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Abstract

Borealis is a second-generation distributed stream pro-
cessing engine that is being developed at Brandeis Uni-
versity, Brown University, and MIT. Borealis inherits
core stream processing functionality from Aurora [14]
and distribution functionality from Medusa [51]. Bo-
realis modifies and extends both systems in non-trivial
and critical ways to provide advanced capabilities that
are commonly required by newly-emerging stream pro-
cessing applications.

In this paper, we outline the basic design and function-
ality of Borealis. Through sample real-world applica-
tions, we motivate the need for dynamically revising
query results and modifying query specifications. We
then describe how Borealis addresses these challenges
through an innovative set of features, including revi-
sion records, time travel, and control lines. Finally, we
present a highly flexible and scalable QoS-based opti-
mization model that operates across server and sensor
networks and a new fault-tolerance model with flexible
consistency-availability trade-offs.

1 Introduction
Over the last several years, a great deal of progress has been
made in the area of stream processing engines (SPE). Sev-
eral groups have developed working prototypes [1, 4, 16]
and many papers have been published on detailed aspects
of the technology such as data models [2, 5, 46], schedul-
ing [8, 15], and load shedding [9, 20, 44]. While this work
is an important first step, fundamental mismatches remain
between the requirements of many streaming applications
and the capabilities of first-generation systems.

This paper is intended to illustrate our vision of what
second-generation SPE’s should look like. It is driven by
our experience in using Aurora [10], our own prototype, in
several streaming applications including the Linear Road
Benchmark [6] and several commercial opportunities. We
present this vision in terms of our own design considera-
tions for Borealis, the successor to Aurora, but it should
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be emphasized that the issues raised here represent general
challenges for the field as a whole. We present specifics of
our design as concrete evidence for why these problems are
hard and as a first cut at how they might be approached. We
envision the following three fundamental requirements for
second-generation SPEs:

1. Dynamic revision of query results: In many real-
world streams, corrections or updates to previously pro-
cessed data are available only after the fact. For instance,
many popular data streams, such as the Reuters stock mar-
ket feed, often include so-calledrevision records, which
allow the feed originator to correct errors in previously re-
ported data. Furthermore, stream sources (such as sensors),
as well as their connectivity, can be highly volatile and un-
predictable. As a result, data may arrive late and miss its
processing window, or may be ignored temporarily due to
an overload situation [44]. In all these cases, applications
are forced to live with imperfect results, unless the system
has means to revise its processing and results to take into
account newly available data or updates.

2. Dynamic query modification: In many stream pro-
cessing applications, it is desirable to change certain at-
tributes of the query at runtime. For example, in the finan-
cial services domain, traders typically wish to be alerted
of interestingevents, where the definition of “interesting”
(i.e., the corresponding filter predicate) varies based on cur-
rent context and results. In network monitoring, the system
may want to obtain more precise results on a specific sub-
network, if there are signs of a potential Denial-of-Service
attack. Finally, in a military stream application from Mitre,
they wish to switch to a “cheaper” query when the system
is overloaded. For the first two applications, it is sufficient
to simply alter the operator parameters (e.g., window size,
filter predicate), whereas the last one calls for altering the
operators that compose the running query. Although cur-
rent SPEs allow applications to substitute query networks
with others at runtime, such manual substitutions impose
high overhead and are slow to take effect as the new query
network starts with an empty state. Our goal is to support
low overhead, fast, and automatic modifications.

Another motivating application comes again from the
financial services community. Universally, people working
on trading engines wish to test out new trading strategies
as well as debug their applications on historical data before
they go live. As such, they wish to perform “time travel” on
input streams. Although this last example can be supported



in most current SPE prototypes by attaching the engine to
previously stored data, a more user-friendly and efficient
solution would obviously be desirable.

3. Flexible and highly-scalable optimization: Cur-
rently, commercial stream processing applications are pop-
ular in industrial process control (e.g., monitoring oil re-
fineries and cereal plants), financial services (e.g., feed pro-
cessing, trading engine support and compliance), and net-
work monitoring (e.g., intrusion detection). Here we see
a server heavyoptimization problem — the key challenge
is to process high-volume data streams on a collection of
resource-rich “beefy” servers. Over the horizon, we see
a large number of applications of wireless sensor technol-
ogy (e.g., RFID in retail applications, cell phone services).
Here, we see asensor heavyoptimization problem — the
key challenges revolve around extracting and processing
sensor data from a network of resource-constrained “tiny”
devices. Further over the horizon, we expect sensor net-
works to become faster and increase in processing power.
In this case the optimization problem becomes more bal-
anced, becomingsensor heavy, server heavy. To date sys-
tems have exclusively focused on either a server-heavy en-
vironment [14, 17, 32] or a sensor-heavy environment [31].
Off into the future, there will be a need for a more flexible
optimization structure that can deal with a large number
of devices and perform cross-network sensor-heavy server-
heavy resource management and optimization. The two
main challenges of such an optimization framework are the
ability to simultaneously optimize different QoS metrics
such as processing latency, throughput, or sensor lifetime
and the ability to perform optimizations at different levels
of granularity: a node, a sensor network, a cluster of sen-
sors and servers, etc.

Such new integrated environments also require the sys-
tem to tolerate various possibly frequent failures in input
sources, network connections, and processing nodes. If a
system favors consistency then partial failures, where some
inputs are missing, may appear as a complete failures to
some applications. We therefore envision fault-tolerance
through more flexible consistency-availability trade-offs.

In summary, a strong need for many target stream-based
applications is the ability to modify various data and query
attributes at run time, in an undisruptive manner. Further-
more, the fact that many applications are inherently dis-
tributed and potentially span large numbers of heteroge-
neous devices and networks necessitates scalable, highly-
distributed resource allocation, optimization capabilities
and fault tolerance. As we will demonstrate, adding these
advanced capabilities requires significant changes to the
architecture of an SPE. As a result, we have designed a
second-generation SPE, appropriately calledBorealis. Bo-
realis inherits core stream processing functionality from
Aurora and distribution capabilities from Medusa. Borealis
does, however, radically modify and extend both systems
with an innovative set of features and mechanisms. This
paper presents the functionality and preliminary design of
Borealis.

Section 2 provides an overview of the basic Borealis ar-
chitecture. Section 3 describes support forrevision records,
the Borealis solution for dynamic revision of query results.
Section 4 discusses two important features that facilitate
on-line modification of continuous queries:control lines
andtime travel. Control lines extend Aurora’s basic query
model with the ability to change operator parameters as
well as operators themselves on the fly. Time travel al-
lows multiple queries (different queries or versions of the
same query) to be easily defined and executed concurrently,
starting from different points in the past or “future” (hence
the name time travel). Section 5 discusses the basic Bore-
alis optimization model that is intended to optimize vari-
ous QoS metrics across a combined server and sensor net-
work. This is a challenging problem due to not only the
sheer number of machines that are involved, but also the
various resources (i.e., processing, power, bandwidth, etc.)
that may become bottlenecks. Our solution uses a hierar-
chy of complementary optimizers that react to “problems”
at different timescales. Section 6 presents our new fault-
tolerance approach that leverages CP, time travel, and re-
vision tuples to efficiently handle node failures, network
failure, and network partitions. Section 7 summarizes the
related work in the area, and Section 8 concludes the paper
with directions for future work.

2 Borealis System Overview
2.1 Architecture
Borealis is a distributed stream processing engine. The col-
lection of continuous queries submitted to Borealis can be
seen as one giant network of operators (aka query diagram)
whose processing is distributed to multiple sites. Sensor
networks can also participate in query processing behind a
sensor proxy interface which acts as another Borealis site.

Each site runs a Borealis server whose major compo-
nents are shown in Figure 1.Query Processor (QP)forms
the core piece where actual query execution takes place.
The QP is a single-site processor. Input streams are fed into
the QP and results are pulled throughI/O Queues, which
route tuples to and from remote Borealis nodes and clients.

The QP is controlled by theAdminmodule that sets up
locally running queries and takes care of moving query di-
agram fragments to and from remote Borealis nodes, when
instructed to do so by another module. System control
messages issued by theAdminare fed into theLocal Op-
timizer. Local Optimizer further communicates with major
run-time components of the QP to give performance im-
proving directions. These components are:

• Priority Scheduler, which determines the order of box
execution based on tuple priorities;

• Box Processors, one for each different type of box,
that can change behavior on the fly based on control
messages from the Local Optimizer;

• Load Shedder, which discards low-priority tuples
when the node is overloaded.

The QP also contains theStorage Manager, which is
responsible for storage and retrieval of data that flows
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Figure 1: Borealis Architecture

through the arcs of the local query diagram. Lastly, the
Local Catalogstores query diagram description and meta-
data, and is accessible by all the components.

Other than the QP, a Borealis node has modules which
communicate with their peers on other Borealis nodes
to take collaborative actions. TheNeighborhood Opti-
mizer uses local load information as well as information
from other Neighborhood Optimizers to improve load bal-
ance between nodes. As discussed in Section 5, a single
node can run several optimization algorithms that make
load management decisions at different levels of granu-
larity. The High Availability (HA) modules on different
nodes monitor each other and take over processing for
one another in case of failure.Local Monitor collects
performance-related statistics as the local system runs to
report to local and neighborhood optimizer modules. The
Global Catalog, which may be either centralized or dis-
tributed across a subset of processing nodes, holds informa-
tion about the complete query network and the location of
all query fragments. All communication between the com-
ponents within a Borealis node as well as between multiple
Borealis nodes is realized through transport independent
RPC, with the exception of data streams that go directly
into the QP.

2.2 Data Model
Borealis uses an extended Aurora data model [2]. Aurora
models streams as append-only sequences of tuples of the
form (k1, . . . , kn, a1, . . . , am), wherek1, . . . , kn comprise
a key for the stream anda1, . . . , am provide attribute val-
ues. To support the revision of information on a stream,
Borealis generalizes this model to support three kinds of
stream messages (i.e. tuples):

• Insertionmessages,(+, t), wheret is a new tuple to
be inserted with a new key value (note that all Aurora
messages implicitly are insertion messages).

• Deletionmessages,(−, t) such thatt consists of the
key attributes for some previously processed message.

• Replacementmessages,(←, t), such thatt consists
of key attributes for some previously processed mes-
sage, and non-key attributes with revised values for
that message.

Additionally, each Borealis message may carry QoS-
related fields as described in Section 2.4.

New applications can take advantage of this extended
model by distinguishing the types of tuples they receive.
Legacy applications may simply drop all replacement and
deletion tuples.
2.3 Query Model
Borealis inherits the boxes-and-arrows model of Aurora for
specifying continuous queries. Boxes represent query op-
erators and arrows represent the data flow between boxes.
Queries are composed of extended versions of Aurora op-
erators that support revision messages. Each operator pro-
cesses revision messages based on its available message
history and emits other revision messages as output. Au-
rora’sconnection points(CPs) buffer stream messages that
compose the message history required by operators. In ad-
dition to revision processing, CPs also support other Bore-
alis features like time travel and CP views.

An important addition to the Aurora query model is the
ability to change box semantics on the fly. Borealis boxes
are provided with specialcontrol linesin addition to their
standard data input lines. These lines carry control mes-
sages that include revised box parameters and functions to
change box behavior. Details of control lines and dynamic
query modification are presented in Section 4.
2.4 QoS Model
As in Aurora, a Quality of Service model forms the ba-
sis of resource management decisions in Borealis. Un-
like Aurora, where each query output is provided with
QoS functions, Borealis allows QoS to be predicted at any
point in a data flow. For this purpose, messages are sup-
plied with aVector of Metrics (VM). These metrics include
content-related properties (e.g., message importance) or
performance-related properties (e.g., message arrival time,
total resources consumed for processing the message up to
the current point in the query diagram, number of dropped
messages preceding this message). The attributes of the
VM are predefined and identical on all streams. As a mes-
sage flows through a box, some fields of the VM can be
updated by the box code. A diagram administrator (DA)
can also place special Map boxes into the query diagram to
change VM.

Furthermore, there is a universal, parameterizableScore



Function for an instantiation of the Borealis System that
takes in VM and returns a value in[0, 1], that shows the cur-
rent predicted impact of a message on QoS. This function is
known to all run-time components (such as the scheduler)
and shapes their processing strategies. The overall goal is
to deliver maximum average QoS at system outputs. Sec-
tion 5 presents our optimization techniques to achieve this
goal.

3 Dynamic Revision of Query Results
As most stream data management systems, Borealis’ pre-
decessor, Aurora assumes an append-only model in which
a message (i.e. tuple) cannot be updated once it is placed
on a stream. If the message gets dropped or contains incor-
rect data, applications are forced to live with approximate
or imperfect results.

In many real-world streams, corrections or updates to
previously processed data are available after the fact. The
Borealis data model extends Aurora by supporting such
corrections by way of revision messages. The goal is to
process revisions intelligently, correcting query results that
have already been emitted in a manner that is consistent
with the corrected data. Revision messages can arise in
several ways:

1. The input can contain them. For example, a stock
ticker might emit messages that fix errors in previ-
ously emitted quotes.

2. They can arise in cases in which the system has shed
load, as in Aurora in response to periods of high load
[44]. Rather than dropping messages on the floor, a
Borealis system might instead designate certain mes-
sages for delayed processing. This could result in
messages being processed out-of-order, thus necessi-
tating the revision of emitted results that were gener-
ated earlier.

3. They can arise from time-travel into the past or future.
This topic is covered in detail in Section 4.

3.1 Revisions and “Replayability”
Revision messages give us a way to recover from mistakes
or problems in the input. Processing of a revision message
must replay a portion of the past with a new or modified
value. Thus, to process revision messages correctly, we
must make a query diagram “replayable”.

Replayability is useful in other contexts such as recov-
ery and high availability [28]. Thus, our revision scheme
generalizes a replay-based high-availability (HA) mecha-
nism. In HA, queued messages are pushed through the
query diagram to recover the operational state of the sys-
tem at the time of the crash. In our revision mechanism,
messages are also replayed through the query diagram. But
failure is assumed to be an exceptional occurrence, and
therefore, the replay mechanism for recovery can tolerate
some run-time overhead. On the other hand,revisionsare a
part of normal processing, and therefore, the replay mech-
anism for processing revisions must be more sensitive to
run-time overhead to prevent disastrous effects on system
throughput.

In theory, we could process each revision message by

replaying processing from the point of the revision to the
present. In most cases, however, revisions on the input af-
fect only a limited subset of output tuples, and to regenerate
unaffected output is wasteful and unnecessary. To mini-
mize run-time overhead and message proliferation, we as-
sume aclosedmodel for replay that generates revision mes-
sages when processing revision messages. In other words,
our model processes and generates “deltas” showing only
the effects of revisions rather than regenerating the entire
result.

While the scheme that we describe below may appear
to complicate the traditional stream model and add signif-
icant latency to processing, it should be noted that in most
systems, input revision messages comprise a small percent-
age (e.g, less than 1%) of all messages input to the system.
Further, because a revision message refers to historical data
(and therefore the output it produces is stale regardless of
how quickly it is generated), it may often be the case that
revision message processing can be deferred until times of
low load without significantly compromising its utility to
applications.

3.2 A Revision Processing Scheme
We begin by discussing how revision messages are pro-
cessed in a simple single-box query diagram before con-
sidering the general case. The basic idea of this scheme
is to process a revision message byreplayingthe diagram
with previously processed inputs (thediagram history), but
using the revised values of the message in place of the orig-
inal values during the replay.1 To minimize the number of
output tuples generated, the box would replay the original
diagram history as well as the revised diagram history, and
emit revision messages that specify the differences between
the outputs that result.

The diagram history for a box is maintained in the con-
nection point (CP) of the input queue to that box. Clearly,
it is infeasible for a query diagram to maintain an entire di-
agram history of all input messages it has ever seen. There-
fore, a CP must have an associatedhistory bound(mea-
sured in time or number of tuples) that specifies how much
history to keep around. This in turn limits how far back
historically a revision message can be applied, and any re-
visions for messages that exceed the history bound must be
ignored.

Given a diagram history, replay of box processing is
straightforward. Upon seeing a replacement message,t′,
a statelessbox will retrieve the original message,t, from
its diagram history (by looking up its key value). The re-
played message will arrive at the box in its input queue,
identifying itself as a replayed message, and the box will
emit a revision message as appropriate. For example, filter
with predicatep will respond in one of four ways:

• if p is true oft and also oft′, the replacement message
is propagated,

1Analogously, insertion messages would be added to the diagram his-
tory and the deletion messages would remove the deleted message from
the diagram history.



• if p is true of t but not of t′, a deletion message is
emitted fort,

• if p is not true oft but is true oft′, an insertion mes-
sage is emitted fort′, and

• if p is not true of eithert or t′, no message is emitted.2

The processing of revision messages forstatefuloperators
(e.g., aggregate) is a bit more complex because stateful op-
erators process multiple input messages in generating a sin-
gle output message (e.g., window computations). Thus, to
process a replacement message,t′, for original message,t,
an aggregate box must look up all messages in its diagram
history that belonged to some window that also contained
t, and reproduce the window computations both with and
without the revision to determine what revision messages
to emit. For example, suppose that aggregate uses a win-
dow of size 15 minutes and advances in 5 minute incre-
ments. Then, every message belongs to exactly 3 windows,
and every replacement message will result in replaying the
processing of 30 minutes worth of messages to emit up to
3 revision messages.

Revision processing for general query diagrams is a
straightforward extension of the single-box diagram. In the
general case, each box has its own diagram history (in the
CP in its input queue). Because the processing model is
closed, each downstream box is capable of processing the
revision messages generated by its upstream neighbors.

One complication concernsmessage-basedwindows
(i.e., windows whose sizes are specified in terms of num-
bers of messages). While replacement messages are
straightforward to process with such windows, insertion
and deletion messages can trigger misalignment with re-
spect to the original windows, meaning that revision mes-
sages must be generated from the point of the revision all
the way to the present. Unless the history bound for such
boxes are low, this can result in the output of many revi-
sion messages. This issue is acute in the general query dia-
gram case, where messages can potentially increase expo-
nentially in the number of stateful boxes that process them.
We consider thisrevision proliferationissue in Section 3.4,
but first we consider how one can reduce the size of dia-
gram histories in a general query diagram at the expense of
increasing revision processing cost.
3.3 Processing Cost vs. Storage
It is clear that the cost of maintaining a diagram history
for every box can become prohibitive. It should be ob-
served, however, that discrepancies inhistory boundsbe-
tween boxes contained in the same query make some dia-
gram history unnecessary. For example, consider a chain
of two aggregate boxes such that:

• the first aggregate in the chain specifies a window of
2 hours and has a history bound of 5 hours, and

• the second aggregate in the chain specifies a window
of 1 hour and has a history bound of 10 hours.

2The processing of insertion and deletion messages is similar and
therefore omitted here.

Note that the first aggregate box in the chain can correctly
process revisions for messages up to 3 hours old, as any
messages older than this belonged to windows with mes-
sages more than 5 hours old. As a result, the second aggre-
gate box will have an effective history bound of 4 hours as
it will never see revisions for messages more than 3 hours
old, and therefore need messages more than 1 hour older
than this. Thus, the diagram can benormalizedas a result
of this static analysis so that no history is stored that can
never be used.

While query diagrams can be normalized in this man-
ner, it may still be necessary to reduce the storage demands
of diagram histories. This can be done by moving dia-
gram histories upstream so that they are shared by multiple
downstream boxes. For example, given the two box dia-
gram described above, a single diagram history of 5 hours
could be maintained at the first aggregate box, and process-
ing of a revision message by this box would result in the
emission of new revision messages,piggybacked withall
of the messages in the diagram history required by the sec-
ond box to do its processing. This savings in storage comes
at the cost of having to dynamicallyregeneratethe dia-
gram history for the second box by reprocessing messages
in the first box. In the extreme case, minimal diagram his-
tory can be maintained by maintaining this history only at
the edges of the query diagram (i.e., on the input streams).
This means, however, that the arrival of a revision message
to the query diagram must result in emitting all input mes-
sages involved in its computation, and regenerating all in-
termediate results at every box. In other words, as we push
diagram histories towards the input, revision processing re-
sults in the generation of fewer “delta’s” and more repeated
outputs.

At the other extreme, with more storage we can reduce
the processing cost of replaying a diagram. For example, an
aggregate box could potentially maintain a history of all of
its previous state computations so that a revision message
can increment this state rather than waiting for this state
to be regenerated by reprocessing earlier messages in the
diagram history. This illustrates both extremes of the trade-
off between processing cost and storage requirements in
processing revision messages.

3.4 Revision Proliferation vs. Completeness
Our previous discussion has illustrated how messages can
proliferate as they pass through aggregates, thereby intro-
ducing additional overhead. We now turn to the question of
how to limit the proliferation of revision messages that are
generated in the service of a revision message. This is pos-
sible provided that we can tolerate incompleteness in the
result. In other words, we limit revision proliferation by ig-
noring revision messages or computations that are deemed
to be less important.

The first and simplest idea limits the paths along which
revisions will travel. This can be achieved by allowing ap-
plications to declare whether or not they are interested in
dealing with revisions. This can be specified directly as a
boolean value or it can be inferred from a QoS specifica-



tion that indicates an application’s tolerance for impreci-
sion. For example, high tolerance for imprecision might
imply a preference for ignoring revision messages. Revi-
sion processing might also be restricted to paths that con-
tain updates to tables since the implication of a relational
store is that the application likely cares about keeping an
accurate history. Further revision processing beyond the
point of the update may be unnecessary.

Another way to limit revision proliferation is to limit
which revisions are processed. If a tuple is considered to be
“unimportant”, then it would make sense to drop it. This is
similar to semantic load shedding [44]. In Borealis, the se-
mantic value of a message (i.e., itsimportance) is carried in
the message itself. The score function that computes QoS
value of a message can be applied to a revision message as
well, and revisions whose importance falls below a thresh-
old can be discarded.

4 Dynamic Modification of Queries
4.1 Control Lines
Basic Model. Borealis boxes are provided with special
control lines in addition to their standard data input lines.
Control lines carry messages with revised box parameters
and new box functions. For example, a control message
to a Filter box can contain a reference to a boolean-valued
function to replace its predicate. Similarly, a control mes-
sage to an Aggregate box may contain a revised window
size parameter. Control lines blur the distinction between
procedures and data, allowing queries to automatically self-
adjust depending on data semantics. This can be used in,
for example, dynamic query optimization, semantic load-
shedding, data modeling (and corresponding parameter ad-
justments), and upstream feedback.

Each control message must indicate when the change
in box semantics should take effect. Change is triggered
when a monotonically increasing attribute received on the
data line attains a certain value. Hence, control messages
specify an<attribute, value> pair for this purpose. For
windowed operators like Aggregate, control messages must
also contain a flag to indicate if open windows at the time
of change must be prematurely closed for a clean start.

Borealis stores a selection of parameterizable functions
applicable to its operators. Two types of functions are
stored in thefunction storage base: functions with specified
parameters and functions with open parameters. Functions
with specified parameters indicate what their arguments are
in the function specification. For example,h($3, $4) =
$3 ∗ $4 will multiply the third and fourth attributes of the
input messages. In contrast, functions with open parame-
ters do not specify where to find their arguments. Instead
they use the same binding of arguments in the function that
they replace. For example, if a box was applying the func-
tion: g(x, y) = x−y to input messages with data attributes
x and y, then sendingf(x, y) = x + y along the control
line will replace the subtraction with an addition function
on the same two attributes of input messages.

The design of the function store is fairly straight for-
ward; it is a persistent table hashed on the function handle,

STORAGE BASE
FUNCTION

Handle: 11: G(x) = rand % 6 > 0

Handle: 10: F(x) = rand % 6 > x

(11)

(10)

Map

Filter control

Bind

data

Figure 2: Control-Line Example Use

with the function definition and optionally its parameters
stored in the associated record.

We expect that common practice will require parameters
to a function to change at run-time. Hence a new operator
is required that will bind new parameters (that were poten-
tially produced by other Borealis boxes) to free variables
within a function definition, thereby creating a new func-
tion. Borealis introduces a new operator, calledBind:

Bind(B1 = F1, ..., Bm, = Fm)(S)

Bind accepts one or more function handles,Fi(t), and
binds parameters to them, thereby creating a new function.
For example, Bind can create a specialized multiplier func-
tion,Bi, by binding the fourth attribute of an input message
S to the second parameter of a general multiplier function.

Example. To illustrate the use of control lines and the
Bind operator, consider the example in Figure 2, which will
automatically decrease the selectivity of a Filter box if it
begins to process important data. Assume that the Map
operator is used to convert input messages into an impor-
tance value ranging from 1 to 5. The Bind box subtracts
the importance value from 5 and binds this value tox in
function 10. This creates a new function (with handle 11),
which is then sent to the Filter box. This type of automatic
selectivity adjusting is useful in applications with expen-
sive operators or systems near overload, where processing
unimportant data can be costly.

Timing. Since control lines and data lines generally
come from separate sources, in some cases it is desirable
to specify precisely what data is to be processed according
to what control parameters. In such cases, two problems
can potentially occur: the data is ready for processing too
late or too early.

The former scenario occurs if tuples are processed out
of order. If a new control message arrives, out-of-order tu-
ples that have not yet been processed should use the older
parameters. The old parameters must thus be buffered
and later applied to earlier tuples on the stream. In order
to bound the number of control messages which must be
buffered, the DA can specify a time bound after which old
control messages can be discarded.

A latter scenario occurs if control line data arrives late
and the box has already processed some messages using
the old box functionality which were intended for the new
box parameters. In this case, Borealis can resort to revision
messages and time travel, which is discussed next.



4.2 Time Travel
Borealis time travel is motivated by the desire of applica-
tions to “rewind” history and then repeat it. In addition, one
would like a symmetric version of time travel, i.e., it should
be possible to move forward into the future, typically by
running a simulation of some sort. To support these capa-
bilities, we leverage and extendconnection pointsto allow
for CP views and generation of revision records. These ex-
tensions are described below.

Connection Point (CP) Views. To enable time travel,
we leverage Aurora’s connection points [2] which store
message histories from specified arcs in the query diagram.
CPs were originally designed to support ad-hoc queries,
that can query historical as well as real-time data. We ex-
tend this idea withCP Views: independent views of a con-
nection point through which different branches of a query
diagram can access the data maintained at a CP. Every CP
has at least one and possibly more CP views through which
its data can be accessed. The CP view abstraction makes
every application appear to have exclusive control of the
data contained in the associated CP. But in fact, a CP main-
tains all data defined by any of its associated views.

We envision that time travel will be performed on acopy
of some portion of the running query diagram, so as not to
interfere with processing of current data by the running dia-
gram. CP views help in this respect, by enabling time travel
applications, ad hoc queries, and the query diagram to ac-
cess the CP independently and in parallel. A new CP view
can be associated with an automatically generated copy of
the operators downstream of the connection point. Alter-
natively, the view can be associated with a new query dia-
gram.

Every CP view is declared with aview rangethat spec-
ifies the data from the CP to which it has access. A view
range resembles awindowover the data contained in a CP,
and can eithermoveas new data arrives to the CP or re-
main fixed. A CP view range is defined by two parameters:
start time andmaxtime. Start time determines the oldest
message in the view range, and can be specified as an ab-
solute value or a value relative to the most recent message
seen by the CP. Maxtime determines the last message in
the view range, and can also be an absolute value (when
the CP view will stop keeping track of new input data) or
relative to the most recent input message. A CP view that
has both starttime and maxtime set to absolute values is
fixed. Any other CP view ismoving.

A CP view includes two operations that enable time
travel:

1. replay: replays a specified set of messages within the
view’s range, and

2. undo: produces deletion messages (revisions) for a
specified set of messages within the view’s range.

The replay operation enables time travel either into the
past or into the future. For time travel into the past, the CP
view retransmits historical messages. For time travel into
the future, the CP view uses a prediction function supplied
as an argument to the replay operation in conjunction with

historical data to generate a stream of predicted future data.
The undo operation “rewinds” the stream engine to some
time in the past. To accomplish this, the CP view emits
deletion messages for all messages transmitted since the
specified time.

Every CP view has a unique identifier that is either as-
signed by the application that creates it or generated au-
tomatically. When multiple versions of the same query
network fragment co-exist, a stream is uniquely identified
by its originally unique name and the identifiers of the CP
views that are directly upstream. An application that wants
to receive the output of a stream must specify the complete
identifier of the stream. For human users, a GUI tool hides
these details. The system may also create CP views for pur-
poses of high availability and replication. These CP views
are invisible to users and applications.

Time Travel and Revision Records.A request to time
travel can be issued on a CP view, and this can result in the
generation of revision records as described below. When a
CP view time travels into thepastto some time,t, it gen-
erates a set of revision (or more specifically, deletion) mes-
sages that “undo” the messages sent along the arc associ-
ated with a CP sincet.3 The effect of an operator process-
ing these revisions is to roll back its state to timet. The
operator in turn issues revision messages to undo/revise the
output since timet. Therefore, the effect of deleting all
messages since timet from some CP view is to rollback the
state of all operators downstream from this view to timet.

Once the state is rolled back, the CP view retransmits
messages from timet on. If the query diagram is non-
deterministic (e.g., it contains timeouts) and/or historyhas
been modified, reprocessing these messages may produce
different results than before. Otherwise, the operators will
produce the exact same output messages for a second time.

When time traveling into the future, a prediction func-
tion is used to predict future values based on values cur-
rently stored at a CP. Predicted messages are emitted as if
they were the logical continuation of the input data, and
downstream operators process them normally. If there is a
gap between the latest current and the first predicted mes-
sage, a window that spans this gap may produce strange
results. To avoid such behavior, all operators support an
optional reset command that clears their state.

As new data becomes available, more accurate predic-
tions can (but do not have to) be produced and inserted into
the stream as revisions. Additionally, when a predictor re-
ceives revision messages, it can also revise its previous pre-
dictions.

5 Borealis Optimization
The purpose of the Borealis optimizer is threefold. First, it
is intended to optimize processing across a combined sen-
sor and server network. To the best of our knowledge, no
previous work has studied such a cross-network optimiza-
tion problem. Second, QoS is a metric that is important
in stream-based applications, and optimization must deal

3To reduce the overhead of these deletions, these messages are encap-
sulated into a single macro-like message.



with this issue. Third, scalability, size-wise and geograph-
ical, is becoming a significant design consideration with
the proliferation of stream-based applications that deal with
large volumes of data generated by multiple distributed
data sources. As a result, Borealis faces a unique, multi-
resource, multi-metric optimization challenge that is sig-
nificantly different than those explored in the past.

5.1 Overview
A Borealis application, which is a single connected dia-
gram of processing boxes, is deployed on a network ofN
servers and sensor proxies, which we refer to assites. Bo-
realis optimization consists of multiple collaborating moni-
toring and optimization components, as shown in Figure 3.
These components continuously optimize the allocation of
query network fragments to processing sites.

Monitors. There are two types of monitors. First, a
local monitor (LM)runs at each site and produces a collec-
tion of local statistics, which it forwards periodically tothe
end-point monitor (EM). LM maintains various box- and
site-level statistics regarding utilization and queuing delays
for various resources including CPU, disk, bandwidth, and
power (only relevant to sensor proxies). Second, anend-
point monitor (EM)runs at every site that produces Bore-
alis outputs. EM evaluates QoS for every output message
and keeps statistics on QoS for all outputs for the site.

Optimizers. There are three levels of collaborating op-
timizers. At the lowest level, alocal optimizerruns at every
site and is responsible for scheduling messages to be pro-
cessed as well as deciding where in the locally running di-
agram to shed load, if required. Aneighborhood optimizer
also runs at every site and is primarily responsible for load
balancing the resources at a site with those of its immedi-
ate neighbors. At the highest level, aglobal optimizeris
responsible for accepting information from the end-point
monitors and making global optimization decisions.

Control Flow. Monitoring components run contin-
uously and trigger optimizer(s) when they detect prob-
lems (e.g., resource overload) or optimization opportuni-
ties (e.g., neighbor with significantly lower load). The lo-
cal monitor triggers the local optimizer or neighborhood
optimizer while the end-point monitors trigger the global
optimizer. Each optimizer tries to resolve the situation it-
self. If it can not achieve this within a pre-defined time pe-
riod, monitors trigger the optimizer at the higher level. This
approach strives to handle problems locally when possible
because in general, local decisions are cheaper to make and
realize, and are less disruptive. Another implication is that
transient problems are dealt with locally, whereas more per-
sistent problems potentially require global intervention.

Problem Identification. A monitor detects specific re-
source bottlenecks by tracking the utilization for each re-
source type. When bottlenecks occur, optimizers either re-
quest that a site sheds load, or, preferably, identify slack
resources to offload the overloaded resource. Similarly, a
monitor detects load balance opportunities by comparing
resource utilization at neighboring sites. Optimizers use
this information to improve overall processing performance

Global Optimizer

at every site

Local Monitor

Neighborhood Optimizer

Local Optimizer

statistics decisiontrigger

at output sites

End−point Monitor

Figure 3: Optimizer Components

as we discuss in Sections 5.3.1 and 5.3.2.
Dealing with QoS is more challenging. In our model,

each tuple carries a VM. These metrics include informa-
tion such as the processing latency or semantic importance
of the tuple. For each tuple, the score function maps the
values in VM to a score that indicates the current predicted
impact on QoS. For instance, the score function may give a
normalized weighted average of all VM values. The local
optimizer uses differences in raw score values to optimize
box scheduling and tuple processing as we discuss in Sec-
tion 5.3.1.

To allow the global optimizer to determine the prob-
lem that affects QoS the most and take corrective ac-
tions, Borealis allows the DA to specify a vector of
weights: [Lifetime, Coverage, Throughput,
Latency] for multiple discrete segments along these
four dimensions, which indicates the relative importance of
each of these components to the end-point QoS. The most
interesting of these dimensions, lifetime, is the mechanism
by which Borealis balances sensor network optimization
goals (primarily power) with server network optimization
goals. The lifetime attribute indicates how long the sensor
network can last under its current load before it stops pro-
ducing data. The second dimension, coverage, indicates the
amount of important, high quality data that reaches the end-
point. Coverage is impacted negatively by lost tuples, but
the relative impact is lower if less important or low qual-
ity messages are lost. We address these issues further in
Section 5.3.3. Because each of these metrics is optionally
a component of the VM, the end-point monitor can keep
statistics on the components that are in VM. Together with
the vector of weights, these statistics allow the end-point
monitor to make a good prediction about the cause of the
QoS problem.

Sensor Proxies. We assume a model for sensor net-
works like [31] where each node in a sensor network per-
forms the same operation. Thus, the box movement op-
timization question is not where to put a box in a sensor
network, but whether to move a box into the sensor net-
work at all. This allows one centralized node to make a
decision for the entire sensor network. We call this cen-
tralized node a proxy, which is located at the wired root of
the sensor network at the interface with the Borealis server
network. There is one proxy for each sensor network that
produces stream data for Borealis. This proxy is charged



with reflecting optimization decisions from the server net-
work into appropriate tactics in its sensor network. Fur-
thermore, the proxy must collect relevant statistics (suchas
power utilization numbers and message loss rates) from the
sensor network that have an impact on Borealis QoS.

In the following sections, we first describe how Borealis
performs the initial allocation of query network fragments
to sites. We then present each optimizer in turn. We also
discuss how to scale the Borealis optimizer hierarchy to
large numbers of sites and administrative domains.

5.2 Initial Diagram Distribution
The goal of the initial diagram distribution, performed by
the global optimizer, is to produce a “feasible” allocation
of boxes and tables to sites using preliminary statistics ob-
tained through trial runs of the diagram. The primary focus
is on the placement of read and write boxes with the Bo-
realis tables that they access. Because these boxes access
stored state, they are significantly more expensive than reg-
ular processing boxes. Furthermore, in order to avoid po-
tentially costly remote table operations, it is desirable to co-
locateBorealis tables with the boxes which read and write
them as well as those boxes that operate on the resulting
streams.

Our notion of cost here includes a combination of per-
site (I/O) access costs and networked access costs, cap-
turing latency and throughput characteristics of reads and
writes to tables. Our objective is to minimize the total ac-
cess cost for each table while ensuring each table is placed
at a site with sufficient storage and I/O capacity. Initial di-
agram distribution faces several challenges in its attempt
to place tables. Clearly, we must deal with arbitrary in-
terleavings of read and write boxes operating on arbitrary
tables. Interleaved access to tables limits our ability to co-
locate tables with all boxes that operate on their content
because the boxes that use the content of one table read or
write the content of another. Co-locating multiple tables
at one site may not be feasible. Furthermore the consid-
eration of diagram branches, and the associated synchro-
nization and consistency issues, constrains the set of valid
placement schemes.

We propose a two-phase strategy in approaching our ini-
tial placement problem. The first phase identifies a set of
“candidate” groups of boxes and tables that should be co-
located. This is based on a bounding box computation of
operations on each table. Our bounding boxes are initially
combined based on overlaps, and subsequently refined dur-
ing our search for sites to accommodate all operations and
tables within each bounding box. This search uses a heuris-
tic to assign the most demanding (in terms of I/O require-
ments) bounding box, to the site with greatest capacity. We
utilize a table replication mechanism to deal with scenar-
ios where no sites have sufficient capacity. This addition-
ally involves fragmenting any boxes operating on the table.
The second phase completes the process by appropriately
assigning the remaining boxes. We do so by computing
the CPU slack resulting from the first phase, and then dis-
tribute the remaining boxes. We propose iteratively allo-

cating boxes to sites with slack, which connect directly to
a box already allocated to that site.

5.3 Dynamic Optimization
Starting from the initial allocation, the local, neighborhood,
and global optimizers continually improve the allocation of
boxes to sites based on observed run-time statistics.

5.3.1 Local Optimization
The local optimizer applies a variety of “local” tactics when
triggered by the local monitor. In case of overload, the lo-
cal optimizer (temporarily) initiates load shedding. The
load shedder inserts drop boxes in the local query plan
to decrease resource utilization. The local optimizer also
explores conventional optimization techniques, including
changing the order of commuting operators and using al-
ternate operator implementations.

A more interesting local optimization opportunity exists
when scheduling boxes. Unlike Aurora that could evaluate
QoS only at outputs and had a difficult job inferring QoS at
upstream nodes, Borealis can evaluate the predicted-QoS
score function on each message by using the values in VM.
By comparing the average QoS-impact scores between the
inputs and the outputs of each box, Borealis can compute
the averageQoS Gradientfor each box, and then schedule
the box with the highest QoS Gradient. Making decisions
on a per message basis does not scale well; therefore Bo-
realis borrows Aurora notion of train scheduling [15] of
boxes and tuples to cut down on scheduling overhead.

Unlike Aurora, which always processed messages in or-
der of arrival, Borealis has further box scheduling flexibil-
ity. In Borealis, it is possible to delay messages (i.e., pro-
cess them out of order) since we can use our revision mech-
anism to process them later as insertions. Interestingly, be-
cause the amount of revision history is bounded, a message
that is delayed beyond this bound will be dropped. Thus,
priority scheduling under load has an inherent load shed-
ding behavior. The above tactic of processing the high-
est QoS-impact message from the input queue of the box
with highest QoS gradient may generate substantial revi-
sion messages and may lead to load shedding. It is possible
that this kind of load shedding is superior to the Aurora-
style drop-based load shedding because a delayed message
will be processed if the overload subsides quickly. Hence,
it is more flexible than the Aurora scheme. There is, how-
ever, a cost to using revisions; hence we propose that out-
of-order processing be turned on or off by the DA. If it is
turned off, conventional ”drop-based” load shedding must
be performed [44]. Also, for queries with stateless oper-
ators and when all revisions are in the form of insertions,
revision processing behaves like regular Aurora processing.
In such cases, the system should use explicit drop boxes to
discard tuples with low QoS-impact values.

5.3.2 Neighborhood Optimization
The actions taken by the neighborhood optimizer in re-
sponse to a local resource bottleneck or an optimization
opportunity are similar — both scenarios involve balancing
resource usage and optimize resource utilization between



the local and neighboring sites.
Other than balancing load with the neighboring sites, the

neighborhood optimizer also tries to select the best boxes to
move. These are the boxes that improve resource utilization
most while imposing the minimum load migration over-
head. If network bandwidth is a limited resource in the sys-
tem, then “edge” boxes (which are easily slide-able [18])
are moved between upstream and downstream nodes. This
solution is similar to the diffusion-based graph repartition-
ing algorithm [38]. If network bandwidth is abundant and
network transfer delays are negligible, then a correlation-
based box distribution algorithm [50] is used to minimize
average load variation and maximize average load correla-
tion, which will accordingly result in small average end-to-
end latency. More specifically, we store the load statistics
of each box/node as fixed-length time series. When deter-
mining which box to move, a node computes a score for
each candidate box, which is defined as the correlation co-
efficient between the load time series of that box and that of
the sender node minus the correlation coefficient between
the load time series of that box and that of the receiver
node. A greedy box selection policy chooses the box with
the largest score to move first.

When neighboring nodes do not collectively have suf-
ficient resources to deal with their load, the overload will
likely persist unless input rates change or the global opti-
mizer changes the box allocation. Meanwhile, it is at least
desirable to move load shedding from the bottleneck site to
an upstream site, thereby eliminating extra load as early as
possible. To achieve this, the neighborhood optimizer of
the bottleneck node triggers distributed load shedding by
asking the upstream neighborhood optimizers to shed load,
which in turn contact their parent nodes and so on.

5.3.3 Global Optimization
The global optimizer reacts to messages from the end-point
monitors indicating a specific problem with a Borealis out-
put or a bottleneck at some neighborhood.

The global optimizer knows the allocation of boxes to
sites and the statistics from the local monitors. From this
information, it can construct a list of the intermediate sites
through which messages are routed from the data sources
to the output. The optimizer then takes appropriate actions
depending on the nature of the problem:

Lifetime problem. If the problem is related to sen-
sor lifetime (i.e., power), the global optimizer informs the
corresponding sensor proxies. These proxies either initi-
ate operator movements between the sensor and the server
networks (by moving data-reducing operators to the sensor
network and data-producing operators out of the sensor net-
work), or reduce sensor sampling (and transmission) rates.
This latter solution comes with a fundamental trade-off
with coverage. Slower sample rates are essentially equiva-
lent to load shedding at the inputs and have a similar impact
on QoS. Depending on the upstream operators, decreasing
the sample rate can also affect throughput.

Coverage problem.Coverage problems are caused by
tuples getting dropped during wireless transmission inside

the sensor network, low sensor sample rates, or load shed-
ding in the server network. In the former case, sensor prox-
ies can move operators that incur high inter-node commu-
nication (e.g., a distributed join) out of the network. If this
solution is not sufficient, the optimizer notifies sites in the
site list iteratively (in increasing order of distance fromthe
data source) to decrease the amount of load shedding on the
relevant path of boxes.

Throughput problem. The optimizer attempts to locate
the throughput bottleneck by searching backwards from the
output, looking for queues (to operators or network links)
that are growing without bound. Once the optimizer finds
such a queue (and a site), it examines local site statistics,
checking for inadequate resource slack. If the problem is
the CPU, the optimizer identifies a nearby site with CPU
slack and initiates load movement by communicating with
the relevant neighborhood optimizers. Load migration then
takes place as discussed in Section 5.3.2. If the problem
involves I/O resources, then the global optimizer runs the
table allocation algorithm from Section 5.2 using current
statistics to correct the I/O imbalance. If the problem is
network bandwidth, a message is sent to the site at each end
of the network link whose queue is growing without bound.
If either site can identify a lower bandwidth cut point, then
a corresponding box movement can be initiated.

In all resource bottleneck scenarios, there may be no
mechanism to generate improvement. If so, the global op-
timizer has no choice but to instruct one or more sites to
shed load. If the QoS function is monotonically increas-
ing with the processing applied to a tuple, then load shed-
ding should be applied at a data source (i.e., at the sensor
proxy). QoS, however, is not monotonic if there is down-
stream processing that can provide semantically valuable
information about the message. In this case, the global op-
timizer can look through the statistics to identify the box
with minimum average QoS as the load shedding location
and contact the corresponding site.

Latency problem. If the problem is latency, a similar
algorithm is used as for throughput. The difference is that
latency is additive along the latency critical path so finding
and fixing inadequate CPU, I/O, or network slack on any
site on this path will improve latency. For this reason, there
is no need to perform improvements starting at the end-
point and working backwards. A backwards path traversal,
however, is still necessary to isolate the latency criticalpath
(binary operators join and re-sample often constantly wait
for inputs from one branch; improving the latency of the
other branch will have no observable effect at the output).

In the case that no information is available from the end
point monitor concerning the source of the problem, then
the global optimizer has no choice but to try the above tac-
tics in an iterative fashion, hoping that one of them will
work and cause improvement. Admittedly, it is entirely
possible that improving one bottleneck will merely shift the
problem to some other place. This ”hysteresis effect” may
be present in Borealis networks, and it is a challenging fu-
ture problem to try to deal with such instabilities.



5.4 Scalability and Federated Operation
Each one of the algorithms in the preceding sections is de-
signed to operate at a different level of granularity in the
system, with the global optimizer running at the highest
level. There is certainly a system size, however, for which
the global optimizer will become a bottleneck. To scale
past that threshold, we apply the above algorithms recur-
sively on groups of nodes, orregions.

We use the term region to denote a collection of sites
whose size is below the scalability threshold. Each region
will have a regional optimizer that will run the algorithms
of Section 5.3.1. Each region will also have a neighborhood
optimizer that will treat each region as a (virtual) node and
run the algorithms of Section 5.3.2 across neighboring re-
gions. There will also be a global optimizer that will run the
algorithms of Section 5.3.3 across regions, again treating
each region as an individual node. Regions can be further
grouped into larger regions.

The above algorithms also assume that sites are mutu-
ally co-operating. To scale optimizers past administrative
boundaries, we propose to leverage the mechanisms devel-
oped in Medusa [12]. In Medusa, autonomous participants
establish pair-wise contracts and handle each other’s excess
load in exchange for contracted payments.

In Borealis, we plan to explore how participants can
take advantage of their pair-wise load management con-
tracts not only to move excess load but to actually opti-
mize QoS. We propose a two-tier approach, where intra-
and inter-participant optimizers work together. The inter-
participant optimizer monitors local load and detects when
it becomes cost-effective to either use a partner’s resources
or accept a partner’s load. Using performance guarantees
defined in SLAs, the inter-participant optimizer models a
partner’s resources as a local server with a given load or
models the partner’s tasks as local tasks with given QoS
functions. With this information, the intra-participant opti-
mizer (i.e., the global optimizer) can incorporate the extra
resources and tasks in its optimization.

6 Fault Tolerance
In Borealis, we explore how to leverage the new CP, time
travel, and revision tuple functionalities to efficiently pro-
vide fault-tolerance in a distributed SPE. As in most pre-
vious work on masking software failures, we use replica-
tion [24], running multiple copies of the same query net-
work on distinct processing nodes.

To maximize availability, when a node detects a failure
on one of its input streams, we propose that it first tries
to find an alternate upstream replica. For the node to con-
tinue its processing from the new replica, however, all up-
stream replicas must be consistent with each other. To en-
sure replica consistency, we define a simple data-serializing
operator, calledSUnion, that takes multiple streams as in-
put and produces one output stream with deterministically
ordered tuples, ensuring that all operator replicas process
the same input in the same order.

If a downstream SPE is unable to find a suitable up-
stream data source for a previously available input stream,

it could either block or continue processing with the re-
maining (partial) inputs. The former option greatly reduces
availability, while the latter option leads to a number of
“wrong” results. We propose to give the user explicit con-
trol of trade-offs between consistency and availability inthe
face of network failures [13, 24]. To provide high availabil-
ity, each SPE guarantees that input data is processed and
results forwarded within a user-specified time threshold of
its arrival, even if some of its inputs are currently unavail-
able. At the same time, to prevent downstream nodes from
unnecessarily having to react to incorrect data, an SPE tries
to avoid or limit the number of tuples it produces during a
failure. When the failure heals, we propose that replica re-
process the previously missing information and correct the
previously wrong output tuples.

To support the above model, we further enhance the
streaming data model introduce in Section 2.2. Results
based on partial inputs are marked astentative, with the
understanding that they may subsequently be modified; all
other results are consideredstable. When a failure heals,
each SPE that saw tentative data reconciles its state and
stabilizesits output byreplacing the previously tentative
output with stable data tuples forwarded to downstream
clients. We believe that traditional approaches to record
reconciliation [24] are ill-suited for streaming systems,and
explore techniques to reconcile the state of an SPE based
on checkpoint/redo, undo/redo, and the new concept of re-
vision tuples.

Our approach is well-suited for applications such as en-
vironment monitoring, where high availability and “real-
time” response is preferable to perfect answers. Some ini-
tial results are available in [11].

7 Related Work
Our work relates to various past efforts in data management
and distributed systems.

Query Processing. Borealis query processing relates
to adaptivity techniques of CONTROL [26] and Tele-
graph(CQ) [17] projects. Online aggregation approach
[27] of the CONTROL project, progressively improves the
query answer as more tuples contribute to the result, in a
similar way to our insertion messages. Borealis can ad-
ditionally delete and replace previously delivered results.
The Telegraph project proposed several operators for adap-
tive query processing: the Juggle operator reorders input
tuples based on their interesting content [35]; the Eddy op-
erator reorders operators that a tuple is processed through
based on change in performance [7]; and the JuggleEddy
operator combines both functionalities [34]. In Borealis,
the operator order for a query is fixed; however, tuples
can be reordered. A priority scheduler decides which tu-
ples and which operators to prioritize in execution based on
QoS values of the tuples. The QoS value can be a function
of both content (e.g., tuple importance) and resource con-
sumption metrics (e.g., tuple latency). Our QoS gradient
approach in box/train scheduling resembles the gradient-
based payoff estimation approach of JuggleEddy [34].



Dynamic Revision of Query Results.Revision record
processing is similar to updating a view in response to an
update of underlying base relation. Our approach of propa-
gating only revision records that reflect the changes result-
ing from a revision is similar in spirit to incremental view
maintenance [25], which confines the effect of an update
to that part of the view that changes. The key difference
between the two approaches is that the latter has no notion
of “historical correction”: an update to a base relation in-
validates the previous value of the data being updatedas of
the time of the update, whereas revision records invalidate
previous values of dataas of the time that data was first pro-
cessed. Borealis may therefore need to correct previously
processed output and thus must be able to reason about
all previously generated output, and not just that generated
most recently. Additionally, unlike view maintenance, Bo-
realis treats revisions as first-class citizens that can be pro-
cessed and generated by queries. This approach is similar
to that taken in Heraclitis [23] and in several rule-based
active database settings [47, 19, 41], where updates are el-
evated to first-class (i.e., queryable) “deltas”. Similar work
on “querying the log” (the log can be thought of as a spe-
cialized stream of revision records) was discussed in [36],
though unlike Heraclitis, this work permits the querying but
not the generation of deltas.

Distributed Optimization. Table and replica place-
ment problems have been studied extensively with the goal
of minimizing storage, bandwidth and delay-centric ac-
cess costs, particularly in the context of the data alloca-
tion problem [3, 49] and more recently content-delivery
networks [29, 33]. In addition to these concerns, the ini-
tial allocation algorithm in Borealis considers placement
of all operators, since stream operators must be placed in
conjunction with table operators. Our model relates to
elements common in several optimization problems, es-
pecially the allocation of boxes to nodes in a knapsack-
style manner. The problem of load distribution and oper-
ator placement has been studied in depth in traditional dis-
tributed and parallel computing systems [40, 48, 30, 22].
In these systems, tasks are finite and are independent from
one another. Optimization typically involves offloading
tasks from overloaded nodes to more lightly loaded ones.
In contrast, Borealis optimizes the placement of networks
of operators that run continuously and interact with each
other. Our optimization goals are thus more similar to rout-
ing packets through a network and optimizing the rate and
end-to-end latencies. Unlike proposals for optimal rout-
ing [21], however, Borealis must consider both network
and processing bottlenecks as well as variable data rates
on different segments in the query diagram.

Time Travel. The idea of traveling in time has long
been discussed. The Postgres [43] storage manager main-
tains a complete history of database objects by archiving
the transaction log. Furthermore, it adds temporal opera-
tors to SQL allowing users to query the state of the database
at any given point in the past. The Elephant file system [37]
automatically retains different versions of user files. It al-

lows users to add a time stamp tag to any pathname. If
this tag is present, Elephant accesses the version of the file
that existed at the specified time, allowing users to travel
into the past. These approaches, however only support an
asymmetric version of time travel (i.e., back in time) and
do not consider data streams.

SPE Fault Tolerance. Until now, work on high avail-
ability in stream processing systems has focused on fail-
stop failures of processing nodes [28, 39]. Some techniques
use punctuations [45], heartbeats [42], or statically defined
slack [2] to tolerate bounded disorder and delays on input
streams. All current approaches, however, block or drop
tuples when disorder or delay exceed expected bounds.

8 Discussion and Future Plans
This paper has presented some of the challenges that must
be met by the next generation of stream processing engines.
We have cast these research problems in the context of the
current Borealis design in order to draw out the issues and
to show how they might interact. Our discussion focused
on advanced capabilities that facilitate dynamic result and
query modification, scalable, QoS-based resource alloca-
tion and optimization, as well as fault tolerance.

Thus, our vision includes a far more flexible stream pro-
cessing model (revisions, time travel, and control lines) and
a distribution model that dynamically reconfigures as net-
work conditions change. This is fundamentally different
from distributed query optimization in a pull-based system
since for us queries do not end. In addition, our distri-
bution model tries to unify the server-based techniques of
most current SPE’s with the bandwidth and power-aware
processing of sensor networks. The new stream process-
ing capabilities that we introduce also allow us to explore
new fault-tolerance techniques that seamlessly mask node
failures and tolerate network failures and partitions by ex-
ploiting connection points, time travel, and revision tuples.

We are currently building Borealis. As Borealis inherits
much of its core stream processing functionality from Au-
rora, we can effectively borrow many of the Aurora mod-
ules, including the GUI, the XML representation for query
diagrams, portions of the run-time system, and much of
the logic for boxes. Similarly, we are borrowing some net-
working and distribution logic from Medusa. With this
starting point, we hope to have a working prototype within
a year. This will allow us to experiment with many of the
capabilities that are outlined in this paper.
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M. Cherniack, C. Convey, E. Galvez, J. Salz, M. Stonebraker,N. Tat-
bul, R. Tibbetts, and S. Zdonik. Retrospective on Aurora.VLDB
Journal, Special Issue on Data Stream Processing, 2004. to appear.

[11] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker.
Availability-consistency trade-offs in a fault-tolerantstream pro-
cessing system. Technical Report TR974, MIT, November 2004.

[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-
Based Load Management in Federated Distributed Systems. In
NSDI Symposium, March 2004.

[13] E. A. Brewer. Lessons from giant-scale services.IEEE Internet
Computing, 5(4):46–55, 2001.
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