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C r o s s - r e a l i t y  e n v i r o n m e n t s

R ecent developments in sensor 
network technologies have paved 
the way for the widespread use of 
small, embedded sensing devices 
in many pervasive application 

domains. Such sensor networks help integrate 
physical reality into virtual computing plat-
forms, letting us sense and react to real-world 
events in an automated fashion. Meanwhile, 
another class of Web-based computing plat-
forms has recently emerged that enables virtual 
simulations of the real world over which people 
can interact online. Cross-reality environments 
could serve as a bridge across sensor networks 

and Web-based virtual worlds, 
improving people’s interac-
tions with each other and the 
physical world. This capability 
could help many application 
areas achieve computational 
pervasiveness.

Sensor networks generate 
data that often indicate certain complex phe-
nomena in the real world. We can detect these 
phenomena only by applying higher-level infer-
ence techniques to collected sensor data. Com-
plex event processing (CEP) systems address 
this need by enabling pattern-matching queries 
over primitive sensor events to detect more com-
plex events that carry higher semantic value to 
the application.1–3 Common examples include 
fire in a building, a burglar in a house, theft in a 
library, or shoplifting in a grocery store.

We see CEP as an essential functionality 
for cross-reality applications. Through it, we 
can turn raw sensor data generated in the real 
world into meaningful information more suit-
able for representation in the virtual world. 
For example, rather than simply showing what 
value each temperature or smoke sensor is re-
porting, we can show more interesting events, 
such as fire. Such information is more valuable 
for users and is certainly easier and more real-
istic to represent in a virtual world. As such, a 
CEP system can act both as a transformer and 
a filter between potentially high-volume raw 
sensor readings from the physical world and 
their rich virtual representation: while simple 
events get transformed into more complex 
ones, low-level events that would otherwise be 
regarded as noise or clutter in the virtual world 
get filtered out.

Cross-reality systems face several challenges, 
including collecting accurate data from the real 
world, turning collected data into more mean-
ingful events, and representing and updating 
events in the virtual world in real time. Fur-
thermore, these systems must provide high per-
formance and scalability to ensure that we can 
link events across the two environments with 
the lowest possible latency.

To address these issues, ETH Zurich devel-
oped the DejaVu system,4 an event stream pro-
cessing system that extends other CEP systems 
to provide declarative pattern matching over live 
and archived event streams. We then built the 
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SmartRFLib application around De-
jaVu to illustrate our event processing  
system’s main features and demonstrate 
how event processing  support can be 
useful for cross-reality applications.

the Dejavu system
DejaVu targets a broad range of appli-
cations, from sensor-based real-time 
monitoring to financial market data 
analysis. One of its primary goals is to 
enable seamless integration of complex 
event pattern-matching functionality 
over live and stored event sequences 
behind a common declarative query in-
terface. This not only enables arbitrary 
event correlations within or across dif-
ferent time domains but can also help 
predict future events because an impor-
tant class of interesting event patterns 
are those that repeat in time, creating a 
sense of deja vu.

architecture 
With DejaVu, our goal was to develop 
a coherent system that unifies interface 
and functionality but lets us custom-
ize implementation and optimization 
methods across live and historical 
data sequences. To realize this goal, 
our approach builds on and signifi-
cantly extends a relational database 
engine architecture. More specifically, 
we built DejaVu on top of the MySQL 
open source database system.5 As such, 
we follow MySQL’s basic architectural 
skeleton while making new extensions 
to support different forms of pattern-

matching queries (one-time, continu-
ous, and hybrid) as necessary.

Figure 1 illustrates DejaVu’s high-level 
architecture. A key MySQL feature we 
exploit in our system design is its plug-
gable storage engine API. Through this 
API, we can define and plug in custom 
storage engines to work seamlessly with 
the MySQL query-processing engine. 
In addition to the traditional relational 
store MySQL provides, which we occa-
sionally need for table lookups, we also 
created two new storage engines:

Live stream storage•	 . This is an in-
memory store that accepts push-
based inputs. It essentially acts like 
a queue, feeding live events into the 
query-processing engine as they ar-
rive. The query processor can access 
the live stream store either in pull 
mode (that is, MySQL-style) or push 
mode. We added the latter option 
in our design to enable an adaptive 
switch between these two modes and 
to flexibly cope with unpredictable 
bursts in input load inside the storage 
engine. In other words, under high 
load, we switch to pull mode and let 
the storage handle the problem.
Archived stream storage•	 . DejaVu can 
also fully or selectively materialize 
live input events into an archive store, 
which respects the events’ predefined 
order and allows updates only in the 
form of appends. It also provides fea-
tures such as data compression and 
efficient access methods for historical 

pattern-matching queries. Further-
more, because the archive is a persis-
tent store, it can support the live store 
in dealing with bursts and failures.

In addition to creating two new stor-
age engines, we also made an important 
extension to the MySQL query proces-
sor. More specifically, we introduced a 
finite state machine (FSM) implementa-
tion to drive the evaluation of the pat-
tern-matching queries; the FSM runs as 
an integral part of the MySQL query 
plan. We present an example FSM later 
in the article.

As with most relational database 
systems, MySQL allows only one-time 
queries. So, we added new mechanisms 
into the MySQL query-processing en-
gine for query life-cycle management 
and continuous result reporting for 
long-running queries over streaming 
data.

A key design decision in DejaVu was 
to build the pattern-matching engine on 
top of MySQL mainly so that we could 
exploit MySQL’s extensible storage en-
gine API for the two different stream 
stores that we wanted to create. An ad-
ditional advantage was that extending 
MySQL’s parsing and execution engine 
was rather convenient and let us imple-
ment the pattern-matching extensions 
in our SQL-based CEP language.

language
Any event processing system needs 
a powerful language for expressing 
events. In DejaVu, we express complex 
event patterns through an SQL-like de-
clarative query language. This language 
is based on a recent language standard 
proposal for pattern matching on row 
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Figure 1. DejaVu system architecture. 
This architecture builds on and extends 
the MySQL relational database engine 
architecture with event pattern 
matching queries over both live and 
archived streams of events stored in 
separate storage engines.
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T he work we describe in the main text builds on and ex-

tends previous work on sensor data acquisition, data 

stream and complex event processing, and sensor data integra-

tion into online virtual worlds.

Earlier sensor querying systems such as tinyDb1 focused 

on energy-efficient data acquisition and query-processing 

techniques over sensor networks, such as in-network aggre-

gation. model-driven data-acquisition systems such as bbQ2 

used learning-based probabilistic models to improve efficiency 

further by exploiting temporal and spatial correlations across 

sensor readings. more recently, researchers have proposed 

statistical techniques for adaptive cleaning of rFID data.3,4 Our 

SmartrFlib application directly implements the data-cleaning 

algorithms this work proposes. As we discuss in the main text, 

we’ve found that this approach has some limitations in the 

compression step of rFID data acquisition, for which we devise 

a flexible solution.

A body of previous work also exists on data stream and com-

plex event processing systems that closely relates to our DejaVu 

system. First of all, DejaVu is a stream-processing system and, 

as such, builds on the fundamental concepts that data stream 

management systems such as Aurora,5 the Stanford Stream 

Data manager (Stream),6 and telegraphCQ7 propose. DejaVu 

differs from these systems in that in addition to managing live 

streams, it can also store and process archived streams. Addi-

tionally, its architecture extends a relational database architec-

ture, and it focuses on pattern-matching queries for complex 

event processing. DejaVu is closer in spirit to complex-event 

processing (CEp) systems such as HiFi,8 Stream-based and 

Shared Event processing (SASE),9 and Cayuga.10 Its fundamen-

tal difference from these systems is its support for integrated 

query processing over live and archived event streams. (the 

HiFi project demonstrated a similar library scenario in earlier 

work, but its main focus was on the rFID event acquisition 

problem, and it used a different architecture and a more re-

stricted event language.11)

Finally, SmartrFlib isn’t the first cross-reality application to 

integrate sensor data into Second life. the plug ubiquitous 

networked sensing platform developed at the mIt media lab 

provides a virtual representation within Second life for brows-

ing sensor data streaming from the plug network,12 called 

the Shadow lab. Its users can interact with the plug net-

work through the Second life interface. As another exam-

ple, Emiliano musolesi and his colleagues have proposed the 

Cenceme platform, a personal sensing system that lets social 

network members share presence and activity information via 

mobile phones.13 the sensor readings from mobile phones that 

reflect people’s activities are virtually represented in Second 

life. this work targets a broad set of problems from activity rec-

ognition and visualization to intermittent cell phone connectiv-

ity and privacy issues.
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sequences in relational tables using a 
new MATCH RECOGNIZE clause.6 In the stan-
dard SQL syntax, this clause follows a 
table name in the FROM part and enables 
us to match the specified pattern on 
that table. Thus, the original language 
proposal assumes that pattern-match-
ing queries will be applied over contigu-
ous rows in a given relational table. In 
DejaVu, we’ve extended the MySQL 
language parser to follow a similar 
syntax, but we also allow users to at-
tach the MATCH RECOGNIZE clause to both 
archived as well as live stream tables. In 
fact, we interpret that in the latter case, 
the MATCH RECOGNIZE clause defines a “se-
mantic window” over the live stream. 
This interpretation is in perfect agree-
ment with the traditional SQL syntax 
for time and count-based windows (see 
www.streamsql.org).7 We illustrate the 
MATCH RECOGNIZE clause’s details in the fol-
lowing section.

smartrFlib on second life
Consider a typical library with many 
books and registered users. In an 
RFID-based scenario, all books and li-
brary users would need passive RFID 
tags that could uniquely identify them. 
Additionally, multiple RFID reader de-
vices would be located at key points in 
the library, each with a well-defined 
role. Readers placed at the library exit, 
for example, would keep track of books 
and people leaving the library, whereas 
readers installed near each bookshelf 
would monitor automatic book check-
ins. Through continuous reports from 
these readers, we could track each 
book object’s current location as users 
removed it from its designated shelf. 
More important, we could automati-
cally detect important library events 
such as book check-ins, check-outs, ille-
gal check-outs (such as reference books 
or quota violations), and thefts. We’d 
want to detect these events in real time 
so that library personnel could take any 
necessary action immediately. 

We developed our SmartRFLib ap-
plication to perform a similar function 
as in the scenario we just described. We 

implemented SmartRFLib on the De-
jaVu prototype system and ran it on a 
simplified library setup that we physi-
cally created in our ETH lab space. In 
this setup, we installed three Alien ALR 
8800 RFID readers (representing shelf, 
checkout station, and exit) in distant 
corners of the lab room. We tagged 
several of our existing textbooks with 
RFID labels (Electronic Product Code 
Class 1). We also labeled several name 
tags to represent library users’ ID cards. 
We demonstrated SmartRFLib to a 
few different audiences using this lab 
setup, and we’ll present it as a use-case 
scenario for DejaVu at an interactive 
demonstration session at the upcoming 
Special Interest Group on Management 
of Data (SIGMOD) conference.4 In the 
meantime, we’ve initiated contact with 
ETH Zurich Library Services, which 
recently started using an RFID-based 
self-checkout setup in a few department 
libraries (for example, the “Green Li-
brary” in the Environmental Sciences 
Department; www.ethbib.ethz.ch/dez/
gruen_e.html). In the future, we’re hop-
ing to collaborate more closely with 
them to improve our application and 
install it in a real library setup.

This RFID-based sensing infrastruc-
ture helps us track objects’ physical lo-
cations, but we also want to be able to 
view them in the virtual world. Thus, 
we built a virtual representation of 
our library in Second Life (see www.
secondlife.com), a 3D virtual world on 
the Web that’s entirely user-created. It’s 
organized into islands further divided 
into parcels, which users (represented 
by avatars) can buy and modify. As 
Figure 2 shows, the SmartRFLib vir-
tual library resides at the ETH Island 

in Second Life. Through this virtual 
library, we can visualize the detected 
library events in real time. As such, 
SmartRFLib connects the real-world 
events DejaVu detects using real-time 
readings from an RFID sensor network 
with their representations in Second 
Life. Through this real-time visualiza-
tion interface, library management or 
building security personnel can moni-
tor important library events more eas-
ily. Furthermore, once this real-world 
virtual connection is established, users 
could reflect virtual happenings into 
the real world in different forms, such 
as notification messages, database up-
dates, or even physical device actua-
tions, as we discuss later.

The entire SmartRFLib implementa-
tion follows a three-tier system archi-
tecture, similar to the one in Figure 3 
(although the arrows in the figure run 
only from the physical world toward 
the virtual one, the reverse is also pos-
sible, though we focus primarily on the 
former in this article). At the bottom, 
the data acquisition layer provides the 
actual link with the real world. It takes 
in raw RFID readings from the readers, 
turns them into “primitive events,” and 
sends these events to the event process-
ing layer. This layer (DejaVu) processes 
these primitive events to detect a set 
of more complex events in the library. 
When it does so, the event processing 
layer communicates with the visualiza-
tion layer, which then updates the Sec-
ond Life interface to display the corre-
sponding alerts in the virtual world. 

rFiD Data acquisition
The RFID data acquisition layer’s 
main responsibility is to interact with 

Figure 2. SmartRFLib on 
Second Life. We built this 
virtual library on the ETH 
Island in Second Life to 
visualize important library 
events as they happen in the 
real world.
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the physical world via the RFID hard-
ware—which captures the presence 
of people and objects in its vicinity—
and accordingly provide event tuples 
representing these observations to the 
event processing layer. The main chal-
lenge in data acquisition is dealing with 
the RFID data, which is typically in-
accurate (so-called “dirty data”) and 
large in volume. Inaccuracy can be 
due to missed and unreliable readings 
or inconsistent readings across mul-
tiple readers. The system must clean 
and transform dirty data into an event 
stream before it goes to the query- 
processing layer. Furthermore, the sys-
tem must compress redundant readings 
so they don’t unnecessarily overwhelm 
the upper system layers with high data 
volumes.

This layer accomplishes data acqui-
sition in three steps: first, it captures 
the RFID readings and puts them into 
a raw data sink. Then, it cleans the raw 
readings using a probabilistic data-
cleaning algorithm. Finally, it reduces 
the cleaned data via an application-
aware data-compression algorithm.

The data cleaning step is critical be-

cause it ensures that the system passes 
along only correct readings to the up-
per layers. We based our data-cleaning 
approach on the adaptive data-clean-
ing method Shawn Jeffery and his col-
leagues proposed.8 In this method, the 
system collects a window of RFID read-
ings over several reading cycles and, if it 
observes a tag with enough confidence 
within this window, reports that tag as 
a reading  (see Figure 4). Furthermore, 
the system adaptively adjusts the read-
ing window size based on the detected 
objects’ moving patterns, leading to 
lower error rates. 

Jeffery proposed an abstraction layer 
that separates physical RFID devices 
and applications to provide metaphysi-
cal data independence (MDI).9 With-
out this separation, applications would 
need to handle any errors in the sens-
ing devices, making these applications 
complex, brittle, and difficult to change 
due to their dependence on the sensor 
devices. MDI essentially shields appli-
cations from the underlying problems 
that occur when dealing with physical 
devices directly. In the SmartRFLib 
application, we also followed an MDI-

based approach for data cleaning, 
which was quite effective. However, 
we identified a limitation of this general 
approach when we were dealing with 
the data compression problem.

In short, cleaning RFID data im-
proves correctness but doesn’t avoid the 
problem of large data volumes, which is 
critical for system performance. To deal 
with this issue, we compress cleaned 
tuples by representing certain readings 
with fewer tuples. As Figure 4 shows, 
we’ve developed two alternative com-
pression techniques: the first is based 
on periodic responses from tags and the 
second is based on momentary changes 
in tag status. The event processing layer 
can choose one of these techniques for 
each complex event that it’s trying to 
detect. For example, a theft-detection 
event might care only about the first-
time reading of an RFID tag (the sec-
ond technique), whereas the shelf event 
might be interested in getting periodic 
lists of all currently present books on 
a particular shelf (the first technique). 
The key idea here is to customize the 
compression method according to each 
complex event’s semantic need in the 
application.

The MDI approach can support ap-
plication requirements in a generic way 
but isn’t so easy to customize based 
on different application needs; we can 
compress data more effectively if we 
take application semantics into ac-
count. So, we extended the MDI ap-
proach to allow a parametric interface 
between the application layer and the 
physical device layer, thus enabling us-
ers to customize desired data acquisi-
tion features.

event Processing with Dejavu
The event processing layer is situated 
in the middle of our architecture and 
must thus communicate with both the 
data-acquisition layer and the visual-
ization layer. On one side, it collects 
the incoming input streams from the 
lower layer; on the other, when it de-
tects an important event, it informs 
the upper layer to update relevant ap-
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Figure 3. A three-tier architecture for cross-reality environments. The data 
acquisition layer interfaces with the sensing infrastructure to ensure that the 
system can correctly collect primitive sensor events. The event processing layer 
turns the primitive events into complex ones of interest for the virtual world. The 
visualization layer interfaces with users via the virtual world. 
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plication state and associated real-time 
displays. The event processor’s main 
responsibility is to run complex event-
detection queries over the input to pro-
cess and transform primitive RFID 
events into semantically richer ones 
that represent alerts of interest to the 
modeled application.

In our SmartRFLib application, 
the data acquisition layer feeds RFID 
readings for books and people into the 
DejaVu query-processing engine via 
live stream store instances. We mod-
eled five library events in SmartRFLib: 
book check-in, book checkout, illegal 
checkout of reference books, illegal 
checkout due to exceeding borrowing 
quotas, and book theft. We express 
each of these as a continuous query 
written in our SQL-based language. 
DejaVu then parses each continuous 
query into a corresponding MySQL 
query plan, augmented with a finite 
state machine that represents the pat-
tern clause in the query. The DejaVu 
query-processing engine then executes 
these query plans continuously, report-
ing the detected events as real-time 
streams of alerts.

Let’s examine a library event. Given a 
live stream of book readings Books(Tstamp, 
ReaderId, TagId) from the RFID readers, we 
express the book-theft complex event in 
our SQL-based language as follows:

SELECT notify_theft(tstamp, book_tag)
FROM Books MATCH_RECOGNIZE(
    PARTITION BY TagId
    MEASURES B.Tstamp AS tstamp,
             B.TagId AS book_tag
    ONE ROW PER MATCH
    AFTER MATCH SKIP PAST LAST ROW
    INCREMENTAL MATCH
    PATTERN(A* B)
    DEFINE A AS ((A.ReaderId != Checkout) AND
                 (LAST(A.Tstamp)-FIRST(A.Tstamp)
                  < 5 MIN))
           B AS (B.ReaderId = Exit)
    );

In this example, the MATCH RECOGNIZE 
clause consists of an event pattern defi-
nition (that is, PATTERN ... DEFINE) together 

with some modifiers that indicate how 
the system should perform the match. 
We define the book-theft event pattern 
as zero or more book readings that 
haven’t been reported at a checkout 
reader within a five-minute time win-
dow, followed by a reading detected 
at an exit reader. The system applies 
this pattern separately to each book 
stream partitioned by a book tag iden-
tifier (PARTITION BY TagId), and in an in-
cremental fashion (INCREMENTAL MATCH). 
The INCREMENTAL MATCH clause specifies 
that the system can trigger a match-
ing event every time it receives a new 
input data element (as opposed to MAXI-
MAL MATCH, in which the system would  
trigger an event only after it finished 
matching the longest sequence of all 
events satisfying the pattern). ONE ROW 
PER MATCH indicates that for each match 
the system finds, it will output only 
one result tuple. AFTER MATCH SKIP PAST 
LAST ROW indicates that after the system 
finds a match, it will continue the pat-
tern-matching operation with the next 
tuple that follows the end of the previ-
ously matched pattern. MEASURES shows 
further transformations in the output 
that the user can then use in the SELECT 
clause. Finally, the system invokes a 

user-defined function (notify theft) as the 
query result for each match found.

Figure 5 shows the FSM that corre-
sponds to our example. It’s essentially 
an internal representation of the com-
plex event pattern specified in PATTERN 
... DEFINE in the book-theft query. Every 
time the FSM reaches the final state, it 
invokes the notify theft function, raising 
an alert message that DejaVu will send 
to the virtual library.

Using this SQL-based CEP language 
provides several advantages. First, its 
declarative nature helps program-
mers focus on the pattern they want 
to match rather than on specifying a 
detailed FSM directly. Second, as with 
traditional databases, we can com-
pile a SQL-based specification into 
an algebraic query plan for optimiza-
tion and execution. This also applies 
when the query plan contains FSMs. 
Finally, its syntax is easy to learn and 
use due to widespread familiarity with 
SQL. However, the CEP language we 
use also presents a trade-off between 
how much the programmer can ex-
press (for example, various matching 
modes) and the degree of query com-
plexity exposed to the programmer, 
which risks lessening the language’s  

Compression technique 1 Compression technique 2

Data compression
period = 3 epochs

Data cleaning
Wi = 3 epochs

. . .
. . .

Tag enter Tag exit

Figure 4. RFID data cleaning and compression. Raw RFID readings are cleaned and 
compressed before they’re passed on to the higher layers of the system.
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declarativeness. However, this isn’t 
specific to only the language that we 
use; other alternative pattern-matching 
languages also carry similar risk.2,10

virtual representation   
in second life
The visualization layer constitutes our 
architecture’s topmost layer. In addi-
tion to certain traditional GUI tasks 
(such as browser-based result displays 
for specific queries over the library 
database), this layer is responsible 
mainly for interacting with the virtual 
library that we’ve created in Second 
Life. Second Life operates on the ba-
sis of a client-server architecture, and 
the most important servers are those 
running the simulator software. Each 
simulator server is responsible for a 
256 × 256 meter parcel. The simula-
tor runs the physics engine, conducts 
collision detection, tracks where all the 
objects are, and sends their locations to 

a viewer program running on 
the client side.

Visualizing the real-time 
library events based on the 
alerts the event processing 
layer generates requires the 
system to control objects’ 
states in the virtual world. To 
initiate a change for a Second 
Life object, we must run a 
small script written in the Lin-
den Scripting Language (LSL) 
for it. We can define such 

scripts individually for each object and 
program them to apply one or more of 
the following state changes in the virtual 
world: changing an existing object’s po-
sition, color, or transparency, attaching 
a given text to an existing object, playing 
a sound, or creating a new object.

Figure 6 shows how Second Life vi-
sualizes a book-theft alert from our 
earlier example (exit gates turn red 
and an alarm sounds).

We faced a couple of important 
challenges when building our virtual 
library in Second Life. When repre-
senting real events in the virtual world, 
for example, changes that these events 
cause should look realistic; at the same 
time, they must also be informative 
and intuitive. We found this difficult to 
achieve for some of our library events. 
For example, we had to create a special 
wall for visualizing checked-out books 
because simply making them invisible 
wasn’t a viable option.

A second challenge was ensuring 
low-latency communication with the 
virtual world. As a design goal, we 
wanted to implement this communi-
cation without any modification to 
the Second Life viewer software. We 
considered two methods: XML RPC 
requests coming from outside Sec-
ond Life, and HTTP requests invoked 
from within it. We can implement the 
RPC-based approach more elegantly, 
but it was unpredictably slow (up to a 
few minutes of latency). Currently, for 
most applications deployed on Second 
Life, this delay is probably acceptable, 
but for our virtual library, even a few 
seconds delay would be unacceptable 
because an event such as a book theft 
must be communicated in real time.

To deal with the latency issue, we 
developed an HTTP-based approach 
on the basis of attaching a script to 
each object that can receive an event. 
This script then checks periodically 
whether the object should change its 
state. These are actually simple HTTP 
requests to a Web address. We chose 
this method because it let us have rela-
tively short response times (less than 
one second). This poll-based approach 
puts considerable load on the server 
handling requests, especially if the li-
brary has many books. However, we 
can adjust the poll period for each ob-
ject according to the latency require-
ments of each event associated with 
that object (for example, two seconds 
for book objects and one second for 
gate objects), which makes the issue 
less critical. We can also imagine using 
a hybrid approach—that is, having the 
real-time alarm on just the gates and 
thus having only the gate working with 
HTTP requests while the books receive 
information through XML RPC.

A lthough we focused here on 
the information flow from 
the real world toward the 
virtual one, as mentioned, 

we believe that our architecture can 
also work in the other direction. For ex-

Books (Tstamp,
            ReaderId,
            TagId)

Book Theft!

B. ReaderId = “Exit”

A B F

�

A. ReaderId != “Checkout”

Figure 5. Finite state machine (FSM) for the book-theft event. The FSM represents 
the complex event pattern specified in the book theft query.

Figure 6: Book-theft event. This event causes exit 
gates to turn red and an alarm to sound in the 
virtual library.
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ample, in SmartRFLib, you could walk 
through the virtual library and borrow 
virtual books, which would automati-
cally be checked out from the real li-
brary and shipped to your real-world 
address. Such interactions could have 
many advantages compared to today’s 
text-based Web interfaces. As in a simi-
lar real-life situation, users in the virtual 
world could easily inspect other books 
similar to a known book by looking 
through the nearby shelves. In general, 
a Second Life-like virtual world inter-
face makes human-computer interac-
tion closer to the real experience, and, 
as we’ve shown, event processing can 
contribute to this process from many 
perspectives.

DejaVu can already run a few appli-
cation scenarios, including SmartRFLib 
and a financial pattern-matching ap-
plication.4 We’re currently working on 
measuring and improving its query-
processing performance based on a few 
optimization ideas, including one that 
exploits recurring patterns in FSM op-
timization. Future work also includes 
a more detailed investigation of adap-
tive techniques that are built into our 
system architecture, such as switching 
between pull and push models for the 
flow of data in the system.
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