the first tuple with
count l = 2 in both the original result and the result of replaying the prefix.

3.3. Instrumenting Operators and Networks for Annotation Propagation

We now discuss how to instrument a query network q to generate the PAS for a subset
of the streams in q by replacing all or a subset of the operators with their annotating
counterparts. We introduce three types of instrumented operators that handle streams
annotated with provenance information. Afterwards, we present annotating versions
of stream algebra operators.

Provenance Generator (PG). The provenance generator version PG(o) of an operator
o annotates its outputs with provenance according to its inputs. The purpose of a PG
operator is to generate a PAS from input streams without provenance annotations. In
an instrumented network, we will attach a provenance generator to each stream in I.
For each output stream S of the operator o, PG(o) creates P(S, input(o)), where input(o)
are the input streams of operator o.

Provenance Propagator (PP). The provenance propagator version of each operator
consumes annotated input streams and produces annotated output streams by com-
bining provenance from its inputs based on the semantics of the operator. For simplicity,
let us explain the concept for an operator o with a single output O and a single input
PAS P(S, I). The PP version PP(o) of o will output P(O, I), that is, the output will
be annotated with provenance sets of O according to I. This is achieved by modifying
the annotations in the input streams according to the provenance behavior of the op-
erator o. We use the PP version of operators in an instrumented network P(q, O, I) to
propagate provenance along paths between streams in I and stream O.

Provenance Dropper (PD). The provenance dropper version PD(o) of an operator o
removes annotations from the input before applying operator o. Provenance droppers
are used to remove annotations from streams in networks with partial provenance
generation.

Definition 3.2 (Operator Versions). Figure 7 shows the PG and PP versions of ag-
gregation (the annotating versions of the remaining operators can be found in [Glavic
et al. 2012]). We represent the provenance annotations as an additional attribute P
that stores a set of tuple identifiers. For example, t.P returns the provenance anno-
tation of a tuple t. For convenience, we have marked the annotation part in bold red.
Recall that τ (t) denotes the identifier of tuple t.

PG operators create a TID set from the TIDs of all input tuples that contribute to
a tuple. All P P operator versions union the provenance annotations from the inputs
that contribute to a tuple t. For example, the PG version of selection generates an
annotated output stream, where the provenance set of each output tuple t contains
the corresponding input tuple, and the P P version outputs the input tuples with
unmodified provenance sets (for tuples that fulfill the selection condition). The PG
operator for aggregation annotates each output tuple t with a provenance set P(w)
that consists of all identifiers for tuples in the input window w that generated t, and
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Fig. 7. Provenance generator and propagator versions of the aggregation operator.

ALGORITHM 1: InstrumentNetwork Algorithm
1: procedure INSTRUMENTNETWORK(q, O, I)
2: mixed ← ∅
3: for all o ∈ q do � Find operators with mixed usage
4: if ∃S, S′ ∈ input(o) : S ∈ I ∧ S′ �∈ I then
5: mixed ← mixed ∪ input(o)
6: for all S ∈ (mixed ∩ I) do � Add projection wrappers
7: S ← 	schema(S)(S)
8: for all o ∈ q do � Replace operators
9: if ∃S ∈ I : HASPATH(S, o) ∧ HASPATH(o, O) then

10: if ∃S′ ∈ input(o) : S′ ∈ I then
11: o ← PG(o)
12: else
13: o ← P P(o)
14: for all o ∈ q do � Drop annotations
15: if O ∈ input(o) then
16: o ← PD(o)

the PP operator annotates each output tuple t with the union of the provenance sets
of all tuples in the window that generated t.2

Networks with Annotation Propagation. Using the PG and PP versions of operators,
we have the necessary means to generate provenance for a complete (or parts of a)
query network by replacing all (or some) operators with their annotating counterparts.
PD versions of operators are used to remove provenance annotations from streams that
are further processed by the network. We use Algorithm 1 to instrument a network q
to compute a PAS P(O, I). We first normalize the network to ensure that the inputs to
every operator are either (1) only streams from I or (2) contain no streams from I. This
step is necessary to avoid having operators that read from both streams in O, and not in
I, because the annotation propagation behavior of these operators is neither correctly
modeled by their PG nor PP version. We wrap each stream S in I that is connected
to such an operator in a projection on all attributes of the schema of S. This does not
change the results of the network, but guarantees that we can use solely PG and PP
operators to generate a PAS.3 We then iterate over all operators in the query network
and replace each operator that reads solely from streams in I with its PG version, and
all remaining operators on paths between streams in I and O are replaced with their
PP versions. Finally, all non-instrumented operators reading from O are replaced by
their PD version. This step is necessary to guarantee that non-instrumented operators
are not reading from annotated streams.

2We assume no knowledge about the semantics of aggregation functions. The approach can easily be extended
to support more concise provenance for functions, such as min/max, where the output only depends on some
tuples in the window.
3Adding operator types to the algebra that deal with a mix of annotated and non-annotated streams does
not pose a significant challenge. However, for simplicity we refrain from using this approach.
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Fig. 8. Annotating query networks.

A query network instrumented to compute a PAS P(O, I) generates additional PAS
as a side effect. Each PP operator in the modified network generates one or more
PAS (one for each of its outputs) according to the subset of I it is connected to. Thus,
additional PAS are generated for free by our approach. We use P(q) (called provenance
generating network) to denote a network that generates the PAS for all output streams
of network q according to all input streams of q. Such a network is generated using a
straight-forward extension of Algorithm 1 to sets of output streams.

Example 3. Two provenance generating versions of the example network are shown
in Figure 8 (the operator parameters are omitted to simplify the representation).
Figure 8(a) shows P(q), that is, the annotating version of q that generates the PAS
P(Sout, {S1, S2}) for output stream Sout according to all input streams (S1 and S2). The
leftmost selection operators in the network are only attached to input streams and
thus are replaced by their PG versions. All other operators in the network are replaced
by PP operators. The query network shown in Figure 8(b) generates the PAS P(8, {5})
(An example execution was shown in Figure 3). The output stream of the rightmost
aggregation is annotated with provenance sets containing tuples of the b-sort opera-
tor’s input stream. The right-most selection is replaced with its PD version to drop
provenance annotations before applying the selection. This is necessary to produce the
output stream Sout without annotations.

Having defined the annotating versions of each operator, it remains to show that
the provenance produced by these operators complies with our definition of stream
provenance (Definition 3.1).

THEOREM 1. A network instrumented to compute P(q, O, I) using Algorithm 1 anno-
tates each tuple in O with provenance P(q, t, I) that fulfills the conditions of Defini-
tion 3.1.

PROOF. Sketch: The proof is by induction over the structure of a query network using
the semantics of each operator. Given that we have established that correct provenance
is computed by P(q′, O′, I′) for a subnetwork q′ with n operators, we have to prove that
the same holds for an extension of q′ with an additional operator o. This operator may
either be applied to the output O′ or be placed on a path between one of the streams in
I′ and O′. As an example, consider the case where we add an additional selection over
O′. We then have to show that all the conditions of Definitions 3.1 are fulfilled for each
annotation generated by the new selection. We make use of the induction assumption
that in O′ each tuple is correctly annotated with its provenance. Thus, for example,
the first condition will trivially hold, because each output tuple t of the selection will
be annotated with the provenance of the corresponding input tuple t′. Replaying the
minimal prefix including the provenance will produce t′ which in turn will cause t to
be in the result of the selection.

3.4. Extending the Ariadne Model for Generic Operators

The Ariadne model can be easily extended to other common streaming operators. For
systems that implement an operator-based query language, we can apply the approach

ACM Transactions on Internet Technology, Vol. 14, No. 1, Article 7, Publication date: July 2014.



Efficient Stream Provenance via Operator Instrumentation 7:15

used for the Borealis algebra. For systems that support more generic operators, for
example, user-defined stream operators written in a generic programming language,
we can apply techniques similar to Cui et al. [2000]. This approach classifies opera-
tors according to their input behavior and has introduced generic provenance tracing
procedures for each class. Operators that work on infinite input but treat each data
item individually (one-to-one mapping) can be handled like selection or projection.
While these classes cover most of the common built-in expressions and user-defined
functions, one challenging case remains: operators that perform their own state man-
agement over infinite sequences (e.g. advanced window operators, pattern matching,
exponential decay, or punctuations). In such a case, explicit modeling of provenance on
the basis of the formalism and the operator semantics is needed. The only way to avoid
that would be to statically or dynamically analyze the dataflow of the code implement-
ing the operator which is either too expensive (dynamic code analysis) or too imprecise
(static code analysis). Typically, however, such complex operators are system-defined
and not provided by users, so the implementation needs to be done once by the platform
designers, not platform users. Understanding all aspects of such complex operators is
part of future research, but given our previous work on such operators (SECRET [Botan
et al. 2010], pattern matching [Fischer et al. 2010]), we do not foresee any fundamental
problems to model and implement provenance.

4. IMPLEMENTATION

In this section, we present the implementation of the Ariadne prototype. Given the
overall architecture (outlined in Section 2) and the provenance propagation model
(Section 3), three aspects are now of interest: (1) representation of provenance an-
notations during the computation, (2) implementation of PG and PP operators, and
(3) storing and retrieving the input tuples for reduced-eager.

4.1. Provenance Representation as Annotations

The physical representation of provenance annotations and mechanism for passing
them between operators is a crucial design decision, because it strongly influences the
runtime overhead and implementation of operators. It is important to note that while
Borealis uses fixed-length tuples, the provenance annotations consist of TID sets of
variable size. To transfer provenance between operators we can either (i) split TID
sets into fix-length chunks and stream these chunks over standard Borealis queues,
(ii) implement a new type of information passing between operators, or (iii) modify the
queuing mechanisms to support variable-length tuples. We chose to split large TID sets
into fixed-length chunks, as it is the least intrusive alternative (large parts of the code
rely on fix-length tuples) and retains the performance benefits of fixed-size tuples (e.g.,
less indirection when accessing tuple values). We serialize the provenance (TID set)
for a tuple t into a list of tuples that are emitted directly after t. Each of these tuples
stores multiple TIDs from the set. The first tuple in the serialization of a TID set has
a small header (same size as a TID) that stores the number of TIDs in the set. Given
that the size of a TID in Borealis is 8 bytes (actually sizeof(long)), we are saving
at least an order of magnitude of space (and tuples propagated) compared to using
full tuples. We adapted the TID assignment policy to generate globally unique TIDs
that are assigned as contiguous numbers according to the arrival order at the input
streams. If stream-based tuple lookup becomes necessary, we could reserve several bits
of a TID for storing the stream ID.

4.2. Provenance Annotating Operator Modes

We extend the existing Borealis operators with new operational modes to implement
PG, PP, and PD operators. Operators in both PG- and PP-mode need to perform
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Fig. 9. Provenance-enabled query network with retrieval.

three steps: (1) retrieve existing provenance-related information from the input tuples,
(2) compute the provenance, and (3) serialize provenance annotations along with data
tuples. These steps have a lot of commonalities: Serialization (step 3) is the same
for all operators. Retrieval (step 1) differs only slightly for PG and PP modes, but
is again the same for all operators. We factored out these commonalities into a so-
called provenance wrapper. The operator-specific parts of the provenance-wrapper are
fairly small and straightforward for most operators. The most complicated case is
aggregation, in particular with overlapping windows: each output tuple may depend on
several input tuples, and each input tuple may contribute to several output tuples. This
requires fairly elaborate state management, including merging and sharing TID sets.

Example 4. Figure 9 shows the provenance computation for the annotating network
from Figure 8(b). Recall that this network generates P(q, 8, {5}). Provenance headers
are prefixed with # and TIDs in a provenance tuple are highlighted with shaded back-
ground. For instance, the aggregation operator uses the provenance wrapper to merge
the TID sets from all tuples in a window and emit them as the TID set for the result
tuple produced for this window.

4.3. Input Storage and Retrieval

As mentioned before, we apply a reduced-eager approach which requires preservation
of input tuples at PG operators to be able to reconstruct fully-fledged provenance from
TID sets for retrieval.

Input Storage at PG Operators. We utilize connection points (CP) [Ryvkina et al.
2006] to provide temporary storage for tuples that pass through a queue. If a query
network q is instrumented to compute a PAS P(O, I), then we add a connection point
to each stream in I, that is, the streams that are inputs of provenance generators. We
rely on a timeout (or tuple count)-based strategy for removing old tuples from storage,
adapted to the retrieval pattern of the application.

If expiry is desired (i.e., the user is not storing the inputs anyways for other pur-
poses), we can use the covering intervals in many cases as means to immediately
prune noncovered input. The requirement for such pruning is that bounds exists on
the arrival order of covering intervals (e.g., later intervals cannot extend further into
the past than already pruned areas). Based on this observation, a static analysis
of the query network can be used to determine safe count-based expiration settings
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for many queries. As a counterexample, consider the b-sort operator. This operator
may keep a tuple in its buffer for an arbitrarily long interval of time. For this type of
operator, the provenance of an output may depend on an arbitrarily “old” tuple from
the input streams. In this case, we either have to keep the whole input to guarantee
correct provenance, accept that the provenance is not complete if we set a time-out, or
rely on application knowledge to determine when the pruning needs to be performed.
In many scenarios, such a requirement is intuitively understood by developers and
users, and the relevant knowledge is readily available. Using the provenance itself for
more data-directed dynamic expiration as well as utilizing write-optimized, possibly
distributed storage technologies are interesting avenues for future work. For example,
we could dynamically inspect provenance to learn over time what are “safe” boundaries
for pruning.

P-Join. Similar to the approach in Glavic and Alonso [2009], we have chosen to
represent provenance to the consumer using Borealis’ data model. For each result tuple
t with a provenance annotation set P, we create as many duplicates of t as there are
entries in P, and attach one tuple from the provenance set to each of these duplicates.
This functionality is implemented as a new operator called p-join. A p-join �(S, C P)
joins an annotated stream S with a connection point C P to output tuples joined with
tuples from their provenance.

Example 5. The relevant part of the running example network with retrieval is
shown in Figure 9. Recall that this network was instrumented to generate P(q, 8, {5}).
Hence, a CP (the cylinder) is used to preserve tuples from stream 5 for provenance
retrieval.

5. OPTIMIZATIONS

Certain stream processing challenges call for additional optimizations beyond reduced-
eager. (1) Windowed aggregation produces large amounts of provenance. (2) Computing
provenance on the fly to deal with the transient nature of streams increases runtime
and latency. We address these challenges through compressed provenance represen-
tations (reduces overhead) and lazy provenance computation and retrieval techniques
(decouples query execution from provenance generation).

Provenance Compression. The methods we developed for TID set compression
range between generic data compression to methods which exploit data model and
operator characteristics. Interval encoding compresses contiguous sub-sequences of
TIDs by replacing them with intervals (e.g., a TID set {1, 2, 3, 4, 6, 7, 8} would be
encoded as [1, 4], [6, 8], reducing its size from 7 to 4). Delta encoding exploits overlap
between the provenance of tuples by encoding the provenance of a tuple as a delta
over the provenance of a previous tuple. For example, consider the provenance of
two consecutive tuples: {1, 3, 5, 7, 9} and {3, 5, 7, 9, 11}. The second provenance can
be encoded as a delta “Skip the first element of the previous provenance and append
{11}”. This type of encoding is very effective for sliding windows. Generic dictionary
compression (we use LZ77) is used if the size of a TID set exceeds a threshold. Our
prototype combines the presented compression techniques using a set of heuristic
rules. Generally speaking, we first choose whether to use intervals or a TID set, then
apply delta-encoding ontop if the overlap between consecutive TID sets is high, and
finally apply dictionary compression if the result size still exceeds a threshold.

Replay-Lazy. The replay-lazy method introduced in Section 2.2 computes provenance
by replaying parts of the input through a provenance generating network, providing
several benefits: (1) the cost of provenance generation is only paid if provenance is
actually needed, (2) the overhead on regular query processing is minimal, enabling
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Fig. 10. Example replay-lazy network.

provenance for time-critical applications, and (3) provenance computation is mostly
decoupled from query execution. Replay-Lazy is only applicable to query networks
consisting of deterministic and monotone operators. In order to avoid having to replay
a complete prefix of a stream, we compute which parts have to be replayed during query
execution. Specifically, these are all tuples from the interval spanned by the smallest
and largest TID in the provenance of an output tuple (we refer to this set of tuples as
the covering interval of a TID set). The network is instrumented in the same way as
for reduced-eager (see Figure 10), except that we annotate each tuple with its covering
interval (CG and CP are PG and PP operators that annotate with covering intervals).
These intervals require constant space, thus reducing the overhead of propagation
significantly. Furthermore, generating and maintaining them is rather cheap. In order
to access the tuples belonging to a covering interval, we introduce a new join operator:
A c-join ⊗(S, CP) between a stream S and a connection point CP processes each tuple t
from S by fetching all tuples included in the covering interval of t from the connection
point and emitting these tuples. These tuples are then fed into a copy of the query
network that is instrumented for provenance generation.

Lazy Retrieval. Both reduced-eager and replay-lazy reduce the runtime overhead of
provenance generation at the cost of additional computation for tuple reconstruction
during provenance retrieval. If interactive retrieval is used, we only need to reconstruct
provenance for tuples when explicitly requested. If the reconstructed provenance is
used as an input to a query over provenance, then we have the opportunity to avoid the
cost of reconstruction through a p-join operator by determining upfront which parts of
the provenance are not needed in the retrieval part of the query.

6. EXPERIMENTS

The goal of our experimental evaluation is to investigate the overhead of provenance
management with Ariadne, compare with competing approaches (rewrite), investigate
the impact of varying the provenance generation and retrieval methods (eager vs. lazy),
and study the effectiveness of the optimizations proposed in Section 5.

6.1. Provenance Propagation by Query Rewrite

To be able to compare against query rewrite, we have implemented this technique
following the approach pioneered in the Perm project [Glavic and Alonso 2009]. More
specifically, let S1 and S2 be input streams of operators and Sout denote an operator
output stream. Given a PAS P(O, I) for a query network q, we have to transform q
into a network that computes the PAS P(O, I) using solely the standard operators of
the DSMS. The rewrite process is straightforward for most operators. Figure 11 shows
rewrite rules for selection and aggregation and an example query and its rewritten
counterpart (bottom). Aggregations are rewritten by joining their outputs with PAS for
their inputs. Note that this rewrite is only possible for window operators where we can
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Fig. 11. Query rewrite rules and example. Fig. 12. Experiment queries.

express a join condition which guarantees that each tuple from a certain window only
joins with the aggregated output produced for that particular window. For instance, for
a value-based window function val(c, s, a), we add two additional aggregation functions
to compute the minimum and maximum values of attribute a for the window. These
values are used in the join condition as follows: min(a) ≥ a ∧ a ≤ max(a).

6.2. Setup

Figure 12 shows the query network (called Basic) used in most experiments in its orig-
inal (a), rewritten (b), and instrumented (c) versions. The replay-lazy version closely
resembles Figure 10. This query covers the most critical operator for provenance man-
agement (aggregation) and is simple enough to study individual cost drivers. In ex-
periments that focus on the cost of provenance generation, we leave out parts of these
networks that implement retrieval (the dashed boxes).

Setup and Methodology. Since the overhead of unused provenance code turned out to
be negligible, we used Ariadne also for experiments without provenance generation. All
experiments were run on a system with four Intel Xeon L5520 2.26Ghz quadcore CPUs,
24GB RAM, running Ubuntu Linux 10.04 64 bit. Client (load generator) and server are
placed on the same machine. The input data consists of tuples with a small number
of numeric columns (in total around 40 bytes), to make the overhead of provenance
more visible. The values of these columns are uniformly distributed. All input data is
generated beforehand. Each experiment was repeated ten times to minimize the impact
of random effects. We show the standard deviation where possible in the graphs. Our
study focuses on the time overhead introduced by adding provenance management
to continuous queries, as this is the most discriminative factor between competing
approaches. We are interested in two cost measures: (1) computational cost, which we
determine by sending a large input batch of 100K tuples over the network at maximum
load and measuring the completion time; (2) tuple latency determined by running the
network with sufficient available computational capacity.

6.3. Fundamental Trade-Offs

In the first set of experiments, we study the computational overhead of managing prov-
enance (split into generation and retrieval) using the basic query with maximum load.
We show results for our reduced-eager and replay-lazy approaches without provenance
compression (called single from now on), and compare them with the cost of the network
with no provenance as well as rewrite.

End-to-End Cost. The first experiment (shown in Figure 13) compares the end-to-end
cost when changing the amount of provenance that is being produced per result tuple.

ACM Transactions on Internet Technology, Vol. 14, No. 1, Article 7, Publication date: July 2014.



7:20 B. Glavic et al.

Fig. 13. End to end - vary provenance amount.

Fig. 14. Aggregations: completion time (sec).

This is achieved by changing the window size (WS) of the aggregation operator from
10 to 100 tuples (while keeping a constant slide SL = 1 and selectivity 25% for the
first selection in the network). Provenance is retrieved for all result tuples. The results
demonstrate that the general overhead of provenance management is moderate for all
methods: an order of magnitude more provenance tuples than data tuples (WS =10)
roughly doubles the cost, two orders of magnitude (WS =100) lead to an increase by a
factor 5 (instrumentation) to 12 (rewrite). Analyzing the individual methods, we see that
the cost of instrumentation is strongly influenced by retrieval: around 40% at WS =10,
and around 65% at WS =100. This cost is roughly linear to the amount of provenance
produced. The overhead of provenance generation through instrumentation is between
20% (WS =10) and 113% (WS =100). Using replay-lazy, the overhead on the original
query network (generation of covering intervals) is further reduced to 3% (WS =10) and
16% (WS =100), respectively. The price to pay for this reduction is the additional cost
of provenance replay, where the cost is similar to the combination of instrumentation
generation and retrieval, as this method is now applied on all covering intervals to
compute the actual provenance. Even for this benign workload, rewrite shows much
worse scaling than instrumentation with full retrieval: while roughly on par for WS =10,
it requires twice as much time for WS =100.

Nested Aggregations. We now increase the number of aggregations to exponentially
increase the amount of provenance per result tuple. We start off with the Basic network
(WS =10 and SL = 1) and gradually add more aggregation operators. The increase of
cost for instrumentation is (slightly) sublinear in the provenance size. Most of the over-
head can be attributed to retrieval, while provenance generation increases moderately
due to the TID set representation. The overhead of generating covering intervals for
replay-lazy is around 10% over the baseline (no provenance), while the effort spent for
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Fig. 15. Window size (SL=1, S=25%). Fig. 16. Window slide (WS =100, S=25%).

replaying shows the same behavior as the total cost of instrumentation. Finally, the re-
sults (Figure 14) indicate that rewrite does not scale in the number of aggregations, as
demonstrated by an increase in overhead in comparison to instrumentation from 20%
(one aggregation) to 3,300% (two aggregations). At three aggregations, the execution
exhausts the available memory.

6.4. Cost of Provenance Generation

We now focus on window-based aggregation, since it is not used in traditional, non-
streaming workloads and produces large amounts of provenance. In addition to the
methods previously shown, we enable the adaptive compression technique (denoted as
optimized). Furthermore, we will no longer consider the rewrite method (its drawbacks
are obvious) and retrieval cost (as it is linear with respect to the provenance size).
We study the impact of window size (provenance amount per result), window over-
lap (commonality in provenance), and pre-selection selectivity (TID contiguity). These
experiments use the basic network.

Window Size. Figure 15 shows completion time for varying WS from 50 to 20000.
A front selection selectivity of 25% ensures that there are very few contiguous TID
sequences, limiting the potential of interval compression. Furthermore, the overlap
introduced by the small slide and large windows is detrimental for covering intervals,
since a significant amount of interval merging needs to be performed. Completion time
is higher for larger window sizes, but compression mitigates this effect: the completion
time overhead for single grows significantly, starting from 75 % at WS 100 and reaching
around 550% at WS 5,000. After this point, the overhead became so high that the
system did not stay stable. Despite the challenging workload, adaptive compression
reduces the overhead to 50% and 130%, respectively. Covering intervals further reduce
the overhead, albeit with diminishing returns at larger window sizes due to ever-
increasing number of intervals to merge. The amount of memory needed to maintain
provenance information in the window operator follows a similar pattern: single uses
a naive approach that keeps provenance for every output window separately, utilizing
35 KB at WS 100 and 163 MB at WS 5,000. Adaptive compression uses an improved
approach that shares provenance information whenever possible, reducing the cost to
114 KB at WS 5,000 and 384 KB at WS 20,000. These values come very close to the
space needed for the TIDs of all open windows, showing that provenance management
is not a bottleneck when scaling the workload. Covering intervals do not need any
additional space beyond their extended headers, since intervals are merged as soon as
possible. Likewise, the amount of data transferred between operators increases sharply
when using single, from 39 MB (WS 100) to 440 MB (WS 5,000) against a baseline of
15 MB. Adaptive compression, on the other hand, sees a moderate increase: 22 MB at
WS 100 and 40 MB at WS 20,000. For covering intervals, there is only limited overhead,
less than an additional MB regardless of the window size.
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Fig. 17. TID contiguity (WS =100, SL =1). Fig. 18. Latency.

We then altered our workload in three ways to study the consequences of extremely
large windows: (i) instead of sending a batch of 100K tuples and measuring the comple-
tion time (which would limit the window size), we sent a large number of consecutive
batches of size 10K tuples, (ii) we set the slide size to be one tenth of the window size,
and (iii) we increased the selectivity of the front filter to 50%, to allow formation of a
reliable number of very large windows. We also skipped single, since it is clearly not
competitive for very large windows. With this setup, we could scale up our measure-
ments to windows containing 500K tuples while observing only moderate overhead:
The memory needed to maintain provenance state in the window operator was less
than 9 MB at WS 500K for adaptive compression. The computational overhead leveled
off at large window sizes, staying at around 100% for adaptive compression and 60%
for covering intervals.

Window Slide. Reducing the overlap between windows (increasing SL from 1 to 100,
WS =100) decreases the overall cost, since far fewer result tuples need to be generated
(Figure 16). The logarithmic decline can be explained by the fact that the low load
makes the impact of provenance generation negligible for slides bigger than 10. Large
slide values result in small overlap between open windows. Hence, they demonstrate
the worst-case scenario for the adaptive compression, because maintaining the complex
data structures of these techniques does not pay off anymore. Yet, compression performs
only slightly worse than the single approach.

TID. Besides the specific window parameters such as WS or SL, the performance
for window-based aggregates is also influenced by upstream operators affecting the
distribution of TID values. We investigate these factors by varying the selectivity of
the first selection operator in the basic network between 5% and 100% (Figure 17).
Without TID compression, the completion time is linear to selectivity, because the
number of generated output tuples also grows linearly and generation is not affected
by TID distribution. Interval compression used by optimized becomes more efficient
when selectivity is increased, as more and more contiguous TID ranges are created.
We therefore see no further increase in cost for selectivities over 75%.

6.5. Influence of Network Load on Latency

In reality, a query network is rarely run at maximum load. Thus, performance metrics
such as latency play an important role. We run the basic network (generation and re-
trieval, WS =100, SL =1, S =25%) and vary the load by changing the size of the batches
being sent from the client between 10 and 100 tuples while keeping the frequency of
sending batches fixed. Smaller batches are avoided, because they result in very unpre-
dictable performance. For sizes larger than 100 the slowest method (single) would not
be able to always process input instantly. As shown in Figure 18, provenance genera-
tion does indeed increase the latency, but this increase is very moderate and stays at
the same ratio over an increasing load. Single results in about 75% additional latency,
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Fig. 19. Complex network. Fig. 20. Retrieval frequency.

optimized reduces this overhead to around 60%, while covering intervals is the cheapest
with around 20% overhead.

6.6. Complex Query Networks

We now investigate whether our understanding of the cost of individual operators
translates to real-life query networks using the complete running example introduced
in Figure 1. We use this network (called Complex) to study how our approach translates
to a more complex query network with multiple paths and a broad selection of operators.
This query does not lend itself easily to straightforward optimizations (limited TID
contiguity) and stresses intermediate operators with large amounts of provenance. We
vary the amount of provenance created by the network by varying the window size
for the aggregations applied before the union operator (“front” windows). As Figure 19
shows, the overhead of reduced-eager instrumentation without compression (single) is
higher than in previous experiments. The optimized method (adaptive compression)
shows its benefits: while more expensive for very small WS values (100% overhead at
WS =2), it becomes more effective for larger window sizes. Covering intervals is again
very effective with 40% overhead independent of the increase in provenance. Memory
measurements support these observations, since the additional provenance does not
increase the cost significantly when using compression or covering intervals.

6.7. Varying Retrieval Frequency

Many real-world scenarios do not need provenance for the entire result stream. We
therefore study the effect of retrieval frequency (as a simple form of partial provenance
retrieval) on the trade-off between reduced-eager and replay-lazy. Using the nested
aggregation network with four aggregations (WS =10 and SL=3) and 2 million input
tuples, we vary the rate of retrieval from 0.05% to 100% (by inserting an additional
selection before reconstruction). The results are shown in Figure 20 (overhead w.r.t.
completion time of no provenance). For low retrieval frequencies (less than 1%), the
cost of retrieval is insignificant. Reduced-eager generates provenance for all outputs,
and thus, the overall cost is dominated by provenance generation. Computing covering
intervals for replay-lazy results in a relative overhead of about 13% over the completion
time for no provenance (which is constant in the retrieval frequency). Replay-lazy
has to compute only few replay requests at low retrieval rates, but in turn pays a
higher overhead for higher retrieval rates. Replay-lazy is the better choice for the
given workload if the retrieval frequency is 10% or less.

Summary. Our experiments demonstrate the feasibility of fine-grained end-to-end
provenance in DSMS. Operator instrumentation clearly outperforms rewrite. Further-
more, reduced-eager allows us to separate generation and retrieval. Replay-lazy based
on covering intervals reduces the overhead on the “normal” query network and enables
us to scaleout. The optimizations for provenance compression are effective in both
small-scale, synthetic, as well as large-scale, real-life workloads.
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7. RELATED WORK

Our work is related to provenance on workflow systems, databases, and stream pro-
cessing systems.

Workflow Systems. Workflow provenance approaches that handle tasks such as black
boxes are not suitable for managing stream provenance [Davidson et al. 2007]. More
recently, finer-grained workflow provenance models have been proposed (e.g., allowing
explicit declarations of data dependencies [Anand et al. 2009] or applying database
provenance models to Pig Latin workflows [Amsterdamer et al. 2011a]). These systems
only support nonstream processing models and require explicit declarations. Ariadne’s
compression techniques resemble efficient provenance storage and retrieval techniques
in workflow systems (e.g., subsequence compression technique [Anand et al. 2009] or
node factorization [Chapman et al. 2008]). However, due to the transient and incremen-
tal nature of streaming settings, we use compression mainly for optimizing provenance
generation.

Database Systems. There are several different notions of database provenance
[Cheney et al. 2009] supported by different systems (e.g., Trio [Benjelloun et al. 2006],
DBNotes [Bhagwat et al. 2004], Perm [Glavic and Alonso 2009]). Like lineage in rela-
tional databases, Ariadne represents the provenance of an output tuple as a set of input
tuples that contributed to its generation. In principle, our operator instrumentation
techniques can be extended to support more informative provenance models similar to
database provenance models, such as provenance polynomials [Green et al. 2007] and
graph-based models [Acar et al. 2010]. However, it is unclear if their benefits in terms
of equivalences will hold for streaming operators. Given the fundamental differences
in the data and query models for streams, investigating whether these existing prove-
nance models or minimization techniques [Amsterdamer et al. 2011b] can be adapted
to stream provenance is promising future work.

Stream Processing Systems. There is only a handful of related work on managing
stream provenance. Vijayakumar and Plale have proposed coarse-grained provenance
collection techniques for low-overhead scientific stream processing [2006]. Wang et al.
have proposed a rule-based provenance model for sensor streams, where the rules have
to be manually defined for each operation [2007]. More recently, Huq et al. have pro-
posed achieving fine-grained stream provenance by augmenting coarse-grained prov-
enance with time-stamp-based data versioning [2011]. In his work, provenance gen-
eration is based on inversion, as opposed to Ariadne’s propagation-based approach,
hence it is more restricted. A common use case for stream provenance data is query
debugging. Microsoft CEP server [Ali et al. 2009] exposes coarse-grained state of the
system through snapshots and streams of manageability events. The visual debugger
proposed in De Pauw et al. [2010] supports fine-grained provenance computation based
on identifier annotation and operator instrumentation, where per-operator provenance
is stored and multi-operator provenance is generated from it on an on-demand basis.

8. CONCLUSIONS

We present Ariadne, a system addressing the challenges of computing fine-grained
provenance for data stream processing, which provides an important building block
for provenance on event detection. Reduced-eager operator instrumentation provides a
novel method for computing provenance for an infinite stream of data that adds only
a moderate amount of latency and computational cost and correctly handles nonde-
terministic operators. Replay-lazy and lazy-retrieval provide additional optimizations
for decoupling provenance computation from stream processing. The effectiveness of
our techniques is successfully validated in the experimental evaluation over various
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performance parameters and workloads. Interesting avenues for future work include
(i) studying provenance retrieval patterns to exploit additional knowledge for storage
decisions and in optimizing computations, (ii) investigating distributed architectures
and integration of our system with scalable distributed storage, and (iii) extending our
provenance semantics to model the inherent order of streams.
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