
The Aurora and Borealis Stream Processing
Engines

Uğur Çetintemel, Daniel Abadi, Yanif Ahmad, Hari Balakrishnan,
Magdalena Balazinska, Mitch Cherniack, Jeong-Hyon Hwang,
Samuel Madden, Anurag Maskey, Alexander Rasin, Esther Ryvkina,
Mike Stonebraker, Nesime Tatbul, Ying Xing, and Stan Zdonik

1 Introduction and History

Over the last several years, a great deal of progress has been made in the area
of stream-processing engines (SPEs) [9, 11, 17]. Three basic tenets distinguish
SPEs from current data processing engines. First, they must support primitives for
streaming applications. Unlike Online Transaction Processing (OLTP), which pro-
cesses messages in isolation, streaming applications entail time series operations
on streams of messages. Although a time series “blade” was added to the Illustra
Object-Relational DBMS, generally speaking, time series operations are not well
supported by current DBMSs. Second, streaming applications entail a real-time
component. If one is content to see an answer later, then one can store incoming
messages in a data warehouse and run a historical query on the warehouse to find
information of interest. This tactic does not work if the answer must be constructed
in real time. The need for real-time answers also dictates a fundamentally differ-
ent storage architecture. DBMSs universally store and index data records before
making them available for query activity. Such outbound processing, where data are
stored before being processed, cannot deliver real-time latency, as required by SPEs.
To meet more stringent latency requirements, SPEs must adopt an alternate model,
which we refer to as “inbound processing”, where query processing is performed

U. Çetintemel (B) · Y. Ahmad · J.-H. Hwang · A. Rasin · N. Tatbul · Y. Xing · S. Zdonik
Department of Computer Science, Brown University, Providence, RI, USA
e-mail: ugur@cs.brown.edu

D. Abadi · H. Balakrishnan · M. Balazinska · S. Madden · M. Stonebraker
Department of EECS and Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, USA

M. Cherniack · A. Maskey · E. Ryvkina
Department of Computer Science, Brandeis University, Waltham, MA, USA

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_17

337

mailto:ugur@cs.brown.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_17


338 U. Çetintemel et al.

directly on incoming messages before (or instead of) storing them. Lastly, an SPE
must have capabilities to gracefully deal with spikes in message load. Incoming traf-
fic is usually bursty, and it is desirable to selectively degrade the performance of the
applications running on an SPE.

The Aurora stream-processing engine, motivated by these three tenets, is cur-
rently operational. It consists of some 100K lines of C++ and Java and runs on
both Unix- and Linux-based platforms. It was constructed with the cooperation of
students and faculty at Brown, Brandeis, and MIT. The fundamental design of the
engine has been well documented elsewhere: the architecture of the engine is de-
scribed in [9], while the scheduling algorithms are presented in [10]. Load-shedding
algorithms are presented in [21], and our approach to high availability in a multi-
site Aurora installation is covered in [12, 15]. Lastly, we have been involved in a
collective effort to define a benchmark that described the sort of monitoring appli-
cations that we have in mind. The result of this effort is called “Linear Road” and is
described in [7].

We have used Aurora to build various application systems. The first application
we describe here is an Aurora implementation of Linear Road, mentioned above.
Second, we have implemented a pilot application that detects late arrival of mes-
sages in a financial-services feed-processing environment. Third, one of our col-
laborators, a military medical research laboratory [23], asked us to build a system
to monitor the levels of hazardous materials in fish. Lastly, we have used Aurora
to build Medusa [8], a distributed version of Aurora that is intended to be used by
multiple enterprises that operate in different administrative domains.

The current Aurora prototype has been transferred to the commercial domain,
with venture capital backing. As such, the academic project is hard at work on
a complete redesign of Aurora, which we call Borealis. Borealis is a distributed
stream-processing system that inherits core stream-processing functionality from
Aurora and distribution functionality from Medusa. Borealis modifies and extends
both systems in nontrivial and critical ways to provide advanced capabilities that are
commonly required by newly emerging stream-processing applications. The Bore-
alis design is driven by our experience in using Aurora and Medusa, in develop-
ing several streaming applications including the Linear Road benchmark, and sev-
eral commercial opportunities. Borealis will address the following requirements of
newly emerging streaming applications.

We start with a review of the Aurora design and implementation in Sect. 2. We
then present the case studies mentioned above in detail in Sect. 3 and provide a brief
retrospective on what we have learned throughout the process in Sect. 4. We con-
clude in Sect. 5 by briefly discussing the ideas we have for Borealis in several new
areas including mechanisms for dynamic modification of query specification and
query results and a distributed optimization framework that operates across server
and sensor networks.



The Aurora and Borealis Stream Processing Engines 339

Fig. 1 Aurora graphical user interface

2 The Aurora Centralized Stream Processing Engine

Aurora is based on a dataflow-style “boxes and arrows” paradigm. Unlike other
stream processing systems that use SQL-style declarative query interfaces (e.g.,
STREAM [17]), this approach was chosen because it allows query activity to be in-
terspersed with message processing (e.g., cleaning, correlation, etc.). Systems that
only perform the query piece must ping-pong back and forth to an application for
the rest of the work, thereby adding to system overhead and latency.

In Aurora, a developer uses the GUI to wire together a network of boxes and arcs
that will process streams in a manner that produces the outputs necessary to his or
her application. A screen shot of the GUI used to create Aurora networks is shown
in Fig. 1: the black boxes indicate input and output streams that connect Aurora with
the stream sources and applications, respectively. The other boxes are Aurora oper-
ators and the arcs represent data flow among the operators. Users can drag-and-drop
operators from the palette on the left and connect them by simply drawing arrows
between them. It should be noted that a developer can name a collection of boxes
and replace it with a “superbox”. This “macro-definition” mechanism drastically
eases the development of big networks.

As illustrated in Fig. 2, the Aurora system is, in fact, a directed sub-graph of a
workflow diagram that expresses all simultaneous query computations. We refer to
this workflow diagram as the Aurora network. Queries are built from a standard set
of well-defined operators (a.k.a. boxes). The arcs denote tuple queues that represent
streams. Each box, when scheduled, processes one or more tuples from its input



340 U. Çetintemel et al.

Fig. 2 The Aurora processing network

queue and puts the results on its output queue. When tuples are generated at the
queues attached to the applications, they are assessed according to the application’s
QoS specification (more on this below).

By default, queries are continuous in that they can potentially run forever over
push-based inputs. Ad hoc queries can also be defined at run time and are attached
to connection points, which are predetermined arcs in the network where historical
data is stored. Connection points can be associated with persistence specifications
that indicate how long a history to keep. Aurora also allows dangling connection
points that can store static data sets. As a result, connection points enable Aurora
queries to combine traditional pull-based data with live push-based data. Aurora
also allows the definition of views, which are queries to which no application is
connected. A view is allowed to have a QoS specification as an indication of its
importance. Applications can connect to the view whenever there is a need.

The Aurora operators are presented in detail in [5] and are summarized in Fig. 3.
Aurora’s operator choices were influenced by numerous systems. The basic oper-
ators Filter, Map and Union are modeled after the Select, Project and Union op-
erations of the relational algebra. Join’s use of a distance metric to relate joinable
elements on opposing streams is reminiscent of the relational band join [14]. Aggre-
gate’s sliding window semantics is a generalized version of the sliding window con-
structs of SEQ [19] and SQL-99 (with generalizations including allowance for dis-
order (SLACK), timeouts, value-based windows etc.). The ASSUME ORDER clause
(used in Aggregate and Join), which defines a result in terms of an order which may
or may not be manifested, is borrowed from AQuery [16].

Each input must obey a particular schema (a fixed number of fixed or variable
length fields of the standard data types). Every output is similarly constrained. An
Aurora network accepts inputs, performs message filtering, computation, aggrega-
tion, and correlation, and then delivers output messages to applications.



The Aurora and Borealis Stream Processing Engines 341

Fig. 3 Aurora operators

Fig. 4 QoS graph types

Moreover, every output is optionally tagged with a Quality of Service (QoS)
specification. This specification indicates how much latency the connected appli-
cation can tolerate, as well as what to do if adequate responsiveness cannot be as-
sured under overload situations. Note that the Aurora notion of QoS is different
from the traditional QoS notion that typically implies hard performance guarantees,
resource reservations and strict admission control. Specifically, QoS is a multidi-
mensional function of several attributes of an Aurora system. These include (i) re-
sponse times—output tuples should be produced in a timely fashion; as otherwise
QoS will degrade (as delays get longer); (ii) tuple drops—if tuples are dropped to
shed load, then the QoS of the affected outputs will deteriorate; and (iii) values
produced—QoS clearly depends on whether important values are being produced
or not. Figure 4 illustrates these three QoS graph types.

When a developer is satisfied with an Aurora network, he or she can compile
it into an intermediate form, which is stored in an embedded database as part of
the system catalog. At run-time this data structure is read into virtual memory. The
Aurora run-time architecture is shown in Fig. 5. The heart of the system is the sched-
uler that determines which box (i.e., operator) to run. The scheduler also determines
how many input tuples of a box to process and how far to “push” the tuples toward
the output. Aurora operators can store and access data from embedded in-memory



342 U. Çetintemel et al.

Fig. 5 Aurora run-time architecture

databases as well as from external databases. Aurora also has a Storage Manager
that is used to buffer queues when main memory runs out. This is particularly im-
portant for queues at connection points since they can grow quite long.

The Run-Time Stats Monitor continuously monitors the QoS of output tuples.
This information is important since it drives the Scheduler in its decision-making,
and it also informs the Load Shedder when and where it is appropriate to discard
tuples in order to shed load. Load shedding is only one of the techniques employed
by Aurora to improve the QoS delivered to applications. When load shedding is
not working, Aurora will try to re-optimize the network using standard query op-
timization techniques (such as those that rely on operator commutativities). This
tactic requires a more global view of the network and thus is used more sparingly.
The final tactic is to retune the scheduler by gathering new statistics or switching
scheduler disciplines. The Aurora optimizer can rearrange a network by performing
box swapping when it thinks the result will be favorable. Such box swapping cannot
occur across a connection point; hence connection points are arcs that restrict the
behavior of the optimizer as well as remember history. More detailed information
on these various topics can be obtained from the referenced papers [5, 9, 10, 21].

3 Aurora Case Studies

In this section, we present four case studies of applications built using the Aurora
engine and tools.



The Aurora and Borealis Stream Processing Engines 343

3.1 Financial Services Application

Financial service organizations purchase stock ticker feeds from multiple providers
and need to switch in real time between these feeds if they experience too many
problems. We worked with a major financial services company on developing an
Aurora application that detects feed problems and triggers the switch in real time.
In this section, we summarize the application (as specified by the financial services
company) and its implementation in Aurora.

An unexpected delay in the reporting of new prices is an example of a feed prob-
lem. Each security has an expected reporting interval, and the application needs
to raise an alarm if a reporting interval exceeds its expected value. Furthermore,
if more than some number of alarms are recorded, a more serious alarm is raised
that could indicate that it is time to switch feeds. The delay can be caused by the
underlying exchange (e.g., NYSE, NASDAQ) or by the feed provider (e.g., Com-
stock, Reuters). If it is the former, switching to another provider will not help, so
the application must be able to rapidly distinguish between these two cases.

Ticker information is provided as a real-time data feed from one or more
providers, and a feed typically reports more than one exchange. As an example,
let us assume that there are 500 securities within a feed that update at least once
every 5 s and they are called “fast updates”. Let us also assume that there are 4000
securities that update at least once every 60 s and they are called “slow updates”.

If a ticker update is not seen within its update interval, the monitoring system
should raise a low alarm. For example, if MSFT is expected to update within 5 s,
and 5 s or more elapse since the last update, a low alarm is raised.

Since the source of the problem could be in the feed or the exchange, the moni-
toring application must count the number of low alarms found in each exchange and
the number of low alarms found in each feed. If the number for each of these cat-
egories exceeds a threshold (100 in the following example), a high alarm is raised.
The particular high alarm will indicate what action should be taken. When a high
alarm is raised, the low alarm count is reset and the counting of low alarms begins
again. In this way, the system produces a high alarm for every 100 low alarms of a
particular type.

Furthermore, the posting of a high alarm is a serious condition, and low alarms
are suppressed when the threshold is reached to avoid distracting the operator with
a large number of low alarms.

Figure 6 presents our solution realized with an Aurora query network. We assume
for simplicity that the securities within each feed are already separated into the 500
fast updating tickers and the 4000 slowly updating tickers. If this is not the case,
then the separation can be easily achieved with a lookup. The query network in
Fig. 6 actually represents six different queries (one for each output). Notice that
much of the processing is shared.

The core of this application is in the detection of late tickers. Boxes 1, 2, 3, and
4 are all Aggregate boxes that perform the bulk of this computation. An Aggregate
box groups input tuples by common value of one or more of their attributes, thus
effectively creating a substream for each possible combination of these attribute



344 U. Çetintemel et al.

Fig. 6 Aurora query network for the alarm correlation application

values. In this case, the aggregates are grouping the input on common value of
ticker symbol. For each grouping or substream, a window is defined that demarcates
interesting runs of consecutive tuples called windows. For each of the tuples in one
of these windows, some memory is allocated and an aggregating function (e.g.,
Average) is applied. In this example, the window is defined to be every consecutive
pair (e.g., tuples 1 and 2, tuples 2 and 3, etc.) and the aggregating function generates
one output tuple per window with a boolean flag called Alarm, which is a 1 when
the second tuple in the pair is delayed (call this an Alarm tuple) and a 0 when it is
on time.

Aurora’s operators have been designed to react to imperfections such as delayed
tuples. Thus, the triggering of an Alarm tuple is accomplished directly using this
built-in mechanism. The window defined on each pair of tuples will timeout if the
second tuple does not arrive within the given threshold (5 s in this case). In other
words, the operator will produce one alarm each time a new tuple fails to arrive
within 5 s, as the corresponding window will automatically timeout and close. The
high-level specification of Aggregate boxes 1 through 4 is:

Aggregate(Group by ticker,
Order on arrival,
Window (Size = 2 tuples,

Step = 1 tuple,
Timeout = 5 sec))

Boxes 5 through 8 are Filters that eliminate the normal outputs, thereby letting
only the Alarm tuples through. Box 9 is a Union operator that merges all Reuters
alarms onto a single stream. Box 10 performs the same operation for Comstock.

The rest of the network determines when a large number of Alarms is occurring
and what the cause of the problem might be. Boxes 11 and 15 count Reuters alarms



The Aurora and Borealis Stream Processing Engines 345

and raise a high alarm when a threshold (100) is reached. Until that time, they simply
pass through the normal (low) alarms. Boxes 14 and 18 do the same for Comstock.
Note that the boxes labeled Count 100 are actually Map boxes. Map takes a user-
defined function as a parameter and applies it to each input tuple. That is, for each
tuple t in the input stream, a Map box parameterized by a function f produces the
tuple f (x). In this example, Count 100 simply applies the following user-supplied
function (written in pseudocode) to each tuple that passes through:

F (x:tuple) = cnt++
if (cnt % 100 != 0)

if !suppress
emit lo-alarm

else
emit drop-alarm

else
emit hi-alarm
set suppress = true

Boxes 12, 13, 16, and 17 separate the alarms from both Reuters and Comstock
into alarms from NYSE and alarms from NASDAQ. This is achieved by using Filters
to take NYSE alarms from both feed sources (Boxes 12 and 13) and merging them
using a Union (Box 16). A similar path exists for NASDAQ alarms. The results of
each of these streams are counted and filtered as explained above.

In summary, this example illustrates the ability to share computation among
queries, the ability to extend functionality through user-defined Aggregate and Map
functions, and the need to detect and exploit stream imperfections.

3.2 The Linear Road Benchmark

Linear Road is a benchmark for stream-processing engines [4, 7]. This benchmark
simulates an urban highway system that uses “variable tolling” (also known as “con-
gestion pricing”) [1, 13, 18], where tolls are determined according to such dynamic
factors as congestion, accident proximity, and travel frequency. As a benchmark,
Linear Road specifies input data schemas and workloads, a suite of continuous and
historical queries that must be supported, and performance (query and transaction
response time) requirements.

Variable tolling is becoming increasingly prevalent in urban settings because it is
effective at reducing traffic congestion and because recent advances in microsensor
technology make it feasible. Traffic congestion in major metropolitan areas is an in-
creasing problem as expressways cannot be built fast enough to keep traffic flowing
freely at peak periods. The idea behind variable tolling is to issue tolls that vary ac-
cording to time-dependent factors such as congestion levels and accident proximity
with the motivation of charging higher tolls during peak traffic periods to discourage



346 U. Çetintemel et al.

vehicles from using the roads and contributing to the congestion. Illinois, Califor-
nia, and Finland are among the highway systems that have pilot programs utilizing
this concept.

The benchmark itself assumes a fictional metropolitan area (called “Linear City”)
that consists of 10 expressways of 100-mile-long segments each and 1,000,000 ve-
hicles that report their positions via GPS-based sensors every 30 s. Tolls must be
issued on a per-segment basis automatically, based on statistics gathered over the
previous 5 min concerning average speed and number of reporting cars. A segment’s
tolls are overridden when accidents are detected in the vicinity (an accident is de-
tected when multiple cars report close positions at the same time), and vehicles that
use a particular expressway often are issued “frequent traveler” discounts.

The Linear Road benchmark demands support for five queries: two continuous
and three historical. The first continuous query calculates and reports a segment toll
every time a vehicle enters a segment. This toll must then be charged to the vehicle’s
account when the vehicle exits that segment without exiting the expressway. Again,
tolls are based on current congestion conditions on the segment, recent accidents
in the vicinity, and frequency of use of the expressway for the given vehicle. The
second continuous query involves detecting and reporting accidents and adjusting
tolls accordingly. The historical queries involve requesting an account balance or a
day’s total expenditure for a given vehicle on a given expressway and a prediction
of travel time between two segments on the basis of average speeds on the segments
recorded previously. Each of the queries must be answered with a specified accuracy
and within a specified response time. The degree of success for this benchmark is
measured in terms of the number of expressways the system can support, assuming
1000 position reports issued per second per expressway, while answering each of
the five queries within the specified latency bounds.

3.3 Environmental Monitoring

We have also worked with a military medical research laboratory on an application
that involves monitoring toxins in the water. This application is fed streams of data
indicating fish behavior (e.g., breathing rate) and water quality (e.g., temperature,
pH, oxygenation, and conductivity). When the fish behave abnormally, an alarm is
sounded.

Input data streams were supplied by the army laboratory as a text file. The single
data file interleaved fish observations with water quality observations. The alarm
message emitted by Aurora contains fields describing the fish behavior and two
different water quality reports: the water quality at the time the alarm occurred and
the water quality from the last time the fish behaved normally. The water quality
reports contain not only the simple measurements but also the 1-/2-/4-hour sliding-
window deltas for those values.

The application’s Aurora processing network is shown in Fig. 7 (snapshot taken
from the Aurora GUI): The input port (1) shows where tuples enter Aurora from



The Aurora and Borealis Stream Processing Engines 347

Fig. 7 Aurora query network for the environmental contamination detection applications (GUI
snapshot)

the outside data source. In this case, it is the application’s C++ program that reads
in the sensor log file. A Union box (2) serves merely to split the stream into two
identical streams. A Map box (3) eliminates all tuple fields except those related to
water quality. Each superbox (4) calculates the sliding-window statistics for one of
the water quality attributes. The parallel paths (5) form a binary join network that
brings the results of (4)’s subnetworks back into a single stream. The top branch in
(6) has all the tuples where the fish act oddly, and the bottom branch has the tuples
where the fish act normally. For each of the tuples sent into (1) describing abnormal
fish behavior, (6) emits an alarm message tuple. This output tuple has the sliding-
window water quality statistics for both the moment the fish acted oddly and for
the most recent previous moment that the fish acted normally. Finally, the output
port (7) shows where result tuples are made available to the C++-based monitoring
application. Overall, the entire application ended up consisting of 3400 lines of C++
code (primarily for file parsing and a simple monitoring GUI) and a 53-operator
Aurora query network.

During the development of the application, we observed that Aurora’s stream
model proved very convenient for describing the required sliding-window calcula-
tions. For example, a single instance of the aggregate operator computed the 4-h
sliding-window deltas of water temperature.

Aurora’s GUI for designing query networks also proved invaluable. As the query
network grew large in the number of operators used, there was great potential for
overwhelming complexity. The ability to manually place the operators and arcs on
a workspace, however, permitted a visual representation of “subroutine” boundaries
that let us comprehend the entire query network as we refined it.

We found that small changes in the operator language design would have greatly
reduced our processing network complexity. For example, Aggregate boxes apply
some window function [such as DELTA(water-pH)] to the tuples in a slid-
ing window. Had an Aggregate box been capable of evaluating multiple func-
tions at the same time on a single window [such as DELTA(water-pH) and
DELTA(watertemp)], we could have used significantly fewer boxes. Many of
these changes have since been made to Aurora’s operator language.

The ease with which the processing flow could be experimentally reconfigured
during development, while remaining comprehensible, was surprising. It appears



348 U. Çetintemel et al.

Table 1 Overview of a subset of the Aurora API

start and shutdown: Respectively starts processing and shuts down a complete
query network.

modifyNetwork: At runtime, adds or removes schemas, streams, and operator boxes
from a query network processed by a single Aurora engine.

typecheck: Validates (part of) a query network. Computes properties of intermediate
and output streams.

enqueue and dequeue: Push and pull tuples on named streams.

listEntities and describe(Entity): Provide information on entities in the
current query network.

getPerfStats: Provides performance and load information.

that this was only possible by having both a well-suited operator set and a GUI tool
that let us visualize the processing. It seems likely that this application was devel-
oped at least as quickly in Aurora as it would have been with standard procedural
programming.

We note that, for this particular application, real-time response was not required.
The main value Aurora added in this case was the ease of developing stream-
oriented applications.

3.4 Medusa: Distributed Stream Processing

Medusa is a distributed stream-processing system built using Aurora as the single-
site query-processing engine. Medusa takes Aurora queries and distributes them
across multiple nodes. These nodes can all be under the control of one entity or be
organized as a loosely coupled federation under the control of different autonomous
participants.

A distributed stream-processing system such as Medusa offers several benefits
including incremental scalability over multiple nodes, composition of stream feeds
across multiple participants, and high availability and load sharing through resource
multiplexing.

The development of Medusa prompted two important changes to the Aurora pro-
cessing engine. First, it became apparent that it would be useful to offer Aurora not
only as a stand-alone system but also as a library that could easily be integrated
within a larger system. Second, we felt the need for an Aurora API, summarized
in Table 1. This API is composed of three types of methods: (i) methods to set up
queries and push or pull tuples from Aurora, (ii) methods to modify query networks
at runtime (operator additions and removals), and (iii) methods giving access to
performance information.



The Aurora and Borealis Stream Processing Engines 349

4 Experience and Lessons Learned

4.1 Support for Historical Data

From our work on a variety of streaming applications, it became apparent that each
application required maintaining and accessing a collection of historical data. For
example, the Linear Road benchmark, which represents a realistic application, re-
quired maintaining 10 weeks of toll history for each driver, as well as the current
positions of every vehicle and the locations of accidents tying up traffic. Historical
data might be used to support historical queries (e.g., tell me how much driver X
has spent on tolls on expressway Y over the past 10 weeks) or serve as inputs to
hybrid queries involving both streaming and historical data [e.g., report the current
toll for vehicle X based on its current position (streamed data) and the presence of
any accidents in its vicinity (historical data)].

In the applications we have looked at, historical data take three different forms.
These forms differ by their update patterns—the means by which incoming stream
data are used to update the contents of a historical collection. These forms are sum-
marized below.

1. Open windows (connection points). Linear Road requires maintaining the last
10 weeks’ worth of toll data for each driver to support both historical queries
and integrated queries. This form of historical data resembles a window in its
FIFO-based update pattern but must be shared by multiple queries and therefore
be openly accessible.

2. Aggregate summaries (latches). Linear Road requires maintaining such aggre-
gated historical data as: the current toll balance for every vehicle (SUM(Toll)),
the last reported position of every vehicle (MAX(Time)), and the average speed
on a given segment over the past 5 min (AVG(Speed)). In all cases, the update
patterns involve maintaining data by key value (e.g., vehicle or segment ID) and
using incoming tuples to update the aggregate value that has the appropriate key.
As with open windows, aggregate summaries must be shared by multiple queries
and therefore must be openly accessible.

3. Tables. Linear Road requires maintaining tables of historical data whose update
patterns are arbitrary and determined by the values of streaming data. For ex-
ample, a table must be maintained that holds every accident that has yet to be
cleared (such that an accident is detected when multiple vehicles report the same
position at the same time). This table is used to determine tolls for segments in
the vicinity of the accident and to alert drivers approaching the scene of the ac-
cident. The update pattern for this table resembles neither an open window nor
an aggregate summary. Rather, accidents must be deleted from the table when
an incoming tuple reports that the accident has been cleared. This requires the
declaration of an arbitrary update pattern.

Whereas open windows and aggregate summaries have fixed update patterns, ta-
bles require update patterns to be explicitly specified. Therefore, the Aurora query



350 U. Çetintemel et al.

algebra (SQuAl) includes an Update box that permits an update pattern to be speci-
fied in SQL. This box has the form

UPDATE (Assume O, SQL U, Report t)
such that U is an SQL update issued with every incoming tuple and includes vari-
ables that get instantiated with the values contained in that tuple. O specifies the
assumed ordering of input tuples, and t specifies a tuple to output whenever an up-
date takes place. Further, because all three forms of historical collections require
random access, SQuAl also includes a Read box that initiates a query over stored
data (also specified in SQL) and returns the result as a stream. This box has the form

READ (Assume O, SQL Q)
such that Q is an SQL query issued with every incoming tuple and includes variables
that get instantiated with the values contained in that tuple.

4.2 Synchronization

As continuous queries, stream applications inherently rely on shared data and com-
putation. Shared data might be contained in a table that one query updates and an-
other query reads. For example, the Linear Road application requires that vehicle
position data be used to update statistics on highway usage, which in turn are read
to determine tolls for each segment on the highway. Alternatively, box output can
be shared by multiple queries to exploit common subexpressions or even by a single
query as a way of merging intermediate computations after parallelization.

Transactions are required in traditional databases because data sharing can lead
to data inconsistencies. An equivalent synchronization mechanism is required in
streaming settings, as data sharing in this setting can also lead to inconsistencies.
For example, if a toll charge can expire, then a toll assessment to a given vehicle
should be delayed until a new toll charge is determined. The need for synchroniza-
tion with data sharing is achieved in SQuAl via the WaitFor box whose syntax is
shown below:

WaitFor (P: Predicate, T: Timeout).
This binary operator buffers each tuple t on one input stream until a tuple arrives on
the second input stream that with t satisfies P (or until the timeout expires, in which
case t is discarded). If a Read operation must follow a given Update operation, then
a WaitFor can buffer the Read request (tuple) until a tuple output by the Update
box (and input to the second input of WaitFor) indicates that the Read operation can
proceed.

4.3 Resilience to Unpredictable Stream Behavior

Streams are by their nature unpredictable. Monitoring applications require the sys-
tem to continue operation even when the unpredictable happens. Sometimes, the



The Aurora and Borealis Stream Processing Engines 351

only way to do this is to produce approximate answers. Obviously, in these cases,
the system should try to minimize errors.

We have seen examples of streams that do not behave as expected. The financial
services application that we described earlier requires the ability to detect a problem
in the arrival rate of a stream. The military application must fundamentally adjust
its processing to fit the available resources during times of stress. In both of these
cases, Aurora primitives for unpredictable stream behavior were brought to bear on
the problem.

Aurora makes no assumptions that a data stream arrives in any particular order or
with any temporal regularity. Tuples can be late or out of order due to the nature of
the data sources, the network that carries the streams, or the behavior of the operators
themselves. Accordingly, our operator set includes user-specified parameters that
allow handling such “damaged” streams gracefully.

For many of the operators, an input stream can be specified to obey an expected
order. If out-of-order data are known to the network designer not to be of relevance,
the operator will simply drop such data tuples immediately. Nonetheless, Aurora un-
derstands that this may at times be too drastic a constraint and provides an optional
slack parameter to allow for some tolerance in the number of data tuples that may
arrive out of order. A tuple that arrives out of order within the slack bounds will be
processed as if it had arrived in order.

With respect to possible irregularity in the arrival rate of data streams, the Au-
rora operator set offers all windowed operators an optional timeout parameter. The
timeout parameter tells the operator how long to wait for the next data tuple to ar-
rive. This has two benefits: it prevents blocking (i.e., no output) when one stream is
stalled, and it offers another way for the network designer to characterize the value
of data that arrive later than they should, as in the financial services application in
which the timeout parameter was used to determine when a particular data packet
arrived late.

4.4 XML and Other Feed Formats Adaptor Required

Aurora provides a network protocol that may be used to enqueue and dequeue tuples
via Unix or TCP sockets. The protocol is intentionally very low-level: to eliminate
copies and improve throughput, the tuple format is closely tied to the format of
Aurora’s internal queue format. For instance, the protocol requires that each packet
contain a fixed amount of padding reserved for bookkeeping and that integer and
floating-point fields in the packet match the architecture’s native format.

While we anticipate that performance-critical applications will use our low-level
protocol, we also recognize that the formats of Aurora’s input streams may be out-
side the immediate control of the Aurora user or administrator, for example, stock
quote data arriving in XML format from a third-party information source. Also, even
if the streams are being generated or consumed by an application within an organi-
zation’s control, in some cases protocol stability and portability (e.g., not requiring



352 U. Çetintemel et al.

the client to be aware of the endianness of the server architecture) are important
enough to justify a minor performance loss.

One approach to addressing these concerns is to simply require the user to build
a proxy application that accepts tuples in the appropriate format, converts them to
Aurora’s internal format, and pipes them into the Aurora process. This approach,
while simple, conflicts with one of Aurora’s key design goals—to minimize the
number of boundary crossings in the system—since the proxy application would be
external to Aurora and hence live in its own address space.

We resolve this problem by allowing the user to provide plug-ins called con-
verter boxes. Converter boxes are shared libraries that are dynamically linked into
the Aurora process space; hence their use incurs no boundary crossings. A user-
defined input converter box provides a hook that is invoked when data arrive over
the network. The implementation may examine the data and inject tuples into the
appropriate streams in the Aurora network. This may be as simple as consuming
fixed-length packets and enforcing the correct byte order on fields or as complex
as transforming fully formed XML documents into tuples. An output converter box
performs the inverse function: it accepts tuples from streams in Aurora’s internal
format and converts them into a byte stream to be consumed by an external applica-
tion.

Input and output converter boxes are powerful connectivity mechanisms: they
provide a high level of flexibility in dealing with external feeds and sinks without
incurring a performance hit. This combination of flexibility and high performance
is essential in a streaming database that must assimilate data from a wide variety of
sources.

4.5 Programmatic Interfaces and Globally Accessible Catalogs
Are a Good Idea

Initially, Aurora networks were created using the GUI and all Aurora metadata (i.e.,
catalogs) were stored in an internal representation. Our experience with the Medusa
system quickly made us realize that, in order for Aurora to be easily integrated
within a larger system, a higher-level, programmatic interface was needed to script
Aurora networks and metadata needed to be globally accessible and updatable.

Although we initially assumed that only Aurora itself (i.e., the runtime and the
GUI) would need direct access to the catalog representation, we encountered several
situations where this assumption did not hold. For instance, in order to manage dis-
tribution operation across multiple Aurora nodes, Medusa required knowledge of the
contents of node catalogs and the ability to selectively move parts of catalogs from
node to node. Medusa needed to be able to create catalog objects (schema, streams,
and boxes) without direct access to the Aurora catalog database, which would have
violated abstraction. In other words, relying on the Aurora runtime and GUI as the
sole software components able to examine and modify catalog structures turned out
to be an unworkable solution when we tried to build sophisticated applications on



The Aurora and Borealis Stream Processing Engines 353

the Aurora platform. We concluded that we needed a simple and transparent cata-
log representation that is easily readable and writable by external applications. This
would make it much easier to write higher-level systems that use Aurora (such as
Medusa) and alternative authoring tools for catalogs.

To this end, Aurora currently incorporates appropriate interfaces and mechanisms
(Sect. 3.4) to make it easy to develop external applications to inspect and modify
Aurora query networks. A universally readable and writable catalog representation
is crucial in an environment where multiple applications may operate on Aurora
catalogs.

4.6 Performance Critical

Fundamental to an SPE is a high-performance “message bus”. This is the system
that moves tuples from one operator to the next, storing them temporarily, as well as
into and out of the query network. Since every tuple is passed on the bus a number
of times, this is definitely a performance bottleneck. Even such trivial optimizations
as choosing the right memcpy() implementation gave substantial improvements to
the whole system.

Second to the message bus, the scheduler is the core element of an SPE. The
scheduler is responsible for allocating processor time to operators. It is tempting to
decorate the scheduler with all sorts of high-level optimization such as intelligent
allocation of processor time or real-time profiling of query plans. But it is important
to remember that scheduler overhead can be substantial in networks where there
are many operators and that the scheduler makes no contribution to the actual pro-
cessing. All addition of scheduler functionality must be greeted with skepticism and
should be aggressively profiled.

Once the core of the engine has been aggressively optimized, the remaining hot
spots for performance are to be found in the implementation of the operators. In
our implementation, each operator has a “tight loop” that processes batches of input
tuples. This loop is a prime target for optimization. We make sure nothing other
than necessary processing occurs in the loop. In particular, housekeeping of data
structures such as memory allocations and deallocation needs to be done outside of
this loop so that its cost can be amortized across many tuples.

Data structures are another opportunity for operator optimization. Many of our
operators are stateful; they retain information or even copies of previous input. Be-
cause these operators are asked to process and store large numbers of tuples, effi-
ciency of these data structures is important. Ideally, processing of each input tuple
is accomplished in constant time. In our experience, processing that is linear in the
amount of states stored is unacceptable.

In addition to the operators themselves, any parts of the system that are used
by those operators in the tight loops must be carefully examined. For example, we
have a small language used to specify expressions for Map operators. Because these
expressions are evaluated in such tight loops, optimizing them was important. The
addition of an expensive compilation step may even be appropriate.



354 U. Çetintemel et al.

These microbenchmarks measure the overhead involved in passing tuples into
and out of Aurora boxes and networks; they do not measure the time spent in boxes
performing nontrivial operations such as joining and aggregation. Message-passing
overhead, however, can be a significant time sink in streaming databases (as it was
in earlier versions of Aurora). Microbenchmarking was very useful in eliminating
performance bottlenecks in Aurora’s message-passing infrastructure. This infras-
tructure is now fast enough in Aurora that nontrivial box operations are the only
noticeable bottleneck, i.e., CPU time is overwhelmingly devoted to useful work and
not simply to shuffling around tuples.

5 Ongoing Work: The Borealis Distributed SPE

This section presents the initial ideas that we have started to explore in the context
of the Borealis distributed SPE, which is a follow-on to Aurora. The rest of the
section will provide an overview of the new challenges that Borealis will address.
More details on these challenges as well as a preliminary design of Borealis can be
found in [2].

5.1 Dynamic Revision of Query Results

In many real-world streams, corrections or updates to previously processed data are
available only after the fact. For instance, many popular data streams, such as the
Reuters stock market feed, often include messages that allow the feed originator
to correct errors in previously reported data. Furthermore, stream sources (such as
sensors), as well as their connectivity, can be highly volatile and unpredictable. As
a result, data may arrive late and miss their processing window or be ignored tem-
porarily due to an overload situation. In all these cases, applications are forced to
live with imperfect results, unless the system has means to correct its processing and
results to take into account newly available data or updates.

The Borealis data model extends that of Aurora by supporting such corrections
by way of revision records. The goal is to process revisions intelligently, correcting
query results that have already been emitted in a manner that is consistent with the
corrected data. Processing of a revision message must replay a portion of the past
with a new or modified value. Thus, to process revision messages correctly, we must
make a query diagram “replayable”. In theory, we could process each revision mes-
sage by replaying processing from the point of the revision to the present. In most
cases, however, revisions on the input affect only a limited subset of output tuples,
and to regenerate unaffected output is wasteful and unnecessary. To minimize run-
time overhead and message proliferation, we assume a closed model for replay that
generates revision messages when processing revision messages. In other words,
our model processes and generates “deltas” showing only the effects of revisions
rather than regenerating the entire result. The primary challenge here is to develop
efficient revision-processing techniques that can work with bounded history.



The Aurora and Borealis Stream Processing Engines 355

5.2 Dynamic Query Modification

In many stream-processing applications, it is desirable to change certain attributes
of the query at runtime. For example, in the financial services domain, traders typ-
ically wish to be alerted of interesting events, where the definition of “interesting”
(i.e., the corresponding filter predicate) varies based on current context and results.
In network monitoring, the system may want to obtain more precise results on a spe-
cific subnetwork if there are signs of a potential denial-of-service attack. Finally, in
a military stream application that MITRE [23] explained to us, they wish to switch
to a “cheaper” query when the system is overloaded. For the first two applications,
it is sufficient to simply alter the operator parameters (e.g., window size, filter pred-
icate), whereas the last one calls for altering the operators that compose the running
query. Another motivating application comes again from the financial services com-
munity. Universally, people working on trading engines wish to test out new trading
strategies as well as debug their applications on historical data before they go live.
As such, they wish to perform “time travel” on input streams. Although this last
example can be supported in most current SPE prototypes (i.e., by attaching the
engine to previously stored data), a more user-friendly and efficient solution would
obviously be desirable.

Two important features that will facilitate online modification of continuous
queries in Borealis are control lines and time travel. Control lines extend Aurora’s
basic query model with the ability to change operator parameters as well as opera-
tors themselves on the fly. Control lines carry messages with revised box parameters
and new box functions. For example, a control message to a Filter box can contain
a reference to a boolean-valued function to replace its predicate. Similarly, a control
message to an Aggregate box may contain a revised window size parameter. Ad-
ditionally, each control message must indicate when the change in box semantics
should take effect. Change is triggered when a monotonically increasing attribute
received on the data line attains a certain value. Hence, control messages specify
an 〈attribute, value〉 pair for this purpose. For windowed operators like Aggregate,
control messages must also contain a flag to indicate if open windows at the time of
change must be prematurely closed for a clean start.

Time travel allows multiple queries (different queries or versions of the same
query) to be easily defined and executed concurrently, starting from different points
in the past or “future” (typically by running a simulation of some sort). To support
these capabilities, we leverage three advanced mechanisms in Borealis: enhanced
connection points, connection point versions, and revision messages. To facilitate
time travel, we define two new operations on connection points. The replay opera-
tion replays messages stored at a connection point from an arbitrary message in the
past. The offset operation is used to set the connection point offset in time. When
offset into the past, a connection point delays current messages before pushing them
downstream. When offset into the future, the connection point predicts future data.
When producing future data, various prediction algorithms can be used based on the
application. A connection point version is a distinctly named logical copy of a con-
nection point. Each named version can be manipulated independently. It is possible



356 U. Çetintemel et al.

to shift a connection point version backward and forward in time without affecting
other versions.

To replay history from a previous point in time t , we use revision messages.
When a connection point receives a replay command, it first generates a set of revi-
sion messages that delete all the messages and revisions that have occurred since t .
To avoid the overhead of transmitting one revision per deleted message, we use a
macro message that summarizes all deletions. Once all messages are deleted, the
connection point produces a series of revisions that insert the messages and possi-
bly their following revisions back into the stream. During replay, all messages and
revisions received by the connection point are buffered and processed only after
the replay terminates, thus ensuring that simultaneous replays on any path in the
query diagram are processed in sequence and do not conflict. When offset into the
future, time-offset operators predict future values. As new data become available,
these predictors can (but do not have to) produce more accurate revisions to their
past predictions. Additionally, when a predictor receives revision messages, possi-
bly due to time travel into the past, it can also revise its previous predictions.

5.3 Distributed Optimization

Currently, commercial stream-processing applications are popular in industrial pro-
cess control (e.g., monitoring oil refineries and cereal plants), financial services
(e.g., feed processing, trading engine support and compliance), and network moni-
toring (e.g., intrusion detection, fraud detection). Here we see a server-heavy opti-
mization problem—the key challenge is to process high-volume data streams on a
collection of resource-rich “beefy” servers. Over the horizon, we see a very large
number of applications of wireless sensor technology (e.g., RFID in retail applica-
tions, cell phone services). Here we see a sensor-heavy optimization problem—the
key challenges revolve around extracting and processing sensor data from a net-
work of resource-constrained “tiny” devices. Further over the horizon, we expect
sensor networks to become faster and increase in processing power. In this case
the optimization problem becomes more balanced, becoming sensor-heavy/server-
heavy. To date, systems have exclusively focused on either a server-heavy environ-
ment or a sensor-heavy environment. Off into the future, there will be a need for a
more flexible optimization structure that can deal with a very large number of de-
vices and perform cross-network sensor-heavy/server-heavy resource management
and optimization.

The purpose of the Borealis optimizer is threefold. First, it is intended to opti-
mize processing across a combined sensor and server network. To the best of our
knowledge, no previous work has studied such a cross-network optimization prob-
lem. Second, QoS is a metric that is important in stream-based applications, and op-
timization must deal with this issue. Third, scalability, sizewise and geographical, is
becoming a significant design consideration with the proliferation of stream-based
applications that deal with large volumes of data generated by multiple distributed



The Aurora and Borealis Stream Processing Engines 357

sensor networks. As a result, Borealis faces a unique, multiresource/multimetric op-
timization challenge that is significantly different than the optimization problems
explored in the past. Our current thinking is that Borealis will rely on a hierarchical,
distributed optimizer that runs at different time granularities [3].

5.4 High Availability

Another part of the Borealis vision involves addressing recovery and high-
availability issues. High availability demands that node failure be masked by seam-
less handoff of processing to an alternate node. This is complicated by the fact that
the optimizer will dynamically redistribute processing, making it more difficult to
keep backup nodes synchronized. Furthermore, wide-area Borealis applications are
not only vulnerable to node failures but also to network failures and more impor-
tantly to network partitions. We have preliminary research in this area that leverages
Borealis mechanisms including connection point versions, revision tuples, and time
travel.

5.5 Implementation Status

We built a Borealis prototype on top of the Aurora and Medusa code bases. Borealis
borrowed many of the Aurora modules including its GUI, the XML representation
for query diagrams, portions of the runtime system, and much of the logic for boxes.
Borealis also borrowed basic networking and distribution logic from Medusa.

The Borealis prototype was demonstrated in SIGMOD 2006 [6], running real-
time player-visualization queries on top of a multiplayer network game. The proto-
type systems is also available to public through the Borealis website [22].

5.6 Commercialization

The Aurora/Borealis project led to the first commercial real-time stream processing
engine, which is being developed and offered by StreamBase Inc. [20]. The com-
pany was founded in 2003 primarily by the members of the academic project. Since
then, StreamBase has grown to more than 60 employees (as of summer 2007) and
has a diverse client base that consists of financial services, telecommunications and
gaming companies, as well as the intelligence and military sector.

The company has been actively participating in the development and publicity of
StreamSQL, an extension of SQL for live data streams, as the standard textual lan-
guage to develop stream-oriented applications. StreamSQL has constructs that can
seamlessly mix streams and stored tables in a single query and expressive pattern
matching capabilities.



358 U. Çetintemel et al.

Acknowledgements This work was supported in part by the National Science Foundation under
the grants IIS-0086057, IIS-0325525, IIS-0325703, and IIS-0325838; and by the Army contract
DAMD17-02-2-0048. We would like to thank all past members of the Aurora, Medusa, and Bore-
alis projects for their valuable contributions.

References

1. A guide for hot lane development: a US department of transportation federal highway admin-
istration. http://www.itsdocs.fhwa.dot.gov/JPODOCS/REPTSTE/13668.html

2. D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, J. Janotti, W. Lindner, S. Madden, A. Rasin, M. Stonebraker, N. Tatbul, Y. Xing,
S. Zdonik, The design of the Borealis stream processing engine. Technical report CS-04-08,
Department of Computer Science, Brown University (2004)

3. D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Rvvkina, N. Tatbul, Y. Xing, S. Zdonik,
The design of the Borealis stream processing engine, in CIDR Conference (2005)

4. D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Ha-
toun, J. Hwang, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan,
S. Zdonik, Aurora: a data stream management system (demo description), in ACM SIGMOD
Conference (2003)

5. D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tat-
bul, S.Z. Aurora, A new model and architecture for data stream management. VLDB J. 12(2)
(2003)

6. Y. Ahmad, B. Berg, U. Çetintemel, M. Humphrey, J. Hwang, A. Jhingran, A. Maskey, O. Pap-
paemmanouil, A. Rasin, N. Tatbul, W. Xing, Y. Xing, S. Zdonik, Distributed operation in the
Borealis stream processing engine (demo description), in ACM SIGMOD Conference (2005)

7. A. Arasu, M. Cherniack, E.F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stonebraker, R.
Tibbetts, Linear road: a stream data management benchmark, in VLDB (2004), pp. 480–491

8. M. Balazinska, H. Balakrishnan, M. Stonebraker, Contract-based load management in feder-
ated distributed systems, in NSDI Symposium (2004)

9. D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S. Zdonik, Monitoring streams—a new class of data management applications, in
VLDB Conference, Hong Kong, China (2002)

10. D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, M. Stonebraker, Operator
scheduling in a data stream manager, in VLDB Conference, Berlin, Germany (2003)

11. S. Chandrasekaran, A. Deshpande, M. Franklin, J. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, M. Shah, TelegraphCQ: continuous dataflow processing for
an uncertain world, in CIDR Conference (2003)

12. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, S. Zdonik,
Scalable distributed stream processing, in CIDR Conference, Asilomar, CA (2003)

13. Congestion pricing: a report from intelligent transportation systems (ITS). http://www.path.
berkeley.edu/leap/TTM/DemandManage/pricing.html

14. D. DeWitt, J. Naughton, D. Schneider, An evaluation of non-equijoin algorithms, in VLDB
Conference, Barcelona, Catalonia, Spain (1991)

15. J. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker, S. Zdonik, A comparison
of stream-oriented high-availability algorithms. Technical report CS-03-17, Department of
Computer Science, Brown University (2003)

16. A. Lerner, D. Shasha, AQuery: query language for ordered data, optimization techniques, and
experiments, in VLDB Conference, Berlin, Germany (2003)

17. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, R. Varma, Query processing, approximation, and resource management in a
data stream management system, in CIDR Conference (2003)

http://www.itsdocs.fhwa.dot.gov/JPODOCS/REPTSTE/13668.html
http://www.path.berkeley.edu/leap/TTM/DemandManage/pricing.html
http://www.path.berkeley.edu/leap/TTM/DemandManage/pricing.html


The Aurora and Borealis Stream Processing Engines 359

18. R.W. Poole, Hot lanes prompted by federal program. http://www.rppi.org/federalhotlanes.
html

19. P. Seshadri, M. Livny, R. Ramakrishnan, SEQ: a model for sequence databases, in IEEE ICDE
Conference, Taipei, Taiwan (1995)

20. StreamBase incorporated. http://www.streambase.com/
21. N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, M. Stonebraker, Load shedding in a data

stream manager, in VLDB Conference, Berlin, Germany (2003)
22. The Borealis project web site. http://www.cs.brown.edu/research/borealis
23. The MITRE corporation. http://www.mitre.org/

http://www.rppi.org/federalhotlanes.html
http://www.rppi.org/federalhotlanes.html
http://www.streambase.com/
http://www.cs.brown.edu/research/borealis
http://www.mitre.org/

	The Aurora and Borealis Stream Processing Engines
	1 Introduction and History
	2 The Aurora Centralized Stream Processing Engine
	3 Aurora Case Studies
	3.1 Financial Services Application
	3.2 The Linear Road Benchmark
	3.3 Environmental Monitoring
	3.4 Medusa: Distributed Stream Processing

	4 Experience and Lessons Learned
	4.1 Support for Historical Data
	4.2 Synchronization
	4.3 Resilience to Unpredictable Stream Behavior
	4.4 XML and Other Feed Formats Adaptor Required
	4.5 Programmatic Interfaces and Globally Accessible Catalogs Are a Good Idea
	4.6 Performance Critical

	5 Ongoing Work: The Borealis Distributed SPE
	5.1 Dynamic Revision of Query Results
	5.2 Dynamic Query Modiﬁcation
	5.3 Distributed Optimization
	5.4 High Availability
	5.5 Implementation Status
	5.6 Commercialization

	References


