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Abstract

The military is working on embedding sensors in a
“smart uniform” that will monitor key biological
parameters to determine the physiological status
of a soldier. The soldier’s status can only be deter-
mined accurately by combining the readings from
several sensors using sophisticated physiological
models. Unfortunately, the physical environment
and the low-bandwidth, push-based personal-area
network (PAN) introduce uncertainty in the inputs
to the models. Thus the model must produce a
confidence level as well as a physiological status
value. This paper explores how confidence lev-
els can be used to influence data management de-
cisions. In particular, we look at power-efficient
ways to keep the confidence above a given thresh-
old. We also contrast push-based broadcast sched-
ules with other schedules that are made possible
by two-way communication.

1 Introduction
Data management has traditionally been reserved for large
complex software environments in which huge amounts of
data must be processed with limited resources. Modern
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database management systems (DBMS) that run on large
back-office servers are the most well-known embodiment
of this kind of technology. Researchers have recently re-
alized that similar technologies are needed in smaller en-
vironments in which resource limitations are also an issue
[9, 4]. In sensor-based applications, bandwidth and battery
power are typically the scarce resources.

This paper looks at a real sensor-based application in
which results are computed along with a confidence value.
The data management game that we play here is to set
transmission parameters (statically or dynamically) in or-
der to achieve the highest confidence only when the appli-
cation requires it. Our techniques use strategies that are
informed by the confidence models to conserve bandwidth
and power. We discuss these ideas and some possible ap-
proaches in terms of a military physiologic sensing applica-
tion. Our main contribution is in the way that confidences
can be used in this particular application.

The warfighter’s workplace has unique occupational
challenges: from mission demands, the environment, and
combat injuries. Modern dismounted soldiers commonly
engage in intense, mentally and physically demanding 3-
10 day missions, often in rugged terrain or complex urban
settings. Warriors carry heavy loads and are often food and
sleep-restricted. Environmental conditions can vary widely
in terms of ambient temperature, humidity, wind speed,
barometric pressure, and the like. In non-war mode the
military can suffer over 120 heat casualties a year [1]. Un-
der or over hydration can decrement physical and cogni-
tive performance, and increase the risk of heat injury, hy-
ponatremia, or death [14, 15, 16]. Added to the harsh en-
vironment is the possibility of receiving a wound. Once
a warfighter has become a casualty, it is critical that treat-
ment is received quickly during the “golden hour”, which
is the short period of time when proper medical treatment
can mean the difference between life and death. It has been
suggested that 20% of these deaths could be prevented with
rapid intervention [13]. Therefore, wearable physiological
and medical status monitoring can play an important role
in: sustaining physical and mental performance, reducing



the likelihood of non-battle injuries such as heat stroke, and
provide remote notification and medical status of a casu-
alty.

In this paper, we first describe the Warfighter Phys-
iologic Status Monitoring (WPSM) application in detail
in Section 2, where we also present an example scenario
and show how the sensor network behaves under this sce-
nario. We discuss potential data management techniques
that would improve the existing network in Section 3. We
present some preliminary simulation results in support of
these discussions. Section 4 summarizes related work in
the area. We conclude the paper by discussing future direc-
tions in Section 5.

2 The WPSM Application
2.1 The Sensor System

The Medical Research and Material Command (MRMC)
under its Warfighter Physiologic Status Monitoring - Initial
Capability (WPSM-IC) program is developing what is es-
sentially a wellness monitor for each soldier. This system
is comprised of a medical hub which hosts a personal area
network of physiologic and medical sensors and a num-
ber of algorithms. The algorithms estimate the state of
the warfighter in the following areas: Thermal, Hydration,
Cognitive, Life Signs, and Wound Detection. Each area has
four potential states that are coded by color. Green repre-
sents normal-no action is required; Yellow means requires
attention; Red calls for immediate action; and Blue indi-
cates a system fault. For each area’s state, the hub also esti-
mates a confidence level. Confidence refers to the accuracy
level of the state estimated by a model.

The states for each medical and physiologic area are
based upon input to the state algorithms from a number
of sensors distributed around a warfighter’s body, uniform
and equipment, as well as outputs from other algorithms
resident in the medical hub. Figure 1 shows a schematic
of the current WPSM-IC sensor system and the physical
placement of sensor equipment on a warfighter. The in-
gestible thermometer pill is network-enabled, and mea-
sures the temperature of the stomach and intestines, which
is usually a good indication of body core temperature. The
fluid intake monitor measures the amount of fluid con-
sumed through a bladder-style canteen. The life sign de-
tection sensor (LSDS) is an integrated system with multiple
parameters and algorithms including heart rate, respiration
rate, body orientation, actigraphy 1, and skin temperature.
The LSDS also has an integrated ballistic impact detec-
tion device which provides an alert when on-body acous-
tic signals are detected that indicate the probability that a
ballistic projectile has impacted the warfighter. The sleep
performance watch treats sleep as a consumable quantity,
measures it, and uses an algorithm to equate this to appar-
ent cognitive readiness. The soldier also carries a GPS and
other technologies which report his geographic location.

1Actigraphy is a measure of activity patterns [7].

Figure 1: WPSM-IC Sensor System

The sensors are connected to the medical hub by a pro-
prietary wireless RF network [12]. The network was devel-
oped with a number of key requirements unique to a mil-
itary operational environment. The network needed to be
very low power, to allow miniature physiologic sensors to
run for weeks without the need of battery recharge or re-
placement, and also have an ability to reject cross talk and
interference from similar networks borne by other soldiers
when congregated in close proximity to each other. In ad-
dition, the network had to provide a low profile signature
to avoid detection.

The current network uses a detuned (low detectability)
40MHz radio frequency (RF) carrier. Digital data are trans-
mitted from sensors to the medical hub utilizing a pseudo
random push transmission scheme. Sensors are factory set
with an identification number (ID) and random number ta-
ble seed. Sensors are supplied operating in a deep sleep
mode and are activated through an infrared (IR) port, by a
medical hub. Activation associates a particular sensor with
a particular hub. The sensor in a series of initial transmis-
sions sends its transmission schedule (based upon its ID
and random number seed) and clock information to the hub.
Knowing this information, the hub is able to keep itself in
a sleep mode, powering up fully only when it knows to ex-
pect a transmission from an associated sensor. This reduces
power consumption in the hub (∼0.1% duty cycle) and also
guards, to some degree, against cross talk from other sen-
sors. This “push-only” scheme has the benefits of allowing
sensors to only carry transmission circuitry which is acti-
vated on a known schedule, rather than both a transmitter
and receiver. In a “polled” scheme, a sensor would need
to constantly power the receiver circuitry to listen for data
polls, and hence consume more power. Sensors in the cur-
rent network sample every 15 seconds and transmit data at
2400 baud on average every 15 seconds. The transmission
interval can vary from 3 seconds to 27 seconds according
to the pseudo random schedule with each transmission time
interval having an equal probability of occurrence. Each
sensor message is 240 bits long.



Model Skin Temp. Heart Rate Actigraphy Geo-Location Resp. Rate Pill # Sensors
TSkin

√
1

Threshold
√ √

2
Model1

√
1

Model2
√ √

2
Model3

√ √ √ √
4

TCore
√

1

Table 1: Models for estimating thermal state

2.2 Example Scenario: Estimating the Thermal State

In this paper, we focus more closely on the warfighter ther-
mal state, and the sensors and models which allow thermal
state and its confidence to be determined. In what follows,
we describe an example scenario for estimating the thermal
state of a soldier.

The best and most confident method to assess thermal
state is direct measurement of core body temperature by
using the network-enabled ingestible pill. When core body
temperature is greater than 39.5◦C, there is a high prob-
ability that the warfighter is in thermal strain. However,
this method is impractical for continual use. Thus, these
devices are reserved for use during high thermal stress
missions, while encapsulation in nuclear, biological, and
chemical protective suits, and/or if use is indicated by other
algorithms or medics.

When a core temperature pill is not being used, WPSM-
IC plans to use variants of two basic types of models to
provide an estimate of thermal state. The simplest model
is the Threshold Model [2] that takes inputs from two sen-
sors measuring skin temperature and heart rate. Under very
low and high skin temperatures, the confidence in states
produced by this model is higher than otherwise. For mid-
values of temperature, knowing heart rate values improves
confidence. The second model is a first principles model
similar to the USARIEM Scenario Model [6], that takes
metabolic rate, environmental conditions, clothing config-
urations and biometric data as inputs to estimate core body
temperature. Metabolic rate and the environmental con-
ditions are key drivers of this model. From the current
system, metabolic rate can be derived independently from
heart rate, respiration rate, actigraphy, and geo-location
readings in multiple ways with different confidence lev-
els. Based on these, Table 1 summarizes six alternative
models to estimate thermal state together with the sensors
they are using. TSkin Model is a simplified version of
the Threshold Model, using only the skin temperature sen-
sor. The Threshold Model additionally uses the heart rate
sensor. Models 1-3 represent variants of the first princi-
ples model where metabolic rate is derived using differ-
ent sets of sensors: Model1 uses just actigraphy; Model2
uses both actigraphy and geo-location; Model3 uses actig-
raphy, geo-location, heart rate and respiration rate. Finally,
TCore Model uses the core temperature pill. Each alterna-
tive model has complex algorithms that map sensor values
to physiologic states with certain confidence levels. The
details of these algorithms are outside the scope of this pa-

per.
Our thermal state estimation problem consists of three

major dimensions that determine the confidence levels:

1. Model: The first factor is the model, and hence the
set of sensors, that participate in the state computa-
tion. Input from a greater number of sensors usually
increases the confidence in the state. This is not true
when the core temperature pill is used. However, the
core temperature pill is unique in that it is a consum-
able sensor, with a costly logistics and resupply train.

2. Latency: The second factor is the latency of sensor
messages. As readings get older, their relevance and
usefulness to the models and state algorithms decay.
Thus, a latency decay function or “shelf-life” is de-
fined for each sensor. This function maps latency val-
ues measured in seconds to decay coefficients. For
our example scenario, all sensors are simply assumed
to have the following exponential decay function2:

2
−(dlatency/15e−1), where latency > 0

For example, a heart rate reading of age 20 seconds
has a decay coefficient of 0.5, i.e., a state computation
that uses this heart rate value would have its confi-
dence level degraded by 0.5. When multiple sensors
are involved in a model computation, we simply use
their average latency to compute the decay coefficient.
If sensors had different latency decay functions, then
we would take an average of their individual decay
coefficients.

3. State: Finally, the third determinant of confidence is
the output state. For our thermal state estimation prob-
lem, the Green state can be determined with higher
certainty than the Yellow and Red states.

Next, we present confidence assignments on two of the
dimensions, Model and State. The latency dimension is
based on the decay function provided above.

As mentioned earlier, physiologic models are also af-
fected by the physical environment. In Table 2, we il-
lustrate a detailed work environment scenario. The first
two columns of this table show nine different environment-
activity combinations. Work environment conditions are

2In general, it is more realistic to choose different decay functions for
different sensors. For example, heart rate readings would certainly age
faster than ambient temperature readings.



TSkin Threshold Model1 Model2 Model3 TCore
Env. Work G Y R G Y R G Y R G Y R G Y R G/Y/R
cool low 80 76 72 90 85.5 81 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100

warm low 80 76 72 90 85.5 81 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100
hot low 60 57 54 80 76 72 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100
cool med 70 66.5 63 90 85.5 81 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100

warm med 50 47.5 45 70 66.5 63 80 76 72 90 85.5 81 95 90.25 85.5 100
hot med 40 38 36 60 57 54 70 66.5 63 80 76 72 90 85.5 81 100
cool high 40 38 36 60 57 54 90 85.5 81 95 90.25 85.5 95 90.25 85.5 100

warm high 20 19 18 40 38 36 60 57 54 70 66.5 63 80 76 72 100
hot high 5 4.75 4.5 20 19 18 50 47.5 45 60 57 54 75 71.25 67.5 100

Table 2: Work Environment models to estimate thermal state and their confidence levels

measured independently from the soldier (e.g. through
a weather station) and they are external to the soldier’s
personal area sensor network. However, they directly af-
fect the confidence achieved by the models. For each
environment-activity combination, confidence levels for
six alternative models are shown. Note that these values are
representative values. Each model can estimate the Green
(G) state with the highest confidence. If a Yellow (Y) is
computed, this confidence degrades by 0.95; if a Red (R)
is computed, it degrades by 0.90. TCore Model is an ex-
ception as its confidence for all states is perfect due to its
being a direct measure of thermal state. Note that as the
environment moves from cool to hot, and as activity moves
from low to high, more types of sensors may be needed
to maintain a high confidence about the soldier’s thermal
state.

The application requires different confidence levels de-
pending on soldier’s state. Table 3 shows the required
thresholds for our example. If a Green state is reported,
its confidence has to be at least 50. If a Yellow state is ob-
served, a confidence value of at least 70 is required. Finally,
if soldier’s state is reported to be Red, a confidence value of
at least 80 has to be provided. In other words, the applica-
tion requires higher confidence for more important events.
The goal is to operate the sensor network in such a way
that it delivers state estimations with sufficient confidence
levels.

State Confidence Threshold
Green ≥ 50

Yellow ≥ 70

Red ≥ 80

Table 3: Required confidence thresholds for each state

2.3 The Push-Only Transmission Scheme

We simulated the existing push-only sensor network on
CSIM [11]. We ran the alternative models of the exam-
ple scenario through the simulator, using one model and
one environment-work pair at a time. We assumed that the
soldier is in the Green state. We make the following impor-
tant observation: Models requiring more sensors do not al-

ways achieve better confidence levels. Models periodically
compute states based on what has most recently been re-
ceived from the participating sensors. When more sensors
are present in the network, the frequency of packet colli-
sions and message drops increases. When the most recent
measurement from a sensor is missing, state computation
at the hub has to rely on a stale earlier reading from that
sensor. As mentioned before, stale data degrades the confi-
dence level associated with each instance of model output.
Figure 2 shows how each model behaves under three of the
environment-activity conditions. Model3, using four sen-
sors to estimate metabolic rate, achieves better confidence
than other models (except TCore) in the (warm, high) and
the (hot, high) cases which represent relatively high inten-
sity conditions. To generalize this notion, delivering high-
confidence for different detection goals (i.e., thermal stress,
wound detection, etc) demand different models.

Figure 2: Simulation of the push-only scheme

3 Confidence-based Data Management

In the WPSM context, data management largely concerns
the scheduling of data transmissions. Frequent transmis-
sion can in principle improve latency, but over zealous
transmission can waste power and increase the odds of a
collision (i.e., lost data). In what follows, we discuss tech-
niques for optimizing this tradeoff. We use confidence
modeling as the primary way to inform these decisions.



Model Average Confidence % Drop
Model 1 64.92 0
Model 2 72.73 1.98
Model 3 77.75 5.79

All Models 79.22 5.71

Table 4: Model redundancy simulation results

3.1 Exploiting Redundancy

Physiologic states can be estimated with higher certainty
by allowing redundancy at several levels.

Model Redundancy. All alternative models to estimate a
particular state can run concurrently. As we have demon-
strated, various factors like sensor values and latency
decay may cause one model to achieve higher confidence
than another. By running the models simultaneously, one
can obtain multiple state estimations at different levels of
certainty and the one with the highest confidence can be
picked. Table 4 shows preliminary results from a model
redundancy simulation for a changing work environment
scenario. We again assume that the soldier is in the Green
state. Models 1-3 are run both separately and all together.
The work environment is initially set to (cool, high) and
then gradually changed to (warm, high) and (hot, high).
When all models are redundantly run together, the average
confidence is the highest. Models 1 and 2 have fewer
drops due to fewer sensors sharing the channels. Model 3
and All Models use four sensors and they both experience
higher percent message drop due to collisions. Note that
All Models loses around the same percent of messages as
Model 3 alone, but achieves higher average confidence.

Data Redundancy. Sensor readings can be transmitted
multiple times. A sensor message not only contains the
most recent reading, but also the previous reading as well.
This type of redundancy is useful when the model to be
computed not only requires the most recent sensor value,
but a valid sensor reading every certain time period. This
increases the probability that a reading will get through.

Obviously, allowing redundancy has drawbacks in terms
of resource consumption. Running all models at the same
time increases network traffic and message loss. Similarly,
repeating readings in multiple messages increases message
lengths, thus consuming bandwidth and expending addi-
tional battery power. Therefore, the degree of redundancy
has to be adjusted based on a tradeoff between desired level
of confidence, variability of the conditions affecting confi-
dence, and resource consumption.

3.2 Adjusting Sampling Rates

In the current deployable network, sensors come with
factory-set transmission schemes. Thus, their sampling and
transmission periods are not adjustable. However, we be-
lieve that confidence levels and network lifetime could be
considerably improved by dynamically adjusting these sen-

sor parameters to match the requirements of the physiolog-
ical models. Thus, we foresee a need to incorporate two-
way communication into future sensor designs. Of course,
we must be able to show that the extra power needed to run
the receiver is worth it.

In general, sensors reporting with high frequency feed
low-latency values into the models, but messages are more
likely to get dropped due to collisions. In the extreme case,
high data rates can translate into high latency as well as
extensive energy consumption. On the other hand, low-
frequency transmissions seldom get dropped and use power
economically, but they may not refresh the models as often
as needed. Each sensor’s sampling rate should be adjusted
between these two extremes based on model requirements.

One thing to consider is the sharing between running
models. There are five different areas where state estima-
tion is needed. Each area may also run multiple models
concurrently. Each model requires readings from a certain
subset of the sensors. Sensors could be ranked based on
how many models they are feeding. Also, importance of a
state could be considered. For example, Wound Detection
may be more important than Cognitive State. Sensors in-
volved in Wound Detection should have higher rank. Sen-
sors of high rank should have shorter sampling and report-
ing periods.

A second consideration is the latency decay functions
of the sensors. A cumulative latency decay function could
be defined based on functions of all sensors involved in a
model computation. This function would indicate how of-
ten that model has to be refreshed to preserve its confidence
level. As mentioned before, some sensors can have stricter
latency requirements than others. For example, heart rate
readings age faster than temperature readings. This implies
that the heart rate sensor must update more often, illustrat-
ing the notion that refresh periods are application depen-
dent.

3.3 Bi-directional Data Communication

The sensor network used in the described application is de-
signed to be push-only, where data flows in a single di-
rection, from sensors to the hub. Sensors do not have any
receivers, but only transmitters. The rationale behind this
kind of a setup is threefold. First, it uses less power since
no sensor wastes battery by listening to the network. Sec-
ond, message loss is small since collisions are expected to
occur less frequently. Last but not least, push-only sen-
sors are much cheaper to build. However, this design limits
many potential optimizations that could be performed at the
receiver hub.

The receiver hub is the only point in the network that has
a complete view of all the sensors and all the physiological
models with their confidence requirements. As such, it can
make the best judgement about how to deliver high confi-
dence states in an efficient way. However, in a push-only
scheme, it has no control over sensor transmissions. The
hub must be able to ”pull” from the sensors as needed.

With a two-way communication model, we can accumu-



late minimal sensor readings in order to populate the lower-
confidence models. Typically, the amount of data and the
latency requirements are lower for low confidence results.
In this situation, if we get an alert for a thermal stress event
with a low confidence, we can then contact the sensors to
collect more data in order to feed the higher confidence
models. Thus, we only spend bandwidth and power when
it is needed. In other words, in the normal operating case,
it is best to run lean at the expense of confidence. When an
important but low confidence event is observed, we expend
more resources to confirm or deny it. We now illustrate
this point on our work environment example presented in
Section 2.2. As shown in Table 3, our application has dif-
ferent confidence requirements depending on the soldier’s
state. These requirements can be met in multiple ways us-
ing alternative models. For example, if the soldier is in
the Green state and under the (hot, high) condition, Mod-
els 1-3 and TCore Model can deliver enough confidence
(≥ 50). Among these models, Model1 is the most desir-
able one. First of all, Model1 uses only one sensor. Thus,
network bandwidth does not have to be shared with other
sensors. The network lifetime with one sensor would be
much longer as the energy consumption at the hub is pro-
portional to the the number of sensors it is communicating
with. Finally, the actigraphy sensor used by Model1 is a
much cheaper alternative than using the core temperature
pill. If we apply this heuristic of “using as few sensors as
possible” to all condition and state combinations in Table
2, we end up with model preferences shown in Table 5.

To show the performance benefit of this heuristic, we
considered a scenario where the soldier is in a (hot,
medium) environment and is initially in the Green state.
Then his state gradually changes to Yellow and Red.
Model3 delivers enough confidence for all of these states.
Therefore, we ran one simulation where only Model3 is
used. In a second simulation, we started out with Model1
and changed to Model2 only when soldier entered Yellow
state, when Model1 can not deliver enough confidence.
Similarly, when the soldier’s state changed to Red, we
switched from Model2 to Model3 so that confidence is
above the required threshold. This second run simulates
the behavior of a hub pulling from sensors as necessary.
Initially, it only pulls from the actigraphy sensor; then the
geo-Location sensor is added; and finally, heart rates and
respiration rates are pulled. We further assumed that the
main determinant of network lifetime is the battery at the
hub which is about 1800 mAHrs. Additionally, we assume
that each sensor that is turned on has a current draw of
50mA; i.e, if this sensor is left on for an hour, it will con-
sume 50mAHrs of the total 1800mAHrs battery. Then we
compared these two simulations in terms of network life-
time. The first simulation runs out of hub battery in 9 hours
whereas the second one can survive more than 14 hours.
This simple scenario clearly demonstrates how a pull-based
model could conserve energy based on model and situation-
specific confidence requirements.

In a way, bi-directional communication enables switch-

Env. Work G Y R
cool low TSkin/Model1 TSkin/Model1 Model1

warm low TSkin/Model1 TSkin/Model1 Model1
hot low TSkin/Model1 Model1 Model1
cool med TSkin/Model1 Model1 Model1

warm med TSkin/Model1 Model1 Model2
hot med Model1 Model2 Model3
cool high Model1 Model1 Model1

warm high Model1 Model3 TCore
hot high Model1 Model3 TCore

Table 5: Model preferences based on the number of sensors

ing between alternative estimation models dynamically. As
such, it is a much more efficient alternative to the redun-
dancy approach proposed in Section 3.1.

Two-way communication is also more flexible than the
sampling rate adjustment approach discussed in Section
3.2. Sensor transmission rates can effectively be adjusted
by changing the pull frequency at the hub.

4 Related Work
There is a growing body of research on sensor network
data management. TinyDB [18] and Cougar [4] are two ex-
ample query processing systems for multi-hop sensor net-
works. These systems emphasize in-network processing of
declarative queries to reduce data communications and bat-
tery usage. TinyDB especially focuses on acquisitional as-
pects of query processing like where, when and how of-
ten data should be collected from the sensors [9]. Sen-
sor sampling rates are adjusted based on event and lifetime
specifications of queries. Cougar uses sensor update and
query occurrence probabilities for view selection and loca-
tion on top of a carefully constructed aggregation tree [4].
Scheduling techniques to overcome collisions in the sensor
network are also explored in this project. These systems
are designed to serve monitoring applications that span a
larger or difficult to reach geographical area than the per-
sonal area case, where multi-hop sensor communication is
a necessity (e.g., habitat monitoring).

More relevant to our problem are quality-driven ap-
proaches. As an example, TiNA exploits temporal co-
herency tolerance specifications of users in in-network pro-
cessing to trade off between result quality and energy con-
servation [17]. Sensor readings are reported only if they
differ from an earlier value by a certain amount. Another
example is the QUASAR project [8], which also exploits
applications’ tolerance to imprecision to minimize resource
consumption. As a more closely related work to ours, a
model-driven approach for data acquisition in sensor net-
works has been recently developed by Deshpande et al [5].
A probabilistic model of the sensor network data is cre-
ated based on a history of readings from sensors and cor-
relations between them. Queries can be approximately an-
swered based on this model. If confidence requirements
can not be met by the model alone, then the sensors in the
network need to be queried. The model is also refined as



more readings are received. In the application that we con-
sider, multiple complex models exist to estimate physio-
logical states of a soldier. Each model uses a different set
of sensors. These models and their confidence levels are
well-defined. Rather than building and refining the models,
we concentrate on efficient data acquisition from sensors to
estimate states with acceptable confidence using alternative
models.

There is some related work on data management for per-
sonal area sensor networks as well. For example, a re-
cent work proposes a query processing system for health-
care bio-sensor networks [3]. Patient heart rates are mon-
itored using electrocardiogram (ECG) and accelerometer
sensors. Multiple ECG sensors have to be worn for a com-
plete measurement of the electrical activity of the patient’s
body. Furthermore, if the patient moves, ECG signals may
be corrupted. Therefore, readings from an accelerometer
sensor have to be correlated with ECG readings for a more
reliable result. This application has similar sensor network
uncertainty concerns as ours. However, the focus of this
work is on query processing at the base station. We believe
our confidence-based approach could be used at the data ac-
quisition phases of this system to improve query results. In
the same domain, CodeBlue is a wireless communications
infrastructure for medical care applications [10]. It is based
on publish/subscribe data delivery where sensors worn by
patients publish streams of vital signs and geographic loca-
tions to which PDAs or PCs accessed by medical personnel
can subscribe. Secure and ad hoc communication, priori-
tization of critical data, and effective allocation of emer-
gency personnel in case of mass casualty events are major
emphases of this project.

Finally, wireless sensor networks are also a subject of
recent research in the networking community. Of particular
relevance to our work are MAC (Medium Access Control)
protocols that determine when and how the network nodes
coordinate to share a broadcast channel [19]. Collision
avoidance is a major concern in these protocols. S-MAC is
one such protocol where sensor nodes periodically sleep to
reduce energy consumption by avoiding idle listening [20].
While such protocols make the underlying network more
reliable in power-efficient ways, they are unaware of the
application-specific requirements, like confidence levels in
our WPSM-IC application.

5 Future Directions
In this paper, we presented a challenging sensor network
application which can highly benefit from various data
management strategies as evidenced by our initial simu-
lation results. We are currently working on making these
strategies operational on the real network. In the future, we
are planning to extend this work in several directions. A po-
tential research direction involves treating sensor readings
as continuous waveforms with integrity constraints. If sen-
sor values could be noisy or erroneous, earlier values could
verify or deny confidence of the latest value. We could
also decide when to pull from sensors based on what val-

ues have recently been received. If recent heart rate read-
ings suggest that the heart rate could not have gone beyond
normal threshold since the last reading, then we do not need
to receive a new heart rate report.

WPSM-IC is currently concerned with dismounted war-
riors and the management of their personal area networks.
The goal at this point is to create a summary of the soldier’s
physiological state at the hub. In the future, this state in-
formation would be disseminated to other battlefield units.
This might include mobile medics who are deployed in the
theater of operation or to advanced field hospitals that are
prepared to deal with both prevention of potential casual-
ties as well as management of known casualties of various
kinds. The information that is uploaded beyond the individ-
ual soldier would be used for some form of remote triage.

The remote triage problem, of course, comes with its
own technical challenges. Similar reports from more than
one co-located soldier might be an indication of a particu-
lar kind of attack. Physiological status reports from many
soldiers can be used to prioritize treatment. In these cases,
the medic might find that the reported confidence level is
not high-enough to warrant the deployment of an ambu-
lance. Instead, the medic may contact the soldier’s hub to
amplify the confidence to some given level. This might re-
quire a great expenditure of resource, but in an emergency,
the investment is likely worth it.
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