
34 PERVASIVE computing Published by the IEEE CS n 1536-1268/09/$25.00 © 2009 IEEE

C r o s s - r e a l i t y e n v i r o n m e n t s

R ecent developments in sensor
network technologies have paved
the way for the widespread use of
small, embedded sensing devices
in many pervasive application

domains. Such sensor networks help integrate
physical reality into virtual computing plat-
forms, letting us sense and react to real-world
events in an automated fashion. Meanwhile,
another class of Web-based computing plat-
forms has recently emerged that enables virtual
simulations of the real world over which people
can interact online. Cross-reality environments
could serve as a bridge across sensor networks

and Web-based virtual worlds,
improving people’s interac-
tions with each other and the
physical world. This capability
could help many application
areas achieve computational
pervasiveness.

Sensor networks generate
data that often indicate certain complex phe-
nomena in the real world. We can detect these
phenomena only by applying higher-level infer-
ence techniques to collected sensor data. Com-
plex event processing (CEP) systems address
this need by enabling pattern-matching queries
over primitive sensor events to detect more com-
plex events that carry higher semantic value to
the application.1–3 Common examples include
fire in a building, a burglar in a house, theft in a
library, or shoplifting in a grocery store.

We see CEP as an essential functionality
for cross-reality applications. Through it, we
can turn raw sensor data generated in the real
world into meaningful information more suit-
able for representation in the virtual world.
For example, rather than simply showing what
value each temperature or smoke sensor is re-
porting, we can show more interesting events,
such as fire. Such information is more valuable
for users and is certainly easier and more real-
istic to represent in a virtual world. As such, a
CEP system can act both as a transformer and
a filter between potentially high-volume raw
sensor readings from the physical world and
their rich virtual representation: while simple
events get transformed into more complex
ones, low-level events that would otherwise be
regarded as noise or clutter in the virtual world
get filtered out.

Cross-reality systems face several challenges,
including collecting accurate data from the real
world, turning collected data into more mean-
ingful events, and representing and updating
events in the virtual world in real time. Fur-
thermore, these systems must provide high per-
formance and scalability to ensure that we can
link events across the two environments with
the lowest possible latency.

To address these issues, ETH Zurich devel-
oped the DejaVu system,4 an event stream pro-
cessing system that extends other CEP systems
to provide declarative pattern matching over live
and archived event streams. We then built the

Complex event processing (CEP) is an essential functionality for cross-
reality environments. The DejaVu event processing system supports
SmartRFLib, a cross-reality application that enables real-time event
detection over RFID data streams feeding a virtual library on Second Life.

event Processing
support for Cross-
reality environments

Nihal Dindar, Çağrı Balkesen,
Katinka Kromwijk,
and Nesime Tatbul
ETH Zurich

July–SEptEmbEr 2009 PERVASIVE computing 35

SmartRFLib application around De-
jaVu to illustrate our event processing
system’s main features and demonstrate
how event processing support can be
useful for cross-reality applications.

the Dejavu system
DejaVu targets a broad range of appli-
cations, from sensor-based real-time
monitoring to financial market data
analysis. One of its primary goals is to
enable seamless integration of complex
event pattern-matching functionality
over live and stored event sequences
behind a common declarative query in-
terface. This not only enables arbitrary
event correlations within or across dif-
ferent time domains but can also help
predict future events because an impor-
tant class of interesting event patterns
are those that repeat in time, creating a
sense of deja vu.

architecture
With DejaVu, our goal was to develop
a coherent system that unifies interface
and functionality but lets us custom-
ize implementation and optimization
methods across live and historical
data sequences. To realize this goal,
our approach builds on and signifi-
cantly extends a relational database
engine architecture. More specifically,
we built DejaVu on top of the MySQL
open source database system.5 As such,
we follow MySQL’s basic architectural
skeleton while making new extensions
to support different forms of pattern-

matching queries (one-time, continu-
ous, and hybrid) as necessary.

Figure 1 illustrates DejaVu’s high-level
architecture. A key MySQL feature we
exploit in our system design is its plug-
gable storage engine API. Through this
API, we can define and plug in custom
storage engines to work seamlessly with
the MySQL query-processing engine.
In addition to the traditional relational
store MySQL provides, which we occa-
sionally need for table lookups, we also
created two new storage engines:

Live stream storage•	 . This is an in-
memory store that accepts push-
based inputs. It essentially acts like
a queue, feeding live events into the
query-processing engine as they ar-
rive. The query processor can access
the live stream store either in pull
mode (that is, MySQL-style) or push
mode. We added the latter option
in our design to enable an adaptive
switch between these two modes and
to flexibly cope with unpredictable
bursts in input load inside the storage
engine. In other words, under high
load, we switch to pull mode and let
the storage handle the problem.
Archived stream storage•	 . DejaVu can
also fully or selectively materialize
live input events into an archive store,
which respects the events’ predefined
order and allows updates only in the
form of appends. It also provides fea-
tures such as data compression and
efficient access methods for historical

pattern-matching queries. Further-
more, because the archive is a persis-
tent store, it can support the live store
in dealing with bursts and failures.

In addition to creating two new stor-
age engines, we also made an important
extension to the MySQL query proces-
sor. More specifically, we introduced a
finite state machine (FSM) implementa-
tion to drive the evaluation of the pat-
tern-matching queries; the FSM runs as
an integral part of the MySQL query
plan. We present an example FSM later
in the article.

As with most relational database
systems, MySQL allows only one-time
queries. So, we added new mechanisms
into the MySQL query-processing en-
gine for query life-cycle management
and continuous result reporting for
long-running queries over streaming
data.

A key design decision in DejaVu was
to build the pattern-matching engine on
top of MySQL mainly so that we could
exploit MySQL’s extensible storage en-
gine API for the two different stream
stores that we wanted to create. An ad-
ditional advantage was that extending
MySQL’s parsing and execution engine
was rather convenient and let us imple-
ment the pattern-matching extensions
in our SQL-based CEP language.

language
Any event processing system needs
a powerful language for expressing
events. In DejaVu, we express complex
event patterns through an SQL-like de-
clarative query language. This language
is based on a recent language standard
proposal for pattern matching on row

Query
processing

engine

Queries

DejaVu

Detected
events

Input streams

Pl
ug

ga
bl

e
st

or
ag

e
en

gi
ne

 A
PI

Archived stream
store

Live stream
store

Traditional
store

Data
Control

Figure 1. DejaVu system architecture.
This architecture builds on and extends
the MySQL relational database engine
architecture with event pattern
matching queries over both live and
archived streams of events stored in
separate storage engines.

36 PERVASIVE computing www.computer.org/pervasive

Cross-reality environments

T he work we describe in the main text builds on and ex-

tends previous work on sensor data acquisition, data

stream and complex event processing, and sensor data integra-

tion into online virtual worlds.

Earlier sensor querying systems such as tinyDb1 focused

on energy-efficient data acquisition and query-processing

techniques over sensor networks, such as in-network aggre-

gation. model-driven data-acquisition systems such as bbQ2

used learning-based probabilistic models to improve efficiency

further by exploiting temporal and spatial correlations across

sensor readings. more recently, researchers have proposed

statistical techniques for adaptive cleaning of rFID data.3,4 Our

SmartrFlib application directly implements the data-cleaning

algorithms this work proposes. As we discuss in the main text,

we’ve found that this approach has some limitations in the

compression step of rFID data acquisition, for which we devise

a flexible solution.

A body of previous work also exists on data stream and com-

plex event processing systems that closely relates to our DejaVu

system. First of all, DejaVu is a stream-processing system and,

as such, builds on the fundamental concepts that data stream

management systems such as Aurora,5 the Stanford Stream

Data manager (Stream),6 and telegraphCQ7 propose. DejaVu

differs from these systems in that in addition to managing live

streams, it can also store and process archived streams. Addi-

tionally, its architecture extends a relational database architec-

ture, and it focuses on pattern-matching queries for complex

event processing. DejaVu is closer in spirit to complex-event

processing (CEp) systems such as HiFi,8 Stream-based and

Shared Event processing (SASE),9 and Cayuga.10 Its fundamen-

tal difference from these systems is its support for integrated

query processing over live and archived event streams. (the

HiFi project demonstrated a similar library scenario in earlier

work, but its main focus was on the rFID event acquisition

problem, and it used a different architecture and a more re-

stricted event language.11)

Finally, SmartrFlib isn’t the first cross-reality application to

integrate sensor data into Second life. the plug ubiquitous

networked sensing platform developed at the mIt media lab

provides a virtual representation within Second life for brows-

ing sensor data streaming from the plug network,12 called

the Shadow lab. Its users can interact with the plug net-

work through the Second life interface. As another exam-

ple, Emiliano musolesi and his colleagues have proposed the

Cenceme platform, a personal sensing system that lets social

network members share presence and activity information via

mobile phones.13 the sensor readings from mobile phones that

reflect people’s activities are virtually represented in Second

life. this work targets a broad set of problems from activity rec-

ognition and visualization to intermittent cell phone connectiv-

ity and privacy issues.

REfEREnCES

 1. S. madden et al., “the Design of an Acquisitional Query processor
for Sensor Networks,” Proc. ACM SIGMOD Conf., ACm press, 2003,
pp. 491–502.

 2. A. Deshpande et al., “model-Driven Data Acquisition in Sensor
Networks,” Proc. 30th Int’l Conf. Very Large Databases Conf., morgan
Kaufmann, 2004. pp. 588–599.

 3. S.r. Jeffery, m. Garofalakis, and m.J. Franklin, “Adaptive Cleaning for
rFID Data Streams,” Proc. 32nd Int’l Conf. Very Large Databases Conf.,
ACm press, 2006, pp. 163–174.

 4. S.r. Jeffery, m.J. Franklin, and m.N. Garofalakis, “An Adaptive rFID
middleware for Supporting metaphysical Data Independence,” Very
Large Databases J., vol. 17, no. 2, 2008.

 5. D. Abadi et al., “Aurora: A New model and Architecture for Data
Stream management,” Very Large Databases J., special issue on best
papers of VlDb 2002, vol. 12, no. 2, 2003.

 6. A. Arasu, S. babu, and J. Widom, “the CQl Continuous Query lan-
guage: Semantic Foundations and Query Execution,” Very Large Da-
tabases J., vol. 15, no. 2, 2006.

 7. S. Chandrasekaran et al., “telegraphCQ: Continuous Dataflow pro-
cessing for an uncertain World,” Proc. Conf. Innovative Data Systems
Research (CIDr 03), 2003.

 8. m.J. Franklin et al., “Design Considerations for High Fan-In Systems:
the HiFi Approach,” Proc. Conf. Innovative Data Systems Research
(CIDr 05), 2005.

 9. D. Gyllstrom et al., “SASE: Complex Event processing over Streams
(Demo),” Proc. Conf. Innovative Data Systems Research (CIDr 07),
2007, pp. 407–411.

 10. A. Demers et al., “A General purpose Event monitoring System,”
Proc. Conf. Innovative Data Systems Research (CIDr 07), 2007, pp.
412–422.

 11. S. rizvi et al., “Events on the Edge (Demo),” Proc. ACM SIGMOD
Conf., ACm press, 2005, pp. 885–887.

 12. J. lifton et al., “A platform for ubiquitous Sensor Deployment in Oc-
cupational and Domestic Environments,” Proc. 6th Int’l Conf. Infor-
mation Procesing in Sensor Networks (ISpN 07), ACm press, 2007, pp.
119–127.

 13. m. musolesi et al., “the Second life of a Sensor: Integrating real-
world Experience in Virtual Worlds using mobile phones,” Proc.
Workshop on Embedded Networked Sensors (HOtEmNets 08), ACm
press, 2008.

related Work in event Processing and virtual Worlds

July–SEptEmbEr 2009 PERVASIVE computing 37

sequences in relational tables using a
new MATCH RECOGNIZE clause.6 In the stan-
dard SQL syntax, this clause follows a
table name in the FROM part and enables
us to match the specified pattern on
that table. Thus, the original language
proposal assumes that pattern-match-
ing queries will be applied over contigu-
ous rows in a given relational table. In
DejaVu, we’ve extended the MySQL
language parser to follow a similar
syntax, but we also allow users to at-
tach the MATCH RECOGNIZE clause to both
archived as well as live stream tables. In
fact, we interpret that in the latter case,
the MATCH RECOGNIZE clause defines a “se-
mantic window” over the live stream.
This interpretation is in perfect agree-
ment with the traditional SQL syntax
for time and count-based windows (see
www.streamsql.org).7 We illustrate the
MATCH RECOGNIZE clause’s details in the fol-
lowing section.

smartrFlib on second life
Consider a typical library with many
books and registered users. In an
RFID-based scenario, all books and li-
brary users would need passive RFID
tags that could uniquely identify them.
Additionally, multiple RFID reader de-
vices would be located at key points in
the library, each with a well-defined
role. Readers placed at the library exit,
for example, would keep track of books
and people leaving the library, whereas
readers installed near each bookshelf
would monitor automatic book check-
ins. Through continuous reports from
these readers, we could track each
book object’s current location as users
removed it from its designated shelf.
More important, we could automati-
cally detect important library events
such as book check-ins, check-outs, ille-
gal check-outs (such as reference books
or quota violations), and thefts. We’d
want to detect these events in real time
so that library personnel could take any
necessary action immediately.

We developed our SmartRFLib ap-
plication to perform a similar function
as in the scenario we just described. We

implemented SmartRFLib on the De-
jaVu prototype system and ran it on a
simplified library setup that we physi-
cally created in our ETH lab space. In
this setup, we installed three Alien ALR
8800 RFID readers (representing shelf,
checkout station, and exit) in distant
corners of the lab room. We tagged
several of our existing textbooks with
RFID labels (Electronic Product Code
Class 1). We also labeled several name
tags to represent library users’ ID cards.
We demonstrated SmartRFLib to a
few different audiences using this lab
setup, and we’ll present it as a use-case
scenario for DejaVu at an interactive
demonstration session at the upcoming
Special Interest Group on Management
of Data (SIGMOD) conference.4 In the
meantime, we’ve initiated contact with
ETH Zurich Library Services, which
recently started using an RFID-based
self-checkout setup in a few department
libraries (for example, the “Green Li-
brary” in the Environmental Sciences
Department; www.ethbib.ethz.ch/dez/
gruen_e.html). In the future, we’re hop-
ing to collaborate more closely with
them to improve our application and
install it in a real library setup.

This RFID-based sensing infrastruc-
ture helps us track objects’ physical lo-
cations, but we also want to be able to
view them in the virtual world. Thus,
we built a virtual representation of
our library in Second Life (see www.
secondlife.com), a 3D virtual world on
the Web that’s entirely user-created. It’s
organized into islands further divided
into parcels, which users (represented
by avatars) can buy and modify. As
Figure 2 shows, the SmartRFLib vir-
tual library resides at the ETH Island

in Second Life. Through this virtual
library, we can visualize the detected
library events in real time. As such,
SmartRFLib connects the real-world
events DejaVu detects using real-time
readings from an RFID sensor network
with their representations in Second
Life. Through this real-time visualiza-
tion interface, library management or
building security personnel can moni-
tor important library events more eas-
ily. Furthermore, once this real-world
virtual connection is established, users
could reflect virtual happenings into
the real world in different forms, such
as notification messages, database up-
dates, or even physical device actua-
tions, as we discuss later.

The entire SmartRFLib implementa-
tion follows a three-tier system archi-
tecture, similar to the one in Figure 3
(although the arrows in the figure run
only from the physical world toward
the virtual one, the reverse is also pos-
sible, though we focus primarily on the
former in this article). At the bottom,
the data acquisition layer provides the
actual link with the real world. It takes
in raw RFID readings from the readers,
turns them into “primitive events,” and
sends these events to the event process-
ing layer. This layer (DejaVu) processes
these primitive events to detect a set
of more complex events in the library.
When it does so, the event processing
layer communicates with the visualiza-
tion layer, which then updates the Sec-
ond Life interface to display the corre-
sponding alerts in the virtual world.

rFiD Data acquisition
The RFID data acquisition layer’s
main responsibility is to interact with

Figure 2. SmartRFLib on
Second Life. We built this
virtual library on the ETH
Island in Second Life to
visualize important library
events as they happen in the
real world.

38 PERVASIVE computing www.computer.org/pervasive

Cross-reality environments

the physical world via the RFID hard-
ware—which captures the presence
of people and objects in its vicinity—
and accordingly provide event tuples
representing these observations to the
event processing layer. The main chal-
lenge in data acquisition is dealing with
the RFID data, which is typically in-
accurate (so-called “dirty data”) and
large in volume. Inaccuracy can be
due to missed and unreliable readings
or inconsistent readings across mul-
tiple readers. The system must clean
and transform dirty data into an event
stream before it goes to the query-
processing layer. Furthermore, the sys-
tem must compress redundant readings
so they don’t unnecessarily overwhelm
the upper system layers with high data
volumes.

This layer accomplishes data acqui-
sition in three steps: first, it captures
the RFID readings and puts them into
a raw data sink. Then, it cleans the raw
readings using a probabilistic data-
cleaning algorithm. Finally, it reduces
the cleaned data via an application-
aware data-compression algorithm.

The data cleaning step is critical be-

cause it ensures that the system passes
along only correct readings to the up-
per layers. We based our data-cleaning
approach on the adaptive data-clean-
ing method Shawn Jeffery and his col-
leagues proposed.8 In this method, the
system collects a window of RFID read-
ings over several reading cycles and, if it
observes a tag with enough confidence
within this window, reports that tag as
a reading (see Figure 4). Furthermore,
the system adaptively adjusts the read-
ing window size based on the detected
objects’ moving patterns, leading to
lower error rates.

Jeffery proposed an abstraction layer
that separates physical RFID devices
and applications to provide metaphysi-
cal data independence (MDI).9 With-
out this separation, applications would
need to handle any errors in the sens-
ing devices, making these applications
complex, brittle, and difficult to change
due to their dependence on the sensor
devices. MDI essentially shields appli-
cations from the underlying problems
that occur when dealing with physical
devices directly. In the SmartRFLib
application, we also followed an MDI-

based approach for data cleaning,
which was quite effective. However,
we identified a limitation of this general
approach when we were dealing with
the data compression problem.

In short, cleaning RFID data im-
proves correctness but doesn’t avoid the
problem of large data volumes, which is
critical for system performance. To deal
with this issue, we compress cleaned
tuples by representing certain readings
with fewer tuples. As Figure 4 shows,
we’ve developed two alternative com-
pression techniques: the first is based
on periodic responses from tags and the
second is based on momentary changes
in tag status. The event processing layer
can choose one of these techniques for
each complex event that it’s trying to
detect. For example, a theft-detection
event might care only about the first-
time reading of an RFID tag (the sec-
ond technique), whereas the shelf event
might be interested in getting periodic
lists of all currently present books on
a particular shelf (the first technique).
The key idea here is to customize the
compression method according to each
complex event’s semantic need in the
application.

The MDI approach can support ap-
plication requirements in a generic way
but isn’t so easy to customize based
on different application needs; we can
compress data more effectively if we
take application semantics into ac-
count. So, we extended the MDI ap-
proach to allow a parametric interface
between the application layer and the
physical device layer, thus enabling us-
ers to customize desired data acquisi-
tion features.

event Processing with Dejavu
The event processing layer is situated
in the middle of our architecture and
must thus communicate with both the
data-acquisition layer and the visual-
ization layer. On one side, it collects
the incoming input streams from the
lower layer; on the other, when it de-
tects an important event, it informs
the upper layer to update relevant ap-

Visualization layer

Vi
rtu

al
 w

or
ld

Re
al

 w
or

ld

Event processing layer
(DejaVu)

Data acquisition layer

Figure 3. A three-tier architecture for cross-reality environments. The data
acquisition layer interfaces with the sensing infrastructure to ensure that the
system can correctly collect primitive sensor events. The event processing layer
turns the primitive events into complex ones of interest for the virtual world. The
visualization layer interfaces with users via the virtual world.

July–SEptEmbEr 2009 PERVASIVE computing 39

plication state and associated real-time
displays. The event processor’s main
responsibility is to run complex event-
detection queries over the input to pro-
cess and transform primitive RFID
events into semantically richer ones
that represent alerts of interest to the
modeled application.

In our SmartRFLib application,
the data acquisition layer feeds RFID
readings for books and people into the
DejaVu query-processing engine via
live stream store instances. We mod-
eled five library events in SmartRFLib:
book check-in, book checkout, illegal
checkout of reference books, illegal
checkout due to exceeding borrowing
quotas, and book theft. We express
each of these as a continuous query
written in our SQL-based language.
DejaVu then parses each continuous
query into a corresponding MySQL
query plan, augmented with a finite
state machine that represents the pat-
tern clause in the query. The DejaVu
query-processing engine then executes
these query plans continuously, report-
ing the detected events as real-time
streams of alerts.

Let’s examine a library event. Given a
live stream of book readings Books(Tstamp,
ReaderId, TagId) from the RFID readers, we
express the book-theft complex event in
our SQL-based language as follows:

SELECT notify_theft(tstamp, book_tag)
FROM Books MATCH_RECOGNIZE(
 PARTITION BY TagId
 MEASURES B.Tstamp AS tstamp,
 B.TagId AS book_tag
 ONE ROW PER MATCH
 AFTER MATCH SKIP PAST LAST ROW
 INCREMENTAL MATCH
 PATTERN(A* B)
 DEFINE A AS ((A.ReaderId != Checkout) AND
 (LAST(A.Tstamp)-FIRST(A.Tstamp)
 < 5 MIN))
 B AS (B.ReaderId = Exit)
);

In this example, the MATCH RECOGNIZE
clause consists of an event pattern defi-
nition (that is, PATTERN ... DEFINE) together

with some modifiers that indicate how
the system should perform the match.
We define the book-theft event pattern
as zero or more book readings that
haven’t been reported at a checkout
reader within a five-minute time win-
dow, followed by a reading detected
at an exit reader. The system applies
this pattern separately to each book
stream partitioned by a book tag iden-
tifier (PARTITION BY TagId), and in an in-
cremental fashion (INCREMENTAL MATCH).
The INCREMENTAL MATCH clause specifies
that the system can trigger a match-
ing event every time it receives a new
input data element (as opposed to MAXI-
MAL MATCH, in which the system would
trigger an event only after it finished
matching the longest sequence of all
events satisfying the pattern). ONE ROW
PER MATCH indicates that for each match
the system finds, it will output only
one result tuple. AFTER MATCH SKIP PAST
LAST ROW indicates that after the system
finds a match, it will continue the pat-
tern-matching operation with the next
tuple that follows the end of the previ-
ously matched pattern. MEASURES shows
further transformations in the output
that the user can then use in the SELECT
clause. Finally, the system invokes a

user-defined function (notify theft) as the
query result for each match found.

Figure 5 shows the FSM that corre-
sponds to our example. It’s essentially
an internal representation of the com-
plex event pattern specified in PATTERN
... DEFINE in the book-theft query. Every
time the FSM reaches the final state, it
invokes the notify theft function, raising
an alert message that DejaVu will send
to the virtual library.

Using this SQL-based CEP language
provides several advantages. First, its
declarative nature helps program-
mers focus on the pattern they want
to match rather than on specifying a
detailed FSM directly. Second, as with
traditional databases, we can com-
pile a SQL-based specification into
an algebraic query plan for optimiza-
tion and execution. This also applies
when the query plan contains FSMs.
Finally, its syntax is easy to learn and
use due to widespread familiarity with
SQL. However, the CEP language we
use also presents a trade-off between
how much the programmer can ex-
press (for example, various matching
modes) and the degree of query com-
plexity exposed to the programmer,
which risks lessening the language’s

Compression technique 1 Compression technique 2

Data compression
period = 3 epochs

Data cleaning
Wi = 3 epochs

. . .
. . .

Tag enter Tag exit

Figure 4. RFID data cleaning and compression. Raw RFID readings are cleaned and
compressed before they’re passed on to the higher layers of the system.

40 PERVASIVE computing www.computer.org/pervasive

Cross-reality environments

declarativeness. However, this isn’t
specific to only the language that we
use; other alternative pattern-matching
languages also carry similar risk.2,10

virtual representation
in second life
The visualization layer constitutes our
architecture’s topmost layer. In addi-
tion to certain traditional GUI tasks
(such as browser-based result displays
for specific queries over the library
database), this layer is responsible
mainly for interacting with the virtual
library that we’ve created in Second
Life. Second Life operates on the ba-
sis of a client-server architecture, and
the most important servers are those
running the simulator software. Each
simulator server is responsible for a
256 × 256 meter parcel. The simula-
tor runs the physics engine, conducts
collision detection, tracks where all the
objects are, and sends their locations to

a viewer program running on
the client side.

Visualizing the real-time
library events based on the
alerts the event processing
layer generates requires the
system to control objects’
states in the virtual world. To
initiate a change for a Second
Life object, we must run a
small script written in the Lin-
den Scripting Language (LSL)
for it. We can define such

scripts individually for each object and
program them to apply one or more of
the following state changes in the virtual
world: changing an existing object’s po-
sition, color, or transparency, attaching
a given text to an existing object, playing
a sound, or creating a new object.

Figure 6 shows how Second Life vi-
sualizes a book-theft alert from our
earlier example (exit gates turn red
and an alarm sounds).

We faced a couple of important
challenges when building our virtual
library in Second Life. When repre-
senting real events in the virtual world,
for example, changes that these events
cause should look realistic; at the same
time, they must also be informative
and intuitive. We found this difficult to
achieve for some of our library events.
For example, we had to create a special
wall for visualizing checked-out books
because simply making them invisible
wasn’t a viable option.

A second challenge was ensuring
low-latency communication with the
virtual world. As a design goal, we
wanted to implement this communi-
cation without any modification to
the Second Life viewer software. We
considered two methods: XML RPC
requests coming from outside Sec-
ond Life, and HTTP requests invoked
from within it. We can implement the
RPC-based approach more elegantly,
but it was unpredictably slow (up to a
few minutes of latency). Currently, for
most applications deployed on Second
Life, this delay is probably acceptable,
but for our virtual library, even a few
seconds delay would be unacceptable
because an event such as a book theft
must be communicated in real time.

To deal with the latency issue, we
developed an HTTP-based approach
on the basis of attaching a script to
each object that can receive an event.
This script then checks periodically
whether the object should change its
state. These are actually simple HTTP
requests to a Web address. We chose
this method because it let us have rela-
tively short response times (less than
one second). This poll-based approach
puts considerable load on the server
handling requests, especially if the li-
brary has many books. However, we
can adjust the poll period for each ob-
ject according to the latency require-
ments of each event associated with
that object (for example, two seconds
for book objects and one second for
gate objects), which makes the issue
less critical. We can also imagine using
a hybrid approach—that is, having the
real-time alarm on just the gates and
thus having only the gate working with
HTTP requests while the books receive
information through XML RPC.

A lthough we focused here on
the information flow from
the real world toward the
virtual one, as mentioned,

we believe that our architecture can
also work in the other direction. For ex-

Books (Tstamp,
 ReaderId,
 TagId)

Book Theft!

B. ReaderId = “Exit”

A B F

�

A. ReaderId != “Checkout”

Figure 5. Finite state machine (FSM) for the book-theft event. The FSM represents
the complex event pattern specified in the book theft query.

Figure 6: Book-theft event. This event causes exit
gates to turn red and an alarm to sound in the
virtual library.

July–SEptEmbEr 2009 PERVASIVE computing 41

ample, in SmartRFLib, you could walk
through the virtual library and borrow
virtual books, which would automati-
cally be checked out from the real li-
brary and shipped to your real-world
address. Such interactions could have
many advantages compared to today’s
text-based Web interfaces. As in a simi-
lar real-life situation, users in the virtual
world could easily inspect other books
similar to a known book by looking
through the nearby shelves. In general,
a Second Life-like virtual world inter-
face makes human-computer interac-
tion closer to the real experience, and,
as we’ve shown, event processing can
contribute to this process from many
perspectives.

DejaVu can already run a few appli-
cation scenarios, including SmartRFLib
and a financial pattern-matching ap-
plication.4 We’re currently working on
measuring and improving its query-
processing performance based on a few
optimization ideas, including one that
exploits recurring patterns in FSM op-
timization. Future work also includes
a more detailed investigation of adap-
tive techniques that are built into our
system architecture, such as switching
between pull and push models for the
flow of data in the system.

AcknoWLEDgMEnTS
We thank Gautier boder, Florian Keusch, and Ali
Sengül for their contributions to an earlier ver-
sion of the Smart rFID library application, and
michele De lorenzi and Julien Vocat for their help
with Second life. this work has been supported
in part by grants Swiss NSF NCCr mICS 5005-
67322 and Swiss NSF proDoc pDFmp2-122971/1.

REFEREncES
 1. D. Gyllstrom et al., “SASE: Complex

Event Processing over Streams (Demo),”
Proc. Conf. Innovative Data Systems
Research (CIDR 07), 2007, pp. 407–411.

 2. A. Demers et al., “A General Purpose
Event Monitoring System,” Proc. Conf.
Innovative Data Systems Research (CIDR
07), 2007, pp. 412–422.

 3. M. Akdere, U. Çetintemel, and N. Tat-
bul, “Plan-Based Complex Event Detec-
tion across Distributed Sources,” Proc.
Very Large Databases Conf., ACM Press,
2008, pp. 66–77.

 4. N. Dindar et al., “DejaVu: Declarative
Pattern Matching over Live and Archived
Streams of Events (Demo),” to appear in
Proc. ACM Sigmod Conf., ACM Press,
2009.

 5. S. Pachev, Understanding MySQL Inter-
nals, O’Reilly, 2007.

 6. F. Zemke et al., Pattern Matching in
Sequences of Rows, tech. report, ANSI
standard proposal, July 2007.

 7. A. Arasu, S. Babu, and J. Widom, “The
CQL Continuous Query Language:
Semantic Foundations and Query Execu-
tion,” Very Large Databases J., vol. 15,
no. 2, 2006, pp. 121–142.

 8. S.R. Jeffery, M. Garofalakis, and M.J.
Franklin, “Adaptive Cleaning for RFID
Data Streams,” Proc. Very Large Data-
bases Conf., AMC Press, 2006, pp. 163–
174.

 9. S.R. Jeffery, M.J. Franklin, and M.N.
Garofalakis, “An Adaptive RFID Middle-
ware for Supporting Metaphysical Data
Independence,” Very Large Databases J.,
vol. 17, no. 2, 2008, pp. 265–289.

 10. J. Agrawal et al., “Efficient Pattern
Matching over Event Streams,” Proc.
ACM Sigmod Conf., ACM Press, 2008,
pp. 147–160.

For more information on this or any other com-
puting topic, please visit our Digital library at
www.computer.org/csdl.

the Authors
nihal Dindar is a doctoral student and a research assistant in EtH Zurich’s
Computer Science Department. Her research interests are in complex event
processing and stream data management. Dindar has an mS in computer sci-
ence from EtH Zurich. Contact her at dindarn@student.ethz.ch.

Çağrı Balkesen is a doctoral student and a research assistant in EtH Zurich’s
Computer Science Department. His research interests are in performance op-
timization of data stream management systems. balkesen has an mS in com-
puter science from EtH Zurich. Contact him at bcagri@student.ethz.ch.

Katina Kromwijk is a master’s student in EtH Zurich’s Computer Science De-
partment. Her research interests are in Web-based information systems. Krom-
wijk has a bS in computer science from EpF lausanne. Contact her at katinka@
student.ethz.ch.

nesime Tatbul is an assistant professor of computer science at EtH Zurich. Her
research interests are in data management systems, with a recent focus on data
stream processing and networked data management. tatbul has a phD in com-
puter science from brown university. She is a member of the IEEE, IEEE Com-
puter Society, the ACm, and ACm’s Special Interest Group on management of
Data (SIGmOD). Contact her at tatbul@inf.ethz.ch.

