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ABSTRACT
Recent efforts applying machine learning techniques to query opti-
mization have shown few practical gains due to substantive train-
ing overhead, inability to adapt to changes, and poor tail perfor-
mance. Motivated by these difficulties, we introduce Bao (the Bandit
optimizer). Bao takes advantage of the wisdom built into existing
query optimizers by providing per-query optimization hints. Bao
combines modern tree convolutional neural networks with Thomp-
son sampling, a well-studied reinforcement learning algorithm. As
a result, Bao automatically learns from its mistakes and adapts to
changes in query workloads, data, and schema. Experimentally, we
demonstrate that Bao can quickly learn strategies that improve
end-to-end query execution performance, including tail latency,
for several workloads containing long-running queries. In cloud
environments, we show that Bao can offer both reduced costs and
better performance compared with a commercial system.
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1 INTRODUCTION
Query optimization is an important task for database management
systems. Despite decades of study [70], themost important elements
of query optimization – cardinality estimation and cost modeling
– have proven difficult to crack [45]. Several works have applied
machine learning techniques to these stubborn problems [37, 40, 44,
51, 53, 59, 72, 73, 76]. While all of these new solutions demonstrate
remarkable results, we argue that none of the techniques are yet
practical, as they suffer from several fundamental problems:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3452838

(1) Long training time. Most proposed machine learning tech-
niques require an impractical amount of training data before they
have a positive impact on query performance. For example, ML-
powered cardinality estimators based on supervised learning re-
quire gathering precise cardinalities from the underlying data, a
prohibitively expensive operation in practice (this is why we wish
to estimate cardinalities in the first place). Reinforcement learning
techniques must process thousands of queries before outperforming
traditional optimizers, which (when accounting for data collection
and model training) can take on the order of days [51].
(2) Inability to adjust to data and workload changes. While
performing expensive training operations once may already be
impractical, changes in query workload, data, or schema can make
matters worse. Cardinality estimators based on supervised learn-
ing must be retrained when data changes, or risk becoming stale.
Several proposed reinforcement learning techniques assume that
both the workload and the schema remain constant, and require
complete retraining when this is not the case [40, 51, 53, 59].
(3) Tail catastrophe. Recent work has shown that learning tech-
niques can outperform traditional optimizers on average, but of-
ten perform catastrophically (e.g., 100x regression in query per-
formance) in the tail [27, 51, 58, 60]. This is especially true when
training data is sparse. While some approaches offer statistical guar-
antees of their dominance in the average case [76], such failures,
even if rare, are unacceptable in many real world applications.
(4) Black-box decisions. While traditional cost-based optimizers
are already complex, understanding query optimization is even
harder when black-box deep learning approaches are used. More-
over, in contrast to traditional optimizers, current learned optimiz-
ers do not provide a way for database administrators to influence
or understand the learned component’s query planning.
(5) Integration cost. To the best of our knowledge, all previous
learned optimizers are still research prototypes, offering little to no
integration with a real DBMS. None even supports all features of
standard SQL, not to mention vendor specific features. Hence, fully
integrating any learned optimizer into a commercial or open-source
database system is not a trivial undertaking.

To the best of our knowledge, Bao (Bandit optimizer) is the first
learned optimizer which overcomes the aforementioned problems.
Bao is fully integrated into PostgreSQL as an extension, and can
be easily installed without the need to recompile PostgreSQL. The
database administrator (DBA) just needs to download our open-
source module,1 and even has the option to selectively turn the
learned optimizer on or off for specific queries.

1https://learned.systems/bao
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Figure 1: Disabling loop join in PostgreSQL can improve
(16b) or harm (24b) a particular query’s performance.
These example queries are from the Join Order Benchmark
(JOB) [41].

The core idea behind Bao is to avoid learning an optimizer from
scratch. Instead, we take an existing optimizer (e.g., PostgreSQL’s
optimizer) and learn when to activate (or deactivate) some of its
features on a query-by-query basis. In other words, Bao is a learned
component that sits on top of an existing query optimizer in order
to enhance query optimization, rather than replacing or discarding
the traditional query optimizer altogether.

For instance, on a particular query, the PostgreSQL optimizer
might under-estimate the cardinality for some joins and wrongly
select a loop join when other join algorithms (e.g., merge join, hash
join) would be more effective [41, 42]. This occurs in query 16b of
the Join Order Benchmark (JOB) [41], and disabling loop-joins for
this query yields a 3𝑥 performance improvement (see Figure 1). Yet,
it would be wrong to always disable loop joins. For example, for
query 24b, disabling loop joins causes the performance to degrade
by almost 50𝑥 , an arguably catastrophic regression.

At a high level, Bao tries to “correct” a traditional query opti-
mizer by learning a mapping between an incoming query and the
execution strategy the query optimizer should use for that query.
We refer to these corrections – a subset of strategies to enable –
as query hint sets. Effectively, through the provided hint sets, Bao
limits and steers the search space of the traditional optimizer.

Our approach assumes a finite set of hint sets and treats each
hint set as an arm in a contextual multi-armed bandit problem.
While in this work we use query hints that remove entire operator
types from the plan space (e.g., no hash joins), in practice there is
no restriction that these hints are so broad. Bao learns a model that
predicts which hints will lead to good performance for a particular
query. When a query arrives, our system selects a hint set, executes
the resulting query plan, and observes a reward. Over time, Bao
refines its model to more accurately predict which hint set will most
benefit an incoming query. For example, for a highly selective query,
Bao can automatically steer an optimizer towards a left-deep loop
join plan (by restricting the optimizer from using hash or merge
joins), and to disable loop joins for less selective queries.

By formulating the problem as a contextual multi-armed bandit,
Bao can take advantage of Thompson sampling, a well-studied sam-
ple efficient algorithm [17]. Because Bao uses an underlying query
optimizer, Bao has cardinality estimates available, allowing Bao to
adapt to new data and schema changes just as well as the underlying

optimizer. While other learned query optimization methods have
to relearn what traditional query optimizers already know, Bao
immediately starts learning to improve the underlying optimizer,
and is able to reduce tail latency even compared to traditional query
optimizers. In addition to addressing the practical issues of previous
learned query optimization systems, Bao comes with a number of
desirable features that were either lacking or hard to achieve in
previous traditional and learned optimizers:

(1) Short training time. In contrast to other deep-learning ap-
proaches, which can take days to train, Bao can outperform tradi-
tional query optimizers with much less training time (≈ 1 hour).
Bao achieves this by taking full advantage of existing query opti-
mization knowledge, which was encoded by human experts into
traditional optimizers available in DBMSes today. Moreover, Bao
can be configured to start out using only the traditional optimizer
and only perform training when the load of the system is low.
(2) Robustness to schema, data, and workload changes. Bao
can maintain performance even in the presence of workload, data,
and schema changes. Bao does this by leveraging a traditional query
optimizer’s cost and cardinality estimates.
(3) Better tail latency. While previous learned approaches either
did not improve or did not evaluate tail performance, we show that
Bao is capable of improving tail performance by orders of magnitude
with as little as 30 minutes to a few hours of training.
(4) Interpretability and easier debugging. Bao’s decisions can
be inspected using standard tools, and Bao can be enabled or dis-
abled on a per-query basis. Thus, when a query misbehaves, an
engineer can examine the query hint chosen by Bao and the de-
cisions made by the underlying optimizer with EXPLAIN. If the
underlying optimizer is functioning correctly, but Bao made a poor
decision, Bao can be specifically disabled. Alternatively, Bao can be
off by default, and only enabled on specific queries known to have
poor performance with the underlying traditional query optimizer.
(5) Low integration cost. Bao is easy to integrate into an existing
database and often does not even require code changes, as most
database systems already expose all necessary hints and hooks.
Moreover, Bao builds on top of an existing optimizer and can thus
support every SQL feature supported by the underlying database.
(6) Extensibility. Bao can be extended by adding new query hints
over time, without retraining. Additionally, Bao’s feature represen-
tation can be easily augmented with additional information which
can be taken into account during optimization, although this does
require retraining. For example, when Bao’s feature representation
is augmented with information about the cache, Bao can learn how
to change query plans based on the cache state. This is a desirable
feature because reading data from cache is significantly faster than
reading information off of disk, and it is possible that the best plan
for a query changes based on what is cached. While integrating
such a feature into a traditional cost-based optimizer may require
significant engineering and hand-tuning, making Bao cache-aware
is as simple as surfacing a description of the cache state.

Of course, Bao also has downsides. First, one of the most sig-
nificant drawbacks is that query optimization time increases, as
Bao must run the traditional query optimizer several times for each
incoming query. A slight increase in optimization time is not an
issue for problematic long-running queries, since the improved
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Figure 2: Bao system model

latency of the plan selected by Bao often greatly exceeds the addi-
tional optimization time. However, for very short running queries,
increased optimization time can be an issue, especially if the ap-
plication issues many such queries. Thus, Bao is ideally suited to
workloads that are tail-dominated (e.g., 80% of query processing
time is spent processing 20% of the queries) or contain many long-
running queries, although Bao’s architecture also allows users to
easily disable Bao for such short-running queries, or enable Bao
exclusively for problematic longer-running queries. Second, by us-
ing only a limited set of hints, Bao has a restricted action space,
and thus Bao is not always able to learn the best possible query
plan. Despite this restriction, in our experiments, Bao is still able to
significantly outperform traditional optimizers while training and
adjusting to change orders-of-magnitudes faster than “unrestricted”
learned query optimizers, like Neo [51].

In summary, the key contributions of this paper are:
• We introduce Bao, a learned system for query optimization
that is capable of learning how to apply query hints on a
case-by-case basis.

• For the first time, we demonstrate a learned query optimiza-
tion system that outperforms both open source and com-
mercial systems in cost and latency, all while adapting to
changes in workload, data, and schema.

2 SYSTEM MODEL
On a high-level, Bao combines a tree convolution model [57], a
neural network operator that can recognize important patterns in
query plan trees [51], with Thompson sampling [74], a technique
for solving contextual multi-armed bandit problems. This unique
combination allows Bao to explore and exploit knowledge quickly.
The architecture of Bao is shown in Figure 2.
Generating 𝑛 query plans: When a user submits a query, Bao
uses the underlying query optimizer to produce 𝑛 query plans, one
for each set of hint. Many DBMSes [4–6] provide a wide range of
such hints. While some hints can be applied to a single relation or
predicate, Bao focuses only on query hints that are a boolean flag
(e.g., disable loop join, force index usage). The sets of hints available
to Bao must be specified upfront. Note that one set of hints could be
empty, that is, using the original optimizer without any restriction.
Estimating the run-time for each query plan:Afterwards, each
query plan is transformed into a vector tree (a tree where each node
is a feature vector). These vector trees are fed into Bao’s valuemodel,
a tree convolutional neural network [57], which predicts the quality
(e.g., execution time) of each plan. To reduce optimization time,
each of the 𝑛 query plans can be generated and evaluated in parallel.

Selecting a query plan for execution: If we just wanted to exe-
cute the query plan with the best expected performance, we would
train a model in a standard supervised fashion and pick the query
plan with the best predicted performance. However, as our value
model might be wrong, we might not always pick the optimal plan,
and, as we never try alternative strategies, never learn when we are
wrong. To balance the exploration of new plans with the exploita-
tion of plans known to be fast, we use a technique called Thompson
sampling [74] (see Section 3). It is also possible to configure Bao
to explore a specific query offline and guarantee that only the best
plan is selected during query processing (see Section 4).

After a plan is selected by Bao, it is sent to a query execution
engine. Once the query execution is complete, the combination of
the selected query plan and the observed performance is added to
Bao’s experience. Periodically, this experience is used to retrain
the predictive model, creating a feedback loop. As a result, Bao’s
predictive model improves, and Bao more reliable picks the best set
of hints for each query.
Assumptions and Limitations Bao assumes that all hints result
in semantically equivalent query plans. Moreover, Bao always uses
the hints for the entire query plan: Bao cannot restrict features for
only a part of a query plan, e.g., to avoid a nested loop join between
table 𝐴 and 𝐵, while still allowing a nested loop for a join between
table 𝐶 and 𝐷 . While the Bao architecture, in principle, enables the
exploration of these sub-optimizations, such a fine-grained action
space (the number of choices Bao has for each query) increases
optimization overhead significantly. Letting 𝑛 be the number of
hint sets and 𝑘 be the number of relations in a query, by selecting
only a single hint set Bao has𝑂 (𝑛) choices per query. If Bao would
do these sub-optimizations, the size of the action space would be
𝑂 (𝑛 × 2𝑘 ) (𝑛 different ways to join each subset of 𝑘 relations, in the
case of a fully connected query graph). Since the size of the action
space is an important factor for determining the convergence time
of reinforcement learning algorithms [22], we opted for the smaller
action space in hopes of achieving quick convergence.

3 SELECTING QUERY HINTS
Here, we discuss Bao’s learning approach. We first define Bao’s
optimization goal, and formalize it as a contextual multi-armed
bandit problem. Then, we apply Thompson sampling, a classical
technique used to solve such problems.

Bao models each hint set 𝐻𝑆𝑒𝑡𝑖 ∈ 𝐹 in the family of hint sets 𝐹
as if it were its own query optimizer: a function mapping a query
𝑞 ∈ 𝑄 to a query plan tree 𝑡 ∈ 𝑇 :

𝐻𝑆𝑒𝑡𝑖 : 𝑄 → 𝑇

This function is realized by passing the query 𝑄 and the selected
hint set 𝐻𝑆𝑒𝑡𝑖 to the underlying query optimizer. We refer to 𝐻𝑆𝑒𝑡𝑖
as this function for convenience. We assume that each query plan
tree 𝑡 ∈ 𝑇 is composed of an arbitrary number of operators drawn
from a known finite set (i.e., that the trees may be arbitrarily large
but all of the distinct operator types are known ahead of time).

Bao also assumes a user-defined performance metric 𝑃 , which
determines the quality of a query plan by executing it. For example,
𝑃 may measure the execution time of a query plan, or may measure
the number of disk operations performed by the plan.



For a query 𝑞, Bao must select a hint set to use. We call this
selection function 𝐵 : 𝑄 → 𝐹 . Bao’s goal is to select the best query
plan (in terms of the performance metric 𝑃 ) produced by a hint set.
We formalize the goal as a regret minimization problem, where the
regret for a query 𝑞, 𝑅𝑞 , is defined as the difference between the
performance of the plan produced with the hint set selected by Bao
and the performance of the plan produced with the ideal hint set:

𝑅𝑞 =

(
𝑃 (𝐵(𝑞) (𝑞)) −min

𝑖
𝑃 (𝐻𝑆𝑒𝑡𝑖 (𝑞))

)2
(1)

Contextual multi-armed bandits (CMABs) The regret mini-
mization problem in Equation 1 is a contextual multi-armed ban-
dit [83] problem. An agent must maximize their reward (i.e., mini-
mize regret) by repeatedly selecting from a fixed number of arms.
The agent first receives some contextual information (context), and
must then select an arm. Each time an arm is selected, the agent
receives a payout. The payout of each arm is assumed to be indepen-
dent given the contextual information. After receiving the payout,
the agent receives a new context and must select another arm. Each
trial is considered independent.

For Bao, each “arm” is a hint set, and the “context” is the set of
query plans produced by the underlying optimizer given each hint
set. Thus, our agent observes the query plans produced from each
hint set, chooses one of those plans, and receives a reward based on
the resulting performance. Over time, our agent needs to improve
its selection and get closer to choosing optimally (i.e., minimize
regret). Doing so involves balancing exploration and exploitation:
our agent must not always select a query plan randomly (as this
would not help to improve performance), nor must our agent blindly
use the first query plan it encounters with good performance (as
this may leave significant improvements on the table).
Thompson sampling One solution to CMAB regret minimization
is Thompson sampling [74]. Intuitively, Thompson sampling works
by building up experience (i.e., past observations of query plans and
their performance). Periodically, that experience is used to construct
a predictive model to estimate the performance of a query plan. This
model is used to select hint sets by choosing the hint set that results
in the planwith the best predicted performance. Asmore experience
is collected, better predictive models can be constructed, leading to
more accurate selections and, hopefully, improved performance.

Formally, Bao uses a predictive model 𝑀𝜃 , with model parame-
ters (weights) 𝜃 , which maps query plan trees to estimated perfor-
mance. This model is used in order to select hint sets for incoming
queries. Once a query plan is selected, the plan is executed, and the
resulting pair of a query plan tree and the observed performance
metric, (𝑡𝑖 , 𝑃 (𝑡𝑖 )), is added to Bao’s experience 𝐸. Whenever new
information is added to 𝐸, Bao updates the predictive model𝑀𝜃 .

In Thompson sampling, this predictive model is trained differ-
ently than standard machine learning models. Most training al-
gorithms search for a set of parameters that are most likely to
explain the training data (i.e., a maximum likelihood estimator).
In this sense, the quality of a particular set of model parameters 𝜃
is measured by 𝑃 (𝜃 | 𝐸): the higher the likelihood of your model
parameters given the training data, the better the fit. Thus, the most
likely model parameters can be expressed as the expectation (modal
parameters) of this distribution, which we write as E[𝑃 (𝜃 | 𝐸)].
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Figure 3: Binarizing a query plan tree

However, in order to balance exploitation and exploration, Thomp-
son sampling requires that we sample model parameters from the
distribution 𝑃 (𝜃 | 𝐸). Thus, in Thompson sampling, we do not pick
the best model (according to our experience) every time, but instead
we pick models proportional to their likelihood given our experience.

Intuitively, if one wished to maximize exploration, one would
choose 𝜃 entirely at random. If one wished to maximize exploitation,
one would choose the modal 𝜃 (i.e., E[𝑃 (𝜃 | 𝐸)]). Sampling from
𝑃 (𝜃 | 𝐸) strikes a balance between these two goals [7].

Selecting a hint set for an incoming query is not exactly a bandit
problem. The choice of a hint set, and thus a query plan, will affect
the cache state when the next query arrives, and thus every context
is not entirely independent of prior decisions. For example, choos-
ing a plan with index scans will result in an index being cached,
whereas choosing a plan with only table scans may result in more
of the base relation being cached. However, in OLAP environments,
queries frequently read large amounts of data, so the effect of a
single query plan on the cache tends to be short lived. Substantial
experimental evidence suggests that Thompson sampling is still a
suitable algorithm in these scenarios [17].

We next explain Bao’s predictive model, a tree convolutional
neural network responsible for estimating the quality of a query
plan. Then, in Section 3.2, we discuss how Bao effectively applies
its predictive model to query optimization via Thompson sampling.

3.1 Predictive model
The core of Thompson sampling, Bao’s algorithm for selecting hint
sets on a per-query basis, is a predictive model that estimates the
performance of a particular query plan. Based on their success
in [51], Bao use a tree convolutional neural network (TCNN) as its
predictive model. In this section, we describe (1) how query plan
trees are transformed into trees of vectors, suitable as input to a
TCNN, (2) the TCNN architecture, and (3) how the TCNN can be
integrated into a Thompson sampling regime (i.e., how to sample
model parameters from 𝑃 (𝜃 | 𝐸) as discussed in Section 3).

3.1.1 Vectorizing query plan trees. Bao transforms query plan trees
into trees of vectors by binarizing the query plan tree and encoding
each query plan operator as a vector, optionally augmenting this
representation with cache information.
Binarization Many queries involve non-binary operations like
aggregation or sorting. However, strictly binary query plan trees
(i.e., all nodes have either zero or two children) are convenient
because they greatly simplify tree convolution (explained in the
next section). Thus, Bao first transforms a potentially non-binary
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Figure 4: Vectorized query plan tree (vector tree)

plan tree into a binary one. Figure 3 shows an example of this
process. The original query plan tree (left) is transformed into a
binary query plan tree (right) by inserting “null” nodes (gray) as
the right child of any node with a single parent. Nodes with more
than two children (e.g., multi-unions) can be binarized by splitting
them up into a left-deep tree of binary operations.
Vectorization Each node in a query plan tree is transformed into
a vector containing: (1) a one-hot encoding of the operator, (2) car-
dinality and cost information, and optionally (3) cache information.

The one-hot encoding of each operator type is similar to vec-
torization strategies used by previous approaches [51, 59]. Each
vector in Figure 4 begins with the one-hot encoding of the operator
type (e.g., the second position is used to indicate if an operator is a
merge join). This simple one-hot encoding captures information
about structural properties of the query plan tree: for example, a
merge join with a child that is not a sort might indicate that more
than one operator is taking advantage of a sorted order.

Each vector can also contain information about estimated cardi-
nality and cost. Since almost all query optimizers make use of such
information, surfacing it to the vector representation of each query
plan tree node is often trivial. For example, in Figure 4, cardinality
and cost model information is labeled “Card” and “Cost” respec-
tively. This information helps encode if an operator is potentially
problematic, such as loop joins over large relations or repetitive
sorting, which might be indicative of a poor query plan. While we
use only two values (one for a cardinality estimate, the other for a
cost estimate), any number of values can be used. For example, mul-
tiple cardinality estimates from different estimators or predictions
from learned cost models may be added.

Finally, optionally, each vector can be augmented with informa-
tion from the current state of the disk cache. The current state of
the cache can be retrieved from the database buffer pool when a
new query arrives. In our experiments, we augment each scan node
with the percentage of the targeted file that is cached, although
many other schemes can be used. This gives Bao the opportunity
to pick plans that are compatible with information in the cache.

While simple, Bao’s vectorization scheme has a number of advan-
tages. First, the representation is agnostic to the underlying schema:
while prior work [40, 51, 53] represented tables and columns di-
rectly in their vectorization scheme, Bao omits them so that schema
changes do not necessitate starting over from scratch. Second, Bao’s
vectorization scheme only represents the underlying data with car-
dinality estimates and cost models, as opposed to complex embed-
ding models tied to the data [51]. Since maintaining cardinality
estimates when data changes is well-studied and already imple-
mented in most DBMSes, changes to the underlying data are re-
flected cleanly in Bao’s vectorized representation.
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3.1.2 Tree convolutional neural networks. Tree convolution is a
composable and differentiable neural network operator introduced
in [57] and first applied to query plan trees in [51]. Here, we give
an intuitive overview of tree convolution, and refer readers to [51]
for technical details and analysis of tree convolution on plan trees.

Human experts studying query plans learn to recognize good or
bad plans by pattern matching: a pipeline of merge joins without
any intermediate sorts may perform well, whereas a merge join on
top of a hash join may induce a redundant sort or hash. Similarly,
a hash join which builds a hash table over a very large relation
may incur a spill. While none of this patterns are independently
enough to decide if a query plan is good or bad, they do serve as
useful indicators for further analysis; in other words, the presence
or absence of such a pattern is a useful feature from a learning
prospective. Tree convolution is precisely suited to recognize such
patterns, and learns to do so automatically, from the data itself.

Tree convolution consists of sliding tree-shaped “filters” over
a query plan tree (similar to image convolution, where filters are
convolved with an image) to produce a transformed tree of the same
size. These filters may look for patterns like pairs of hash joins, or
an index scan over a small relation. Tree convolution operators are
stacked in several layers. Later layers can learn to recognize more
complex patterns, like a long chain of merge joins or a bushy tree
of hash operators. Because of tree convolution’s natural ability to
represent and learn these patterns, we say that tree convolution
represents a helpful inductive bias [50, 55] for query optimization:
that is, the structure of the network, not just its parameters, are
tuned to the underlying problem.

The architecture of Bao’s prediction model is shown in Figure 5.
The vectorized query plan tree is passed through three layers of
tree convolution. After the last layer of tree convolution, dynamic
pooling [57] is used to flatten the tree structure into a single vector.
Then, two fully connected layers are used to map the pooled vector
to a performance prediction. We use ReLU [25] activation functions
and layer normalization [13], which are not shown in the figure.
Integrating with Thompson sampling Thompson sampling re-
quires the ability to sample model parameters 𝜃 from 𝑃 (𝜃 | 𝐸),
whereas most machine learning techniques are designed to find the
most likely model given the training data, E[𝑃 (𝜃 | 𝐸)]. For neural
networks, there are several techniques available to sample from
𝑃 (𝜃 | 𝐸), ranging from complex Bayesian neural networks to sim-
ple approaches [68]. By far the simplest technique, which has been
shown to work well in practice [63], is to train the neural network
as usual, but on a “bootstrap” [15] of the training data: the network
is trained using |𝐸 | random samples drawn with replacement from
𝐸, inducing the desired sampling properties [63]. We selected this
bootstrapping technique for its simplicity.



3.2 Training loop
Bao’s training loop closely follows a classical Thompson sampling
regime: when a query is received, Bao builds a query plan tree for
each hint set and uses the current predictive model to select a plan
to execute. After execution, that plan and the observed performance
are added to Bao’s experience. Periodically, Bao retrains its pre-
dictive model by sampling model parameters (i.e., neural network
weights) to balance exploration and exploitation. Practical consider-
ations specific to query optimization require a few deviations from
the classical Thompson sampling regime, which we discuss next.

In classical Thompson sampling [74], the model parameters 𝜃
are resampled after every selection (query). In the context of query
optimization, this is not practical for two reasons. First, sampling
𝜃 requires training a neural network, which is a time consuming
process. Second, if the size of the experience |𝐸 | grows unbounded
as queries are processed, the time to train the neural network will
also grow unbounded, as the time required to perform a training
epoch is linear in the number of training examples.

We use two techniques from prior work [18] to solve these issues.
First, instead of resampling themodel parameters (i.e., retraining the
neural network) after every query, we only resample the parameters
every 𝑛th query. This obviously decreases the training overhead by
a factor of 𝑛 by using the same model parameters for more than one
query. Second, instead of allowing |𝐸 | to grow unbounded, we only
store the 𝑘 most recent experiences in 𝐸. By tuning 𝑛 and 𝑘 , the
user can control the tradeoff between model quality and training
overhead to their needs. We evaluate this tradeoff in Section 6.2.

We also introduce a new optimization, specifically useful for
query optimization. On modern cloud platforms such as [3], GPUs
can be attached and detached from a VM with per-second billing.
Since training a neural network primarily uses the GPU, whereas
query processing primarily uses the CPU, disk, and RAM, model
training and query execution can be overlapped. When new model
parameters need to be sampled, a GPU can be temporarily provi-
sioned. Model training can then be offloaded to the GPU. Once
model training is complete, the new model parameters can be
swapped in for use when the next query arrives, and the GPU
can be detached. Of course, users may also choose to use a machine
with a dedicated GPU, or to offload model training to a different
machine entirely, possibly with increased cost and network usage.

4 POSTGRESQL INTEGRATION
While Bao can be used with any database system, we invested
a lot of time to make it particularly easy to install and use with
PostgreSQL. In this section, we discuss how we integrated Bao into
PostgreSQL, and what particular features we added to make it more
practical. A prototype implementation is publicly available [1].

Our Bao prototype uses the PostgreSQL hooks system, which
is designed to extend functionality of the database using function
pointers called hooks. The biggest advantage of the hooks system
is that it allows to easily integrate new functionality to an existing
PostgreSQL instance without recompiling the code. Furthermore,
we provide the following usability features:
Per-query activation Because Bao sits on top of a traditional
optimizer, Bao can be activated or deactivated on a per-query basis.
When Bao is activated, Thompson sampling is used to select query

imdb=# EXPLAIN SELECT * FROM ....

QUERY PLAN
------------------------------------------------------------------

Bao prediction: 61722.655 ms
Bao recommended hint: SET enable_nestloop TO off;

(estimated 43124.023ms improvement)
Finalize Aggregate (cost=698026.88..698026.89 rows=1 width=64)
-> Gather (cost=698026.66..698026.87 rows=2 width=64)

...

Figure 6: Example output from Bao’s advisor mode.

hints. When Bao is deactivated, the PostgreSQL optimizer is used.
In our prototype, enabling or disabling Bao is as simple as setting a
session variable (i.e., SET enable_bao TO [on/off]). Being able
to enable or disable Bao on a per-query basis is important for two
reasons: first, for short running queries, the increased optimization
time required by Bao (typically ≈ 200𝑚𝑠) may exceed the execution
time of the query; second, since a DBA may have already set hints
or manually tuned a query plan for a particular query, disabling
Bao on these queries maintains the DBA’s efforts.

Note that even when Bao is disabled, Bao can (optionally) still
learn from query executions. Any query plan and a recorded execu-
tion time can be added to Bao’s experience to improve the predictive
model, even if the query plan was not selected by Bao. Such training
can be viewed as off-policy reinforcement learning [12]. While we do
not evaluate this capability here, we believe such techniques could
represent a useful direction for future work, allowing an optimizer
to learn from manual optimization work done by human DBAs.
Active vs. advisor mode Globally, our Bao implementation for
PostgreSQL operates in one of two modes. In active mode, Bao
operates as described above, automatically selecting hint sets and
learning from their performance. In advisor mode, Bao does not se-
lect hint sets (all queries are optimized by the PostgreSQL planner),
but still observes the performance of executed queries and trains a
predictive model. When users issue an EXPLAIN query, three addi-
tional pieces of information are added to the output: (1) the expected
performance of the generated query plan, (2) the hint set that Bao
would recommend if it were in active mode, and (3) the predicted
improvement that hint set would provide. An example session is
shown in Figure 6. Advisor mode can help users both predict and
fix long-running queries in a human-in-the-loop fashion. The user
can then decide whether or not to use Bao’s recommended hint
(possibly after testing it).
Triggered explorationAmajor concern with any query optimizer
– or learned or otherwise – is query regressions (see also Section 6.2).
Since optimizer changes are not unique to learned systems, a wide
variety of solutions have been developed and fully integrated into
various DBMSes [14, 35]. However, because Bao actively explores
new query plans, regressions may be more erratic.

To allow DBAs more control, Bao allows them to mark queries as
performance critical. Marking a query triggers Bao to periodically
execute that query with each hint set and save the resulting per-
formance to the experience set. Additionally, these experiences are
flagged as critical. When the predictive model is retrained, Bao will
ensure that the new model correctly selects the fastest hint set for



each critical experience: if a predictive model mispredicts a critical
experience, the model is retrained, giving that critical experience a
higher weight, until the predictive model makes the correct deci-
sion. Thus, manual exploration for a query ensures that Bao will
never select a regressing query plan for a marked query. This allows
users to take advantage of Bao’s sample-efficient learning on some
queries, while ensuring optimal performance on the critical ones.

5 RELATEDWORK
One of the earliest applications of learning to query optimization
was Leo [72], which used successive runs of the similar queries to
adjust histogram estimators. More recent approaches [37, 44, 64,
73, 79] have used deep learning to learn cardinality estimations
or query costs in a supervised fashion. [9–11] present a query-
driven approach to cardinality estimation, using techniques such as
self-organizing maps. Unsupervised approaches, based on Monte
Carlo integration, have also been proposed [81, 82]. In [29], au-
thors present a scheme called CRN for estimating cardinalities via
query containment rates. While all of these works demonstrate
improved cardinality estimation accuracy (potentially useful in its
own right, as in [9–11]), they do not provide evidence that these
improvements lead to better query plans. Ortiz et al. [60] showed
that certain learned cardinality estimation techniques may improve
mean performance on certain datasets, but tail latency is not evalu-
ated. Negi et al. [58] showed how prioritizing training on cardinality
estimations that have a large impact on query performance can
improve estimation models.

[40, 53] showed that, with sufficient training, reinforcement
learning based approaches could find plans with lower costs (ac-
cording to the PostgreSQL optimizer). [59] showed that the internal
state learned by reinforcement learning algorithms are strongly
related to cardinality. Neo [51] showed that deep reinforcement
learning could be applied directly to query latency, and could learn
optimization strategies that were competitive with commercial
systems after 24 hours of training. However, none of these tech-
niques are capable of handling changes in schema, data, or query
workload, and none demonstrate improvement in tail performance.
Works applying reinforcement learning to adaptive query process-
ing [33, 76, 77] have shown interesting results, but are not applicable
to existing, non-adaptive systems like PostgreSQL.

Reinforcement learning has seen adoption across a variety of sys-
tems [47, 69]. In [38], the authors present a vision of an entire data-
base system built from reinforcement learning components. More
concretely, reinforcement learning has been applied to managing
elastic clusters [46, 62], scheduling [48], and physical design [65].

Thompson sampling has a long history [17, 34, 63, 74], including
recent work integrating Thompson sampling approaches with deep
learning models [24, 68]. Thompson sampling has also been applied
to cloud workload management [52] and SLA conformance [61].

Our work is part of a recent trend in seeking to use machine
learning to build easy to use, adaptive, and inventive systems, a
trend more broadly known as machine programming [26]. In the
context of data management systems, machine learning techniques
have been applied to a wide variety of problems too numerous
to list here, including index structures [39], data matching [23],

Size Queries WL Data Schema

IMDb 7.2 GB 5000 Dynamic Static Static
Stack 100 GB 5000 Dynamic Dynamic Static
Corp 1 TB 2000 Dynamic Statica Dynamic

aThe schema change did not introduce new data, but did normalize a large fact table.
Table 1: Evaluation dataset sizes, query counts, and if the
workload (WL), data, and schema are static or dynamic.

workload forecasting [66], index selection [20], query latency pre-
diction [21], and query embedding / representation [31, 71]. A few
selected works outside the context of data management systems
include reinforcement learning for job scheduling [49], automatic
performance analysis [8], loop vectorization [28], and garbage col-
lection [16, 30].

6 EXPERIMENTS
The key question we pose in our evaluation is whether or not Bao
could have a positive, practical impact on real-world database work-
loads that include changes in queries, data, and/or schema. To an-
swer this, we focus on quantifying not only query performance, but
also on the dollar-cost of executing a workload (including the train-
ing overhead introduced by Bao) on cloud infrastructure against
PostgreSQL and a commercial database system (Section 6.2). We fur-
ther analyze the arms used by Bao (Section 6.3) and the capabilities
of Bao’s neural network (Section 6.4).

6.1 Setup
We evaluated Bao using the datasets listed in Table 1.

• The IMDb dataset is an augmentation of the Join Order
Benchmark [41]: we added thousands of queries to the origi-
nal 113 queries, 2 and we vary the query workload over time
by introducing new templates periodically.

• We created a new real-world datasets and workload called
Stack, now also publicly available.3 Stack contains over 18
million questions and answers from StackExchange websites
(e.g., StackOverflow.com) over ten years. We emulate data
drift by loading a month of data at a time.

• The Corp dataset is a dashboard workload executed over one
month donated by an anonymous corporation. The Corp
dataset contains 2000 unique queries issued by analysts. Half
way through the month, the corporation normalized a large
fact table, resulting in a significant schema change. We emu-
late this schema change by introducing the normalization
after the execution of the 1000th query (queries after the
1000th expect the new normalized schema). The data re-
mains static.

We use a “time series split” strategy for training and testing Bao.
Bao is always evaluated on the next, never-before-seen query 𝑞𝑡+1.
When Bao makes a decision for query 𝑞𝑡+1, Bao is only trained on
data from earlier queries. Once Bao makes a decision for query 𝑞𝑡+1,
the observed reward for that decision – and only that decision – is
added to Bao’s experience set. This strategy differs from previous

2https://rm.cab/imdb
3https://rm.cab/stack

https://rm.cab/imdb
https://rm.cab/stack


(a) Across our three evaluation datasets, Bao on the PostgreSQL en-
gine vs. PostgreSQL optimizer on the PostgreSQL engine.

(b) Across our three evaluation datasets, Bao on the ComSys engine
vs. ComSys optimizer on the ComSys engine.

Figure 7: Cost (left) and workload latency (right) for Bao
and two traditional query optimizers across three different
workloads on a N1-16 Google Cloud VM.

(a) Across four different VM types, Bao on the PostgreSQL engine
vs. PostgreSQL optimizer on the PostgreSQL engine.

(b) Across four different VM types, Bao on the ComSys engine vs.
ComSys optimizer on the ComSys engine.

Figure 8: Cost (left) and workload latency (right) for Bao
and two traditional query optimizers across four different
Google Cloud Platform VM sizes for the IMDb workload.

evaluations in [40, 51, 53] because Bao is never allowed to learn from
different decisions about the same query. In OLAPworkloads where
nearly-identical queries are frequently repeated (e.g., dashboards),
this may be an overcautious procedure.

Bao’s prediction model uses three layers of tree convolution
followed by a dynamic pooling [57] layer and two linear layers. We
use ReLU activations [25] and layer normalization [13] between
layers. Training is performed with Adam [36] using a batch size
of 16, and is ran until either 100 epochs elapsed or convergence
(decrease in training loss of less than 1% over 10 epochs) is reached.

Unless noted otherwise, all experiments were either performed
on (C1) Google’s Cloud Platform, using a N1-4 VM type and TESLA
T4 GPU, or (C2) a virtual machine with 4 CPU cores and 15 GB of
RAM (to match the N1-4 VMs) on private server with two Intel(R)
Xeon(R) Gold 6230 CPUs running at 2.1 Ghz, an NVIDIA Tesla T4
GPU, and 256GB of system (bare metal) RAM. Cost and time mea-
surements include query optimization, model training (including
GPU), and query execution. Costs are reported as billed by Google,
and include startup times and minimum usage thresholds. Database
statistics are fully rebuilt each time a new dataset is loaded.

We compare Bao against PostgreSQL and a commercial data-
base system (ComSys) [67]. Extended evaluations on cloud and
distributed database systems are available in the extended version
of this work [2]. Both systems are configured and tuned accord-
ing to their respective documentation and best practices guide; a
consultant for ComSys double checked our configuration through
small performance tests. For both baselines, we integrated Bao into
the database using the original optimizer through hints. For exam-
ple, we integrated Bao into ComSys by leveraging ComSys original
optimizer with hints and executing all queries on ComSys.

Unless otherwise noted, queries are executed sequentially. We
48 hint sets, which each use some subset of the join operators {hash
join, merge join, loop join} and some subset of the scan operators
{sequential, index, index only}. For a detailed description, see the
online appendix [2]. We found that setting the lookback window
size to 𝑘 = 2000 and retraining every 𝑛 = 100 queries provided a
good tradeoff between GPU time and query performance.
Workload characterization When executed using PostgreSQL,
the median query latency of the IMDb, Stack, and Corp datasets
are relatively low (280ms, 310ms, 520ms, respectively). All three
workloads are highly skewed, with the 95th percentile of queries
taking significantly longer to execute (21s, 28s, 3m, respectively).
In fact, in all three workloads, 80% of execution time is attributable
to approximately 20% of the queries (18%, 23%, 21%, respectively).
Such “Pareto principle” distributions are common in database sys-
tems [19, 32, 78, 80] – DBAs at Corp confirmed that such a distribu-
tion was common to all their analytic workloads. As a consequence,
moderate improvements in the “tail” of query latency (i.e., the most
problematic queries), could significantly improve workload perfor-
mance, even if median query latency remains constant.

6.2 Is Bao practical?
In this first section, we evaluate if Bao is actually practical, and
evaluate Bao’s performance in a realistic warm-cache scenario;
we augment each leaf node vector with caching information as
described in Section 3.1.1.
Cost and performance in the cloud Figure 7 shows the cost (left)
and time required (right) to execute our three workloads in their
entirety on the Google Cloud using an N1-16 VM. Bao outperforms
PostgreSQL by almost 50% in cost and latency across the different
datasets (Figure 7a). Note, that this includes the cost of training and
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Figure 9: Percentile latency for queries, IMDb workload. Each column represents a VM type, from smallest to largest. The
top row compares Bao against the PostgreSQL optimizer on the PostgreSQL engine. The bottom row compares Bao against a
commercial database system on the commercial system’s engine. Measured across the entire (dynamic) IMDb workload.

(a) VM type N1-2 (b) VM type N1-4 (c) VM type N1-8 (d) VM type N1-16

Figure 10: Number of IMDb queries processed over time for Bao and the PostgreSQL optimizer on the PostgreSQL engine. The
IMDb workload contains 5000 unique queries which vary over time.

the cost for attaching the GPU to the VM. Moreover, all datasets
contain either workload, data, or schema changes, demonstrating
Bao’s adaptability to this common and important scenarios.

The performance improvement Bao makes on top of the com-
mercial database is still significant though not as large (Figure 7b).
Across the three dataset, we see an improvement of around 20%,
indicating that ComSys optimizer is a much stronger baseline. Note,
that the costs do not include the licensing fees for the commer-
cial system. In our opinion, achieving a 20% cost and performance
improvement over a highly capably query optimizer, which was
developed over decades, without requiring any code changes to the
database itself, is a very encouraging result.
Hardware type As a second experiment we varied the hardware
type for the IMDb workload (Figure 8). For PostgreSQL (Figure 8a),
the difference in both cost and performance is most significant
with larger VM types (e.g., N1-16 vs. N1-8), suggesting the Bao
is better capable of tuning itself towards the changing hardware
than PostgreSQL. We did re-tune PostgreSQL for each hardware

platform. Moreover, Bao itself benefits from larger machines as its
parallelizes the execution of all the arms (discussed later).

Interestingly, whereas the benefits of Bao increase with larger
machine sizes for PostgreSQL, it does not for the commercial sys-
tem (Figure 8b). This suggests that the commercial system is more
capable of adjusting to different hardware types, or perhaps that the
commercial system is “by default” tuned for larger machine types.
We note that the N1-2 machine type does not meet the ComSys
vendor’s recommended system requirements, although it does meet
the vendor’s minimum system requirements.
Tail latency analysis The previous two experiments demonstrate
Bao’s ability to reduce the cost and latency of an entire workload.
Since practitioners are often interested in tail latency, here we ex-
amine the distribution of query latencies within the IMDb workload
on multiple VM types. Figure 9 shows median, 95%, 99%, and 99.5%
latencies for each VM type (column) for both PostgreSQL (top row)
and the commercial system (bottom row). For each VM type, Bao
drastically decreases tail latencies when compared to the PostgreSQL
optimizer. For example, on an N1-8 instance, 99% latency fell from



130 seconds with the PostgreSQL optimizer to under 20 seconds
with Bao. This suggests that most of the cost and performance gains
from Bao come from reductions at the tail of the latency distribution.
Compared with the commercial system, Bao always reduces tail
latency, although the reduction is only significant on the smaller
VM types where resources are more scarce.

It is important to note that Bao’s improvement in tail latency
(Figure 9) is primarily responsible for the overall improvements in
workload performance (Figure 7). This is because these tail queries
are disproportionately large contributors to workload latency (see
Section 6.1 for a quantification). In fact, Bao hardly improves the
median query performance at all (< 5%). Thus, in a workload com-
prised entirely of such "median" queries, performance gains from
Bao could be significantly lower. We next examine the worst case,
in which the query optimizer is already making a near-optimal deci-
sion for each query. To demonstrate this, we executed the fastest 20%
of queries from the IMDb workload using Bao and PostgreSQL. In
this setup, Bao executed the restricted workload in 4.5m compared
to PostgreSQL’s 4.2m – this 18 second regression is attributable to
additional overhead of Bao (quantified later).
Training time and convergence A major concern with any ap-
plication of reinforcement learning is convergence time. Figure 10
shows time vs. queries completed plots (performance curves) for
each VM type while executing the IMDb workload. In all cases, Bao
has similar performance to PostgreSQL for the first 2 hours, and
exceeds the performance afterwards. Plots for the Stack and Corp
datasets are similar. Plots comparing Bao against the commercial
system are also similar, with slightly longer convergence times: 3
hours to exceed the performance of the commercial optimizer.

The IMDb workload is dynamic, yet Bao maintains and adapts
to changes in the query workload. This is visible in Figure 10: Bao’s
performance curve remains straight after a short initial period,
indicating that shifts in the query workload did not produce a
significant change in query performance.
Query regression analysis Practitioners are often concernedwith
query regressions (e.g., when statistics change or a new version of
an optimizer is installed) and thus naturally ask, would Bao cause
regressions? Figure 11 shows the absolute performance improve-
ment for Bao and what the theoretical optimal set of hints would
be able to achieve (green) for each of the Join Order Benchmark
(JOB) [41] queries, a subset of our IMDb workload. A negative value
is a performance improvement, a positive value a regression. For
this experiment, we trained Bao by executing the entire IMDb work-
load with the JOB queries removed, and then executed each JOB
query without updating Bao’s predictive model. That is, Bao has
not seen any of the JOB queries before, and there was no predicate
overlap. Of the 113 JOB queries, Bao only incurs regressions on
three, and these regressions are all under 3 seconds. Ten queries
see performance improvements of over 20 seconds. Of course, Bao
(blue) does not always choose the optimal hint set (green).
Query optimization time The maximum optimization time re-
quired by PostgreSQL was 140ms, for the commercial system 165ms,
and for Bao 230ms. For some applications, a 70ms increase in opti-
mization time could be acceptable. Moreover, our current prototype
is simple (e.g., our inference code is in Python), and thus a lot of
optimization potential exists.

However, to achieve an optimization time of “only” 230ms, Bao
makes heavy use of parallelism, concurrently planning each arm.
In cases where Bao must plan the arm sequentially, it is possible
to restrict Bao to use fewer arms. Figure 12 shows the tradeoff
between optimization and execution time for various numbers of
arms (PostgreSQL, N1-4 VM, IMDb) – all assuming that the arms
are planned sequentially. Subsets of arms are selected ahead of
time based on their observed benefit (see Section 6.3). Plots for
other datasets and VM types are similar and omitted due to space
constraints. If a good subset of arms cannot be found ahead of
time, and sequential planning is required, the extensibility of Bao
is limited, as the number of arms must be kept low. Note that 1 arm
corresponds to using the original PostgreSQL optimizer without
Bao. With 5 carefully selected arms (see Section 6.3) and sequential
planning, total workload time is still substantially reduced.

Next, we investigate Bao’s overhead when 𝑡 queries are executed
concurrently. The leftmost plot in Figure 13 shows the performance
of Bao and PostgreSQL with one, two, or four concurrent queries.
Bao executing a single query completes the workload faster than
PostgreSQL executing four concurrent queries. This is surprising,
since one would expect Bao’s extensive use of parallelism during
query optimization to interfere with query execution. However, this
workload is I/O bound – in fact, total CPU load never went over 60%
– which leaves Bao plenty of CPU resources for query optimization.
The rightmost side of Figure 13 shows performance if we first cache
the entire database in memory.4 In this scenario, at 𝑡 = 4, total
CPU load hits 100%, significant context switching occurs, and the
gains from Bao are outweighed by Bao’s increased optimization
computations. Thus, while Bao’s optimization overheads may be
modest for many IO-boundworkloads, practitioners should use caution
when applying Bao in CPU-bound environments.

Prior learned optimizers Neo [51] and DQ [40] are two other
learning based approach to query optimization. Like Bao, Neo uses
tree convolution, but unlike Bao, Neo does not select hint sets
for specific queries, but instead fully builds query execution plans
on its own. DQ uses deep Q learning [56] with a hand-crafted
featurization and a fully-connected neural network (FCNN). We
compare performance for the IMDb workload in Figure 14 (average
of 20 repetitions on an N1-16 machine with a cutoff of 72 hours).

For Figure 14a, we uniformly at random select a query to create
a stable workload, and for Figure 14b we use our original dynamic
workload. With a stable workload, Neo is able to overtake Post-
greSQL after 24 hours, and Bao after 65 hours. This is because Neo
has many more degrees of freedom than Bao: Neo can use any
logically correct query plan for any query, whereas Bao is limited
to a small number of options. These degrees of freedom come at
a cost, as Neo takes significantly longer to converge. After 200
hours of training, Neo’s query performance was 15% higher than
Bao’s. DQ, with a similar degrees of freedom as Neo, takes longer
to outperform PostgreSQL, possibly due to FCNNs having a poor
inductive bias [50] for query optimization [51]. With the dynamic
workload (Figure 14b), Neo and DQ’s convergence is significantly
hampered, as both techniques struggle to learn a policy robust to
the changing workload. With a dynamic workload, neither DQ nor
Neo is able to overtake Bao within 72 hours.

4This required adding RAM to the VM and retuning PostgreSQL’s cost model.



Figure 11: Absolute difference in query latency between Bao’s selected plan and PostgreSQL’s selected plan for the subset of
the IMDb queries from the Join Order Benchmark [41] (lower is better).

Figure 12: Optimization and execution time for IMDb, N1-
4 VM, PostgreSQL. Varying the number of arms trades off
optimization time and query execution time. One arm cor-
responds to the PostgreSQL optimizer.

Figure 13: Queries complete vs. time for IMDb, N1-4 VM,
PostgreSQL. Concurrency level 𝑡 . Left side shows when data
is on disk, right side shows when data is in memory.

(a) Stable query workload (b) Dynamic query workloads

Figure 14: Comparison of number of queries finished over
time for Bao, Neo [51], DQ [40], and PostgreSQL for a stable
queryworkload (left) and a dynamic queryworkload (right).

6.3 What hints make the biggest difference?
Is one hint set good for all queries? Does a single set of hints
exist which would yield similarly good results without the complex-
ity query-dependent hints? To answer this question, we evaluated
each hint set on the entire IMDb workload. In Figure 15a, we plot
this single best hint set (disabling loop joins) as “Best hint set”. This
single hint set, while better than all the others, performs signifi-
cantly worse than the PostgreSQL optimizer. Thus, no single hint
set is good enough to outperform PostgreSQL.
Which hint sets matter the most? Of the 48 hint sets used in
our experiments, the top 5 hint sets account for 93% of the improve-
ment over the PostgreSQL optimizer: disable nested loop join (35%),
disable index scan & merge join (22%), disable nested loop join &
merge join & index scan (16%), disable hash join (10%), and disable
merge join (10%). Some of these hint sets help in obvious ways:
disabling nested loop joins helps when the cardinality estimator
underestimates the size of a join, whereas disabling hash joins helps
when the cardinality estimator overestimates the size of a join.
How do hint sets impact query plans?A particular hint set may
cause the query optimizer to choose different operator implementa-
tions, access paths, or join orders. Here, we evaluate the frequency
and impact of each type of change in the IMDb workload on Post-
greSQL. Bao induced different operator choices in 4271

5000 queries (the
remaining 729 queries used the same plan as PostgreSQL). Different
access paths (i.e., indexes) were chosen in 3792

5000 queries. Bao induced
different join orderings in 2110

5000 queries, including in 472 out of the
500 queries with the largest improvement over PostgreSQL. This
matches expectations from prior work [41] suggesting that join
orderings have a larger impact on query performance than operator
implementations. We leave a more detailed investigation of the hint
sets and their impact to future work.

6.4 Bao’s machine learning model
Do we need a neural network? Or would something simpler be
sufficient? Figure 15a shows how Bao performs if we replace the
value network with a random forest (RF) and linear regression
(Linear) model for the first 2000 queries of the IMDb workload on
the C2 server configuration with a cold cache.5 The substantially
poorer performance of the more naive models indicates that a more
complex tree convolution model is justified.

5We performed an extensive grid search to tune the random forest model.



(a) Random forest (RF) and linear models
(Linear) used as Bao’s model. “Best hint set”
is the single best hint set. IMDb, N1-16 VM,
on PostgreSQL.

(b)MedianQ-Error (0 is a perfect prediction)
of Bao’s predictive model vs. the number of
queries processed. IMDbworkload onN1-16
VM using PostgreSQL engine.

(c) Simulated and observed time to train
Bao’s performance prediction model (GPU)
based on the slidingwindow size (number of
queries used during each training iteration).

Figure 15: Evaluation of Bao’s predictive model

(a) CPU time regret

(b) Physical I/O regret

Figure 16: Regret (e.g., the difference between the number
of physical I/O requests made by the optimal hint set and
the selected hint), 25 training iterationswith 50 queries each.
The blue line marks the median regret of the PostgreSQL
optimizer. Whiskers show the 98% percentile. Note the cut
axes to accommodate PostgreSQL 98% percentile.

How accurate is Bao’s model? Figure 15b shows the accuracy of
Bao’s predictive model on the next query after processing previous
queries in the IMDb workload on an N1-16 machine. Bao’s predic-
tive model begins with comparatively poor accuracy, with a peak
Q-error [43, 54, 75] of 3. Despite this inaccuracy, Bao is still able to
choose plans that are not catastrophic (as indicated by Figure 10d).
Required GPU time Bao’s tree convolution neural network is
trained on a GPU, which is only attached when needed (see Sec-
tion 3.2). Figure 15c shows how long this training time takes as a
function of the window size 𝑘 (the maximum number of queries
Bao uses to train), comparing the observed time to train a new pre-
dictive model versus the on average expected time. The observed
time varies significantly because of the cloud environment but also
the stochastic nature of the Adam optimizer. Not surprisingly, the
longer the window, the longer the training time but also the better
the model. While we found a window size of 𝑘 = 2000 to work well,
practitioners will need to tune this value for their needs and budget
(e.g., if one has a dedicated GPU, there may be no reason to limit

the window size at all). Note, that even when the window size of
𝑘 = 5000 queries (the maximum value for our workloads with 5000
queries), training time is only around three minutes.
Regret over time & tails As a bandit system, Bao’s effectiveness
can be quantified via regret, the difference between the decision Bao
selected and the optimal choice (see Section 3). Figure 16a shows
the distribution of regret for both PostgreSQL (left) and Bao (right)
over each iteration of the IMDb workload on C2 with a cold cache.
The optimal hint set for each query was computed by exhaustively
executing all query plans with a cold cache. For both metrics, Bao is
able to achieve better tail regret from the first iteration after training,
which we believe qualifies as fast convergence. Note that the outlier
in iteration 6 still falls significantly below PostgreSQL.
Customizable optimization goals Learning based approach to
query optimization can easily adjust to new optimization goals.
Figure 16 shows Bao’s regret, the difference in performance relative
to the optimal hint set for each query, if optimized for CPU time
or IO. Bao achieves a lower median CPU time regret when trained
to minimize CPU time, and Bao achieves a lower median disk IO
regret when trained to minimize disk IOs. The ability to customize
Bao’s performance goals could be helpful for cloud providers with
complex, multi-tenant resource management needs.

7 CONCLUSION AND FUTUREWORK
This work introduced Bao, a bandit optimizer which steers a query
optimizer using reinforcement learning. Bao is capable of matching
the performance of open source and commercial optimizers with
as little as one hour of training time. We have demonstrated that
Bao can reduce median and tail latencies, even in the presence of
dynamic workloads, data, and schema.

In the future, we plan to more fully investigate integrating Bao
into cloud systems. Specifically, we plan to test if Bao can improve
resource utilization in multi-tenant environments where disk, RAM,
and CPU time are scarce resources. We additionally plan to inves-
tigate if Bao’s predictive model can be used as a cost model in a
traditional database optimizer, enabling more traditional optimiza-
tion techniques to take advantage of machine learning.
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