
Scalable Data Partitioning Techniques
for Parallel Sliding Window Processing over Data Streams ∗

Cagri Balkesen and Nesime Tatbul
Systems Group, ETH Zurich, Switzerland

{cagri.balkesen, tatbul}@inf.ethz.ch

ABSTRACT
This paper proposes new techniques for efficiently parallelizing
sliding window processing over data streams on a shared-nothing
cluster of commodity hardware. Data streams are first partitioned
on the fly via a continuous split stage that takes the query seman-
tics into account in a way that respects the natural chunking (win-
dowing) of the stream by the query. The split does not scale well
enough when there is high degree of overlap across the windows.
To remedy this problem, we propose two alternative partitioning
strategies based on batching and pane-based processing, respec-
tively. Lastly, we provide a continuous merge stage at the end that
combines the results on the fly while meeting QoS requirements on
ordered delivery. We implemented these techniques as part of the
Borealis distributed stream processing system, and conducted ex-
periments that show the scalability of our techniques based on the
Linear Road Benchmark.

1. INTRODUCTION
Stream processing has matured into an influential technology

over the past decade having a wide range of application domains
including sensor networks. Yet, flexibly scaling streaming systems
up and down with fluctuating data rates in a cost-effective way con-
tinues to be a challenge. With the advances in parallel processing
platforms and the emergence of the pay-as-you-go economic model
of the new cloud-based infrastructures, there is a more pressing
need than ever for flexible distributed and parallel stream process-
ing techniques that can take better advantage of the increased op-
portunities for elastic scalability.

As in traditional parallel databases, stream processing can be
parallelized in two alternative ways: pipelined and partitioned [4].
In pipelined parallelism, continuous queries are partitioned across
different nodes (e.g., [11]), whereas in partitioned parallelism data
streams are partitioned into different nodes (e.g., [10, 6, 7]). As also
pointed out by DeWitt and Gray, pipelined parallelism has limited
applicability under certain conditions (for short chains of opera-
tors, blocking operators, operators with cost skew) [4]. In the case
of streams, there are additional limitations of pipelined parallelism
∗This work has been supported in part by an IBM faculty award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
8th International Workshop on Data Management for Sensor Networks
(DMSN 2011)
Copyright 2011.

such as the fact that workload can only be divided in operator-
granularity and that moving query parts across nodes might require
expensive state migration.

In this paper, we investigate partitioned parallelism techniques
for data streams as we believe this is key to achieving fine-grained,
flexible, and low-overhead scalability for continuous queries. In
particular, we address the problem of how to efficiently provide
partitioned parallelism for a high-rate input stream which cannot
be processed on a single node and cannot be further partitioned us-
ing a content-sensitive partitioning technique such as the ones pro-
posed in related work [10, 7]. We present new stream partitioning
techniques that take the query semantics into account in a way that
respects the natural chunking and ordered processing of the stream
by the query. Furthermore, in our approach, partition granularity
can be adjusted in order to handle potential overhead due to over-
lap across the chunks. More specifically, partitioning can be based
on windows, batches of windows, or special subwindows called
“panes”. Finally, we provide a continuous merge stage at the end
that combines the results on the fly, while meeting the requirements
on ordered delivery.

The rest of this paper is outlined as follows: We present our
stream partitioning techniques in Section 2. Then we experimen-
tally compare the scalability of these techniques in Section 3. We
briefly summarize the related work in Section 4, and conclude in
Section 5 with a discussion of future directions.

2. STREAM PARTITIONING TECHNIQUES

2.1 Overview
Figure 1 shows a high-level overview of our general parallel

stream processing framework. We follow the typical split-merge
pattern of traditional partitioned data parallelism. Input streams are
first fed into a split node that is dedicated to splitting the data into
independently processable partitions. Given a degree of parallelism
d in the system, the split stage will chop its input into d partitions,
each of which will be forwarded to a separate query node. Results
from the query nodes will be pushed into a merge node that is ded-
icated to merging them into a single output stream. The framework
also takes QoS requirements of the query and uses them in tuning
the behavior of the system. More specifically, QoS is specified in
terms of maximum result latency and the maximum degree of dis-
order in the output stream.

2.2 Basic Sliding Window Partitioning
Most streaming applications need to divide their input into finite

chunks of windows before they apply computations on them. Win-
dows are commonly modeled as count-based or time-based with
size and slide parameters [5].

Figure 1: Parallel stream processing framework overview

Any data parallelization scheme on streams should consider how
a query chunks its input into windows, since this chunking creates
dependencies among stream tuples. Tuples that belong to a com-
mon window have a dependency, whereas tuples of different win-
dows are completely independent. As a result, while each window
should be processed in a serial fashion, multiple windows can be
processed in parallel. This is the key idea behind our basic sliding
window partitioning.

In order to capture the window-membership dependency, the split
stage of our framework must be window-aware. It should decide
which tuples should be in the same partition and should accord-
ingly route them to the appropriate query nodes. We achieve this
by utilizing the window specifications and having split stage mark
the tuples with window-ids [9]. Tuples with the same window-id
must for sure participate in the same data partition.

Split marks the tuples as follows: Each tuple in the system has
a unique id (starting from 1 and assigned either by its source or by
the system at its arrival). For count-based windows, these tuple-id’s
are used to determine window boundaries, whereas for time-based
windows, the time field must be used instead. Furthermore, each
window is also assigned a unique id by the split stage. Each tu-
ple may take part in one or more windows depending on the val-
ues of the window size (w) and slide (s). The first and the last
windows that a tuple with id i belongs to will have the window-
ids f irst = d(i − w)/se + 1 and last = di/se, respectively. We
also need to mark which tuple is a window-closer so that we can
keep track of partition boundaries. For count-based windows, tu-
ple i is a window-closer if ((i ≥ w) ∧ ((i − w) mod s ≡ 0)). For
time-based windows, this condition is not sufficient as there may
be multiple tuples with the same time value. The very last tuple
where this condition holds should be marked as a window-closer.
To summarize, split marks each tuple with the following metadata:
(f irst window id, last window id, is window closer).

Next, split assigns the tuples with the same window-id to the
same data partition, which is then routed to a selected query node.
Since our basic window partitioning strategy is content-insensitive,
the partitions can be assigned to the nodes simply in a round-robin
fashion. For tumbling windows (s = w), each tuple belongs to ex-
actly one window. Therefore, input will be perfectly partitioned.
However, for sliding windows (s < w), windows overlap and there-
fore, a tuple will have to be replicated in all the partitions where
its windows are routed. This not only makes the split stage more
expensive, but it also increases the data volume, leading to extra
overhead in an already overwhelmed system. In the following two
sections, we describe two alternative strategies to overcome this
drawback of the basic sliding window partitioning.

2.3 Batch-based Partitioning
Our batch-based partitioning strategy groups a number of con-

secutive windows into a batch and assigns them to a common parti-

Figure 2: Batch-windows

tion. This is a coarser-grained partitioning than the basic window-
based partitioning. The key idea behind this strategy is to reduce
the need for tuple replication to multiple partitions by reducing the
overlap across those partitions. Essentially, batching introduces an-
other level of windowing on top of the original query windows; let’s
call this the “batch-window”. Given a query with window size w
and slide s, and a batch size of B, then the batch-window would
have size wb = w + (B − 1) ∗ s and slide sb = B ∗ s.

Figure 2 shows an example with w = 3, s = 1, and B = 3. ti are
the stream tuples, w j are the original query windows, and Bk are the
batch-windows. Batch-windows have size wb = 3 + (3 − 1) ∗ 1 = 5
tuples and slide sb = 3 ∗ 1 = 3 tuples.

As in basic partitioning, tuples are marked, but this time with
batch-id’s in addition to window-id’s. Batch-id’s are determined
using the formulas given in the previous section, using wb and sb

instead of w and s, respectively. Additionally, tuple i is a batch-
window-closer if (is window closer(i) ∧ (window id mod B ≡ 0)).

This time, split assigns the tuples with the same batch-id to the
same data partition and each partition can be assigned to nodes in
round-robin. Unlike in the window-based partitioning case, if two
windows are in the same batch, then common tuples among them
do not need to be replicated to multiple partitions. Only the tuples
lying on the batch-window boundaries need to be replicated across
partitions. For example, in Figure 2, tuples t4 and t5 participate in
both batch-window B1 and B2. Therefore, they should be replicated
to both corresponding partitions. In general for this simple exam-
ple, at steady state, 2 out of every 3 tuples will have to be replicated
to 2 partitions. If window-based partitioning was used instead, each
tuple will have to be replicated to 3 partitions. For every 3 tuples,
this makes 5 copies in the batch-based approach vs. 9 copies in the
window-based approach. The benefit of the batch-based approach
would increase further with a larger batch size.

To generalize, in window-based partitioning, each tuple belongs
to w

s windows and thus must be replicated to this many partitions.
On the other hand, in batch-based partitioning, each tuple belongs
to wb

sb
=

w+(B−1)∗s
B∗s batch-windows and thus must be replicated to this

many partitions. It is clear that the larger is the batch size B, the
fewer tuples will need to be replicated.
Setting the Batch Size. Choosing the correct batch size is an im-
portant decision. As discussed above, a smaller batch size would
lead to more tuple replication; on the other hand, a larger one would
lead to higher output latency. We will approach this issue from
the cost of the aggregate computation, which is the key component
contributing to the latency of an output. First, aggregate computa-
tion involves evaluating an optional group-by clause, retrieving the
hash-table entry for the group, etc. for each received tuple. Let’s
denote the cost of all these tasks with cother. Second, there is an ad-
ditional cost originating from window opening and closing tuples.
Let’s denote it as copen−close, which happens B times in each batch.
Lastly, each tuple marked by batch-based partitioning updates up

to B windows appearing in its batch; let’s denote single update cost
with cupdate. First s tuples in a given batch only update window 1,
next s tuples update windows 1 and 2, and so on up to Bth s tuples
updating windows 1 . . . B. Finally, remaining w − s tuples update
only the Bth window. Now, we can model per-tuple cost of aggre-
gate operator as a function of B as follows:

Cost(B) =

B(B+1)
2 · s + (w − s)
w + (B − 1) · s

· cupdate +
B

w + (B − 1) · s
· copen−close + cother (1)

The input rate at aggregate operator is also a function of batch-
size. Total output rate at split divided by parallelization level (d)
times the replication factor determines the average rate at an aggre-
gate operator instance. Let’s assume R is the input rate at split and
denote input rate at each aggregate as a function of B with Rate(B).

Rate(B) =
R
d
·

(
w + (B − 1) · s

B · s

)
(2)

Given the user-specified maximum latency bound (Lmax), we can
now choose appropriate B at runtime using Equations (1) and (2).
Assuming a small headroom ratio H for other overhead, 1 − H of
processing capacity can be used for operator execution. Accord-
ingly, capacity of aggregate equals (1 − H)/Cost(B) depending on
B. Now, the following inequality should hold for fulfilling the max-
imum target latency Lmax, where the system is periodically opti-
mized every T time units:(

Rate(B) −
1 − H

Cost(B)

)
∗ T < Lmax (3)

There is one subtle point. The inequality may not have a solution
on positive x-axis. In this case, latency violation will be kept at
minimum by minimizing the rational function f (B) = Rate(B) −

1−H
Cost(B) . By rigorous analysis, we have confirmed that the rational
function f (B) attains a local minima for B > 0. As a result, an
optimal batch-size B can be found either by solving inequality (3)
if there is a solution, or by finding the local minima of f (B).

2.4 Pane-based Partitioning
Our pane-based partitioning strategy takes the opposite approach

of the batch-based partitioning. Instead of grouping multiple win-
dows into a common partition, windows are divided into sub-win-
dows, which are then assigned to partitions individually. As such,
it is a finer-grainer method than both window- and batch-based par-
titioning. This strategy is based on the panes work of Li et al [8]. In
this section, we will first summarize that work, and then describe
how we leverage it in solving our problem.

2.4.1 The Panes Technique
The panes technique has been originally proposed to reduce the

space and computation cost of sliding window queries by sub-agg-
regating and sharing computation [8]. The idea is to divide overlap-
ping windows into disjoint panes, over which sub-aggregates can
be computed whose results can then be combined into the final ag-
gregate. Figure 3 shows panes pi over sliding windows w j. Given a
query with window size w and slide s, the stream is separated into
panes of size gcd(w, s), each window w j of size w is composed of

w
gcd(w,s) consecutive panes. For example, w3 is composed of panes
p3 through p6. Likewise, each pane contributes to w

s windows. For
example, p5 contributes to windows w2 through w5.

In pane-based query evaluation, the query is decomposed into
two sub-queries: (i) pane-level sub-query (PLQ) that runs over
the panes, and (ii) window-level sub-query (WLQ) that runs over
the results of the panes. Efficiency is achieved due to two rea-
sons: (i) PLQ is a tumbling-window query (size and slide equals
to gcd(w, s)), where each tuple is processed only once as it arrives

Figure 3: Panes [8]

and does not need to be buffered for repeated use, and (ii) WLQ is a
sliding-window query (size and slide equals to the original query’s,
w and s), which does less processing and buffering, since it pro-
cesses pane results instead of the raw input tuples.

2.4.2 Ring-based Pane Partitioning
The original panes algorithm has been designed for centralized

processing. In our work, we leverage it in a distributed setting.
Pane-based processing is a good fit for our problem since it cre-
ates non-overlapping sub-windows (i.e., panes) out of overlapping
windows, each of which can be efficiently and independently pro-
cessed in a parallel manner. In this section, we will explain how
we adapt the panes idea to parallelizing the processing of sliding
window queries.

As in the case of basic partitioning, tuples are marked at the split
stage, but this time with pane-id’s in addition to window-id’s. Pane-
id’s are determined using the same formulas as in Section 2.2, using
wp instead of w and sp instead of s, where wp = sp = gcd(w, s).

Each pane can potentially be processed on any selected node. At
the end of this process, PLQ results are obtained. To obtain the final
aggregate result for a given window, a WLQ must additionally ag-
gregate the pane results for that window. This bears a need to com-
municate pane results among the nodes. Furthermore, a particular
node should be responsible for the overall computation and result
delivery for a given window. Hence, this node expects to receive
pane results of that window from the other nodes. Consequently, if
windows and panes were assigned to nodes in an arbitrary fashion,
then every node in the system would have to know the locations
of all windows and panes so that pane results could be correctly
communicated. This would be both disorganized and inefficient.

Instead, we organize nodes in a ring topology and distribute data
as follows: As new windows arrive, they are assigned to the next
node in the ring in a round-robin fashion. Likewise, pane partitions
are also assigned and distributed using a round-robin strategy. This
makes it possible that a pane result from the previous window can
be sent to the next node in the ring, where ring topology implicitly
maps the pane to the next window. Let us explain this mechanism
with an example.

Figure 4 illustrates a ring with three query nodes. In this exam-
ple, the query has w = 6 and s = 4 tuples. Therefore, each pane
has wp = sp = gcd(6, 4) = 2. Thus, there are 3 panes per win-
dow. Every query node receives its assigned pane partitions (Pi)
as a stream from the split stage and is responsible for locally com-
puting the PLQ’s for those. Additionally, each node is connected
to previous and next nodes on the ring via “intermediary streams”,
which carry the PLQ results (Ri). Each query node is also assigned
to manage the overall WLQ computations of certain windows (wi)
based on the PLQ results it receives from its previous neighbor in
the ring and its own local sub-window results. For example, w2 is
assigned to Node2, where panes P4 and P5 are locally computed.

Figure 4: Ring-based pane partitioning and query evaluation

Additionally, Node2 receives the PLQ result R3 from Node1. Using
R3 and the local results R4 and R5, Node2 can produce the WLQ
result for w2. Finally, the WLQ results (wi) are directly sent to
the merge node, where aggregate window results for the query are
merged into one output stream.

2.4.3 Assignment of Windows and Panes to Nodes
In this section, we will describe how we assign windows and

panes to the nodes in the ring. In the following, we will express
WLQ-window size (ww) and slide (sw) in terms of pane units. For
example, in Figure 4, ww = 3 panes and sw = 2 panes.

First, we must ensure that all pane results of a window arrives to
a node only from its predecessors. We should assign a set S i of n
consecutive windows to a node i in such a way that the pane results
that i receives from node i − 1 do not overlap with the pane results
that i will send to node i + 1. Node i receives ww − sw pane results
from node i − 1, and likewise sends ww − sw pane results to node
i + 1. Thus, we should have at least 2 ∗ (ww − sw) panes contained
in set S i (left-hand side of Figure 5). If S i contains n consecutive
windows, then there are ww + (n − 1) ∗ sw panes in S i (right-hand
side of Figure 5). Thus, the following should hold:

ww + (n − 1) ∗ sw ≥ 2 ∗ (ww − sw) =⇒ n ≥
ww − sw

sw

Meanwhile, the value of n should be chosen as small as possible
for maximizing result sharing across nodes for each round of com-
munication in the ring. Therefore, we choose as n = ww−sw

sw
. When

each node is responsible for n consecutive windows, then each node
should receive ww − (ww − sw) = sw panes from the split node.

Let us illustrate the above on the example of Figure 4. Here,
ww = 3 and sw = 2, and each node should be assigned 1 window
and 2 panes. This way, each node shares 1 result with its next
neighbor, which is different from the 1 result it receives from its
previous neighbor. Note that, if n was chosen larger, then some
pane results would not be shared across the nodes and there would
be more local window computation on the nodes. This would mean
less result sharing as well as coarser-granularity parallelism, which

Figure 5: Set of windows for a node

would lead to smaller overall query throughput (possibly incurring
higher communication costs as well 1).

2.5 Result Merging
Results from parallel executions of all partitions are combined

via a final merge stage. If the merge emits results simply in the
order that they arrive at the merge stage, ordered delivery is not
guaranteed. In other words, it may happen that results of a window
with window-id i reaches merge after a window with window-id
i + 1, if the latter partition is processed faster. On the other hand,
strictly guaranteeing order would require synchronization and re-
sult buffering at the merge stage, potentially leading to blocking of
result delivery and reduced throughput.

In reality, there are many applications where certain degree of
disorder can be tolerated. This flexibility can be exploited in pro-
viding a more efficient merge stage. To capture this, we model
disorder as a QoS dimension and allow the application to define
the maximum degree of disorder that it can tolerate. Then merge
ensures that the results are delivered within those limits.

We define the amount of disorder as follows, based on the k-
ordering constraint defined in related work [3]: Assume a stream
s which has an ordered-arrival constraint on an attribute s.A. Then
for any tuple s in stream S , all S tuples that arrive at least k + 1
tuples after s have an A value ≥ s.A. That is, any two tuples that
arrive out of order are within k tuples of each other. k = 0 captures
the case where there is no disorder.

3. EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed data partitioning tech-

niques for parallel processing of sliding window queries. The goal
of this experimental study is to show and compare the scalability of
different techniques.

3.1 Experimental Setup
We have implemented our partitioned parallelism techniques as

an extension to the Borealis distributed stream processing system
[1]. We enriched the query execution framework of Borealis by in-
tegrating our techniques for data partitioned evaluation of window-
based aggregate queries. More specifically, window-based aggre-
gation query specifications are automatically transformed into a
query plan with split, aggregate, and merge operators.

All the experiments were conducted on a shared-nothing cluster
of machines, where each machine has an Intel R© Xeon R© L5520 2.26
1We are currently working on a cost model to account for all costs
involved, including communication.

20K

40K

60K

80K

100K

120K

140K

1 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

in
pu

tr
at

e
(t

up
le

s/
se

co
nd

)

window-size/window-slide ratio (window overlap)

pane-based

batch-based, B=2
batch-based, B=5
batch-based, B=10

window-based

Figure 6: Throughput capacity of the split operator

Ghz Quadcore CPU and 16GB of main memory. The nodes each
running Debian Linux are connected by a Gigabit Ethernet.

The workload that we used for our experiments is taken from
the Linear Road Benchmark (LRB) [2]. LRB is a traffic simulation
system of fictional linear highways where tolls are calculated dy-
namically depending on the variable conditions such as traffic con-
gestion and accidents. The input data consists of stream of position
reports and queries from the simulated vehicles in the highways.

Aggregation queries are used for computing segment statistics in
LRB and are some of the most CPU intensive parts of the bench-
mark. However, window specifications are either tumbling over a
minute interval or sliding with limited range and slide. To be able to
understand the sensitivity of our techniques to different query prop-
erties, we experimented with a set of LRB-like aggregation queries
with a wider range of window specifications. Our queries evaluate
count(), min(), max(), and avg() over position reports similar
to the segment statistics in LRB. We change the window specifica-
tion from experiment to experiment to vary window-size/slide ratio
where specified, and keep it fixed otherwise.

3.2 Scalability of the General Framework
In this first set of experiments, we assess the performance of the

newly introduced operators in our general split-merge framework
and outline their scalability limits. Due to space constraints, we dis-
cuss the split that implements our core data partitioning techniques
in more detail, and briefly summarize findings about the others.
The Split Operator. Scalability of the split operator is critical,
since it enables the parallel query evaluation in the first place as
the core of our partitioning techniques are implemented inside the
split operator logic. Therefore, efficient partitioning of streams is
important for our system’s overall scalability.

We used basic sliding window partitioning, batch partitioning,
and pane partitioning in order to understand maximum throughput
capacity of the split operator for each of them. For batch partition-
ing, we used 3 different batch-sizes: 2, 5, and 10. We also varied
window-size/slide ratio in order to understand how the amount of
overlap among consecutive windows affect the cost of split and cor-
respondingly its throughput. In all of the experiments, we gradually
increased the input rate until either the split node or one of the ag-
gregate nodes became saturated (i.e., CPU load above 95%).

The result can be seen in Figure 6. First, throughput of pane-
based partitioning does not depend on window overlap and stays
at a somewhat constant rate. Second, the cost of split operator in-

creases linearly with increasing amount of window overlap in other
partitioning techniques, and accordingly the throughput degrades.
Basic sliding window partitioning incurs the highest split overhead.
The main reason for this is the excessive replication of the tuples for
each window that they belong to. Batching technique brings some
improvement over basic partitioning, although cost still increases
linearly but more slowly with increasing batch-size (B).
The Merge Operator. We can summarize our experimental find-
ings about the behavior of merge operator as follows. As a general
observation, merge is a cheap operation as results arrive almost or-
dered and input rates are low due to aggregation from the previous
stage. In Borealis, tuples are processed one-by-one under low input
rates whereas with normal to high input rates there is an opportu-
nity to process a batch of tuples within a single scheduling step.
Due to this reason, when the number of input streams of merge and
the rates increase, per tuple processing cost of merge gets slightly
cheaper. This is directly observed for the unordered delivery case.
However, in the case of ordered delivery, execution is more com-
plex and it dominates the cost. Therefore, the merge cost increases
by a small margin. Furthermore, latency increases as a direct result
of increased buffering for ensuring ordered delivery.
The Aggregate Operator. Our experimental results verify that the
cost of the aggregate operator in case of batch-based partitioning
is in line with the cost model described in Section 2, and clearly
decreases as the batch-size decreases. According to the model, the
input rate arriving to an aggregate operator increases with increas-
ing B and the cost of aggregate decreases with decreasing B. As
our model suggested, a balance between these two extremes should
be found for a given query.

3.3 Scalability of the Partitioning Techniques
In the following set of experiments, we examined the scale-up

properties of our partitioning techniques. We varied the number of
nodes and kept the window-size/window-slide ratio fixed at 100.
In each run, the system was fed with an increasing workload until
the query nodes became saturated. Maximum achieved throughput
was recorded for each run, and finally the maximum throughput
was computed by taking an average over several runs. Figure 7(a)
shows the result of our experiment with pane-based partitioning
along with the CPU utilization of the split operator at each corre-
sponding run. In pane-based partitioning, per-tuple cost of aggre-
gate stays constant and it enables processing up to 32K tuples/sec
per query node instance. As a result, pane-based partitioning scales
up close to linear as long as the split operator is capable of feeding
the query instances. A slight deviation from linearity starts when
the CPU utilization of the split node gets closer to 100%. Despite
this slight deviation, pane-based partitioning scales quite well with
increasing number of nodes.

In Figure 7(b), the same set of experiments were repeated for
basic window and batch partitioning. In basic window partitioning
with 1 node, cost of aggregate operator is very high and the ag-
gregate node only handles up to 5K tuples/sec. In this case, tuples
are not replicated and rate at aggregate node is same as the actual
input rate. However, when we switch to a 2-node case, split repli-
cates each tuple 100 times. Even though the aggregate is capable of
handling up to 40K tuples/sec, due to excessive replication, max-
imum throughput is limited by 800 tuples/sec (800*100/2=40K).
As shown in the figure, split node is underutilized at 7% CPU
load. In 3-node and 4-node cases, the same arguments are valid
and throughput increases at a rate of approximately 400 tuples/sec
per added query node. Since the CPU utilization of split node is
below 12% with 4 nodes, the system can continue to scale beyond
4 nodes somewhat at a slower rate of 400 tuples/sec per node.

30K

45K

60K

75K

90K

105K

120K

135K

1 2 3 4
0%

25%

50%

75%

100%
m

ax
im

um
pr

oc
es

si
ng

lim
it

at
sa

tu
ra

tio
n

(t
up

le
s/

se
c)

%
C

PU
ut

ili
za

tio
n

number of query nodes

pane-based partitioning througput
split CPU util. %

(a) Scale-up of pane-based partitioning

0

2500

5000

7500

10000

12500

15000

17500

20000

1 2 3 4
0%

25%

50%

75%

100%

m
ax

im
um

pr
oc

es
si

ng
lim

it
at

sa
tu

ra
tio

n
(t

up
le

s/
se

c)

%
C

PU
ut

ili
za

tio
n

number of query nodes

no batching

batching, B=50
batching, B=33
batching, B=10
batching, B=2

split CPU util. % - no batching
split CPU util. % - B=50

(b) Scale-up of sliding window partitioning

Figure 7: Scalability of the partitioning techniques

Figure 7(b) also shows the scale-up property of batch-based par-
titioning with different batch size parameters. Batch-based parti-
tioning is obviously a better alternative to basic sliding window
partitioning. Especially, batch-based partitioning with increasing
batch size scales close to linear. However, the performance increase
is slower as batch size gets bigger. For instance from B = 33 to
B = 50, throughput increase is only about 1200 tuples/sec, whereas
from B = 2 to B = 10 it is about 6500 tuples/sec. Evidently, split
operator is not a bottleneck for this experiment. Maximum CPU
usage in batch-based partitioning with B = 50 is 27%.

4. RELATED WORK SUMMARY
In this work, we leveraged the Window-id and Panes works of Li

et al in a distributed setting to achieve finer-grained partitioning for
sliding windows [8, 9].

Our work mainly relates to the recent previous work in parallel
stream processing. There are two main categories of approaches
to parallel stream processing: query partitioning and data partition-
ing. In query partitioning, processing is partitioned onto multiple
nodes, which provides inter-operator/inter-query parallelism (e.g.,
[11, 12]). Load balancing / adaptivity requires moving operators
and state across nodes and the granularity of partitioning is only
at operator level. In data partitioning, input streams are split into
disjoint partitions, where each partition is processed by a replica
of the query in a parallel fashion. In one of the earlier works in
this area, Flux generalizes the Exchange and RiverDQ approaches
of traditional parallel databases to provide online repartitioning of
content-sensitive streaming operators such as group-by aggregates
[10]. Flux focuses on providing adaptive load balancing and fault
tolerance. Ivanova et al instead focused on data partitioning for
content-insensitive streaming operators such as windowed aggre-
gates [6]. This work assumes tumbling windows and an order-
preserving merge stage at the output. More recently, Johnson et al
have proposed a data partitioning strategy for multiple continuous
queries with different group-by and join attributes [7].

Our work falls under the data partitioning category and differs
from the previous work in the following ways. First, we directly
exploit how queries themselves originally partition the data in de-
termining our split strategies. In the case of sliding window queries,
this requires us to consider the potential overlap among the win-
dows, which has not been dealt with in any previous work. Second,
our focus is not on explicit load balancing. Third, we allow appli-

cations to define QoS in terms of latency and ordered delivery.

5. CONCLUSIONS
In this paper, we presented and experimentally compared a set of

data partitioning techniques for parallel sliding window processing
over data streams. The key idea of our approach is that data streams
must be partitioned on the fly in a way that respects the natural
windowing and order-sensitivity of continuous queries. We have
shown that this can be achieved in several alternative ways, out of
which, the pane-based partitioning has proven to have a scale-up
behavior that is almost linear. It also incurs less overhead on the
split operator and on the aggregate query itself.

We continue to build on this work along several directions. The
currently ongoing work includes generalizing our parallelization
framework to multiple input sources possibly with rate skew, adding
support for adaptivity, and extending the complexity of the query
plans (e.g., multiple queries with sharing, holistic aggregates, joins).
We are also extending our performance analysis and experimenta-
tion framework accordingly. In the longer term, we also plan to
tackle fault-tolerance issues.

6. REFERENCES
[1] D. Abadi et al. The Design of the Borealis Stream Processing Engine. In CIDR

Conference, Asilomar, CA, January 2005.
[2] A. Arasu et al. Linear Road: A Stream Data Management Benchmark. In VLDB

Conference, Toronto, Canada, August 2004.
[3] S. Babu et al. Exploiting k-Constraints to Reduce Memory Overhead in

Continuous Queries over Data Streams. ACM TODS, 29(3), September 2004.
[4] D. DeWitt and J. Gray. Parallel Database Systems: The Future of High

Performance Database Systems. Communications of the ACM, 35(6), 1992.
[5] L. Golab and M. T. Özsu. Issues in Data Stream Management. ACM SIGMOD

Record, 32(2), June 2003.
[6] M. Ivanova and T. Risch. Customizable Parallel Execution of Scientific Stream

Queries. In VLDB Conference, Trondheim, Norway, August 2005.
[7] T. Johnson et al. Query-aware Partitioning for Monitoring Massive Network

Data Streams. In ACM SIGMOD Conference, Vancouver, Canada, June 2008.
[8] J. Li et al. No Pane, No Gain: Efficient Evaluation of Sliding Window

Aggregates over Data Streams. ACM SIGMOD Record, 34(1), March 2005.
[9] J. Li et al. Semantics and Evaluation Techniques for Window Aggregates in

Data Streams. In ACM SIGMOD Conference, Baltimore, MD, USA, June 2005.
[10] M. A. Shah. Flux: A Mechanism for Building Robust, Scalable Dataflows. PhD

thesis, U.C. Berkeley, 2004.
[11] Y. Xing et al. Dynamic Load Distribution in the Borealis Stream Processor. In

IEEE ICDE Conference, Tokyo, Japan, April 2005.
[12] Y. Xing et al. Providing Resiliency to Load Variations in Distributed Stream

Processing. In VLDB Conference, Seoul, Korea, September 2006.

