
An Adaptable Workflow System Architecture on the Internet for Electronic
Commerce Applications �

Ibrahim Cingil, Asuman Dogac, Nesime Tatbul, Sena Arpinar
Software Research and Development Center

Faculty of Engineering
Middle East Technical University (METU)

06531 Ankara Turkiye
asuman@srdc.metu.edu.tr

Abstract

An electronic commerce (EC) process is a business pro-
cess and defining it as a workflow provides all the advan-
tages that come with this technology. Yet electronic com-
merce processes place certain demands on the workflow
technology like the distribution of the load of the workflow
engine to multiple servers, dynamic modification of work-
flows for adaptability, openness and availability.

In this paper we propose a workflow system architecture
to address these issues. The componentwise architecture of
the system makes it possible to incorporate the functional-
ity and thus the complexity only when it is actually needed.
The infrastructure of the system is based on CORBA 2.0
where methods are invoked through XML. The clients of the
system are coded as network transportable applets written
in Java so that the end user can activate workflow compo-
nents through the workflow domain manager over the net-
work. The system provides high availability by replicating
the component server repository and the workflow domain
manager. We also discuss how this architecture can be used
in building an electronic marketplace.

1. Introduction

There are many business models used in electronic
commerce (EC) like e-shop, e-procurement, e-mall, elec-
tronic marketplace, virtual communities, value chain ser-
vice providers, value chain integrators, collaboration plat-
forms, and information brokerage [15]. In all of these

�This work is partially being supported by Middle East Technical Uni-
versity, the Graduate School of Natural and Applied Sciences, Project
Number: AFP-97-07.02.08, by the Scientific and Technical Research
Council of Turkey, Project Number: 197E038 and by the European Com-
mission Project Number: INCO-DC 97-2496 MARIFlow.

models the business processes can be modeled as a set of
steps that are ordered according to the control and data flow
dependencies among them. This corresponds to a work-
flow process, where the coordination, control and commu-
nication of activities are automated, although the activities
themselves can either be automated or performed by hu-
mans.

Yet the workflow systems to be used in electronic com-
merce should have specific features that are of critical im-
portance for electronic commerce applications [11]:

� The mass-business characteristics of EC workflows
requires a high-throughput workflow execution en-
gine. Thus, load distribution across multiple workflow
servers is necessary to ensure this kind of scalability.
The EC workflow systems must also quickly adapt to
network changes due to failed sites or due to load bal-
ancing.

� The EC workflows should easily adapt to different and
changing requirements of the customers. So a work-
flow model is more likely to be a template that is dy-
namically enriched by introducing additional activi-
ties along with their control and data flow, and also
possibly skipping the parts of the pre-specified work-
flow template. Also there could be changes in EC
process execution flow triggered by collaborative de-
cision points, or context-sensitive information updates
or other internal or external events which necessitate
dynamic modification of the workflow instance (e.g.,
cancelation of an order by the customer).

� Electronic commerce processes should be ubiquitous.
To achieve this they should be able to run in envi-
ronments with scarce resources, and they should also
have an open architecture. That is the functionality of
a workflow system should be tailorable to the needs



and available resources of a customer and the system
should run on the Internet and should be based on an
open and interoperable infrastructure.

� Frequent failures and unavailability of EC workflow
servers would immediately weaken the market position
of the merchant. This requires efficient replication of
workflow servers.

The current monolithic workflow engines on the other
hand can not fulfill these needs. In the current systems even
for very simple workflow processes, the full scale engine
runs thus consuming resources unnecessarily. These sys-
tems also suffer from difficulty in load balancing, migration
of workflow process instances, and efficient replication of
servers.

We have designed a workflow system architecture based
on Internet and CORBA [13, 14] to address these issues:

� Each process instance is a CORBA object that contains
all the necessary data and control information as well
as its execution history. This feature makes it possible
to migrate the object in the network to provide load
balancing. Furthermore it is possible to dynamically
modify the process definition on the instance basis at
run time. It should be noted that with this architecture,
a site failure affects only the process instances running
at that site.

� The system is designed to consist of functional compo-
nents containing but not restricted to: Basic Enactment
Service, User Worklist Manager, Workflow Monitor-
ing Tool, Workflow History Manager, Dynamic Modi-
fication Tool, Process Definition Library Manager, Re-
liable Message Queue Manager, Workflow Domain
Manager and Distributed Transaction Manager. This
componentwise architecture makes it possible to incor-
porate the functionality and thus the complexity only
when it is actually needed at run time by a process in-
stance by downloading only the necessary components
which results in effective usage of system and network
resources. It is also possible to add new components or
maintain and upgrade the existing components of the
system incrementally without affecting the other parts
of the system.

� The componentwise architecture facilitates the replica-
tion to a great extend. Each site can download its own
copy of a component server; also the Workflow Do-
main Manager can be replicated at each site as a Site
Manager. This provides for availability and prevents
network overhead.

� The clients of the system are coded as network-
transportable applets written in Java so that the end

user can acquire workflow components from the Work-
flow Domain Manager over the network. Thus it is not
necessary to have the software pre-installed on the user
machine. This promotes user mobility further as well
as easy maintenance of the system components which
can be upgraded transparently on the server side.

� The architecture proposed in this work uses CORBA
as the distribution infrastructure. We have chosen to
invoke methods in CORBA through XML [16]. In
this way a CORBA compliant ORB is not necessary
at the client side. The client can send the method invo-
cation requests and its parameters expressed in XML
through the ”post” method of the HTTP protocol. An
HTTP server receiving this request can pass it to a
CORBA server through CGI. CORBA server will in-
voke the method after parsing the XML document. If
there is an ORB at the client side, the client sends the
request directly to the CORBA server again in XML.
In this way it also possible to replace the distribution
infrastructure by a Web-native ORB in the future when
the Web-native ORBs provide CORBA-like capabili-
ties. All data exchanges are realized through Exten-
sible Markup Language (XML) providing uniformity,
simplicity and a highly open and interoperable archi-
tecture.

The paper is organized as follows: Section 2 describes
our adaptable workflow system architecture and its advan-
tages. In Section 3, an example electronic commerce appli-
cation is given which uses the proposed workflow system
architecture to realize an electronic marketplace. Related
work is summarized in section 4. Finally, conclusions are
given in Section 5.

2. Workflow system architecture

���� The architecture

The general system architecture is presented in Figure
1. In the following the basic components of the system are
presented:

1. Component-Server Repository: The components of
the system are implemented as CORBA objects that
are invoked through Java applets. The Java applets
are downloaded to the client machine when a user
through a Web browser accesses the Workflow Do-
main Manager and asks for a specific service. Thereon
the Java applets interact with the user and direct the
user requests to the appropriate CORBA objects. The
Component-Server Repository contains the following
components:



- Process Definition Tree

History Manager

Workflow Process Definitions Library

USER

W
or

kf
lo

w
 D

om
ai

n 
M

an
ag

er

Workflow Domain

Monitoring Tool

Workflow Domain Control Data

- URL of Component Server Repository
- URL of Workflow Process Definitions Library
- URL of Workflow Domain Permanent Storage

- List of Participating Sites
- List of Active Component-Servers
- List of Active Process Instances

- Process Animator
- Dynamic Modification Tool

- Workflow Domain Monitoring Tool

- Worklist Handler - Engine
- Worklist Handler - User
- Activity Handler / Scheduler - Type 1
- Activity Handler / Scheduler - Type 2
- Permanent History Handler
- Authorization Server

- Basic Enactment Server

- Process Instance Monitoring Tool

Component-Server Repository

- Textual Process Definition Tool
- Graphical Process Definition Tool

WEB Browser

Figure 1. The architecture of the proposed workflow system.

� Workflow Process Definition Tool: Authorized
users are allowed to define new workflow pro-
cesses. Graphical or textual specification inter-
faces can be implemented. The process definition
is syntactically verified and permanently stored
in the Workflow Process Definition Library.

� Dynamic Modification Tool: Authorized users
are allowed to modify previously defined work-
flow processes that are stored in the Workflow
Process Definition Library. It should be noted
that template modification does not affect the al-
ready active instances of a workflow. Autho-
rized users are also allowed to modify a partic-
ular workflow process instance to respond to ex-
ternal changes that cause variations in the pre-
specifed process definition. The modifications
can be applied to executing instances selectively
or to all instances of the same workflow process if

required. The modifications can also be reflected
to the template as well [9].

� Process Instance Monitoring Tool: Users are al-
lowed to trace workflow process instances they
have initiated and extract run-time information
about the current execution status of an instance.
Collecting and measuring process enactment data
are needed to improve subsequent process en-
actment iterations as well as documenting what
process actions actually occurred in what order.
This feature provides data to improve optimiza-
tion and evaluation of processes.

� Process Animator: Graphically simulating the re-
enactment of a process is needed to more read-
ily observe process state transitions or to intu-
itively detect possible process enactment anoma-
lies. Process visualization provides users with



graphical views of process templates or instances
that can be viewed, navigationally traversed, and
interactively edited and animated to convey pro-
cess statistics and dynamics. Process visual-
izations enable intuitive analysis and discovery
as well as being a key to user acceptability of
the technology. Visualizing and replaying pro-
cess enactment histories are well-received and
support organizational drill-down when process
anomalies are observed.

2. Workflow Process Definitions Library: Workflow def-
initions (i.e., the process templates), organizational
role definitions, and participant-role assignments are
durably stored in this library. Only workflow specifi-
cation tool and workflow process template modifica-
tion tool insert or update workflow process templates
in this library. Accesses by all the other services are
read-only. This library is maintained by the WFMS
library manager.

Different workflow schema versions have to be man-
aged and different propagation strategies of workflow
schema changes to their workflow instances have to
be provided by a WFMS in order to flexibly support
the migration from one business process to an im-
proved one, to support alternative workflows for pro-
cess variants, and to support adhoc changes of a work-
flow. When the workflow definition is modified perma-
nently, the versions of workflow definitions are stored,
since:

� In some cases, it may be necessary to recover to
the old workflow definition. For example, when
it is observed that the new definition performs
worse than the old definition.

� It may be desired that more than one version of
definitions are active at the same time. That is,
some instances are created from one version, and
some others from a different version of the defi-
nition. For example, a bank wants to change its
giveCredit workflow process by adding more ac-
tivities to search the financial backgrounds of the
customers. However, for their well-known cus-
tomers, they may still want to apply their old
giveCredit process. By keeping versions of defi-
nitions, both process instances can be created.

In the system, to handle the versioning of definitions, a
definition tree is kept to provide the administrator the
flexibility of modifying a definition several times. Dur-
ing the modification, the administrator selects one ver-
sion, default being the last one. Thus new instances are

created from the default definition, if the version num-
ber of workflow definition is not identified explicitly
during the instance creation.

3. History Manager: The History Manager handles the
database that stores the information about workflow
process instances which have been enacted to comple-
tion to provide history related information to its clients
(e.g. for data mining purposes). It should be noted that
the history of active process instances are stored in the
process instance object.

4. Workflow Domain Manager: The domain manager is
the Web server of the system. All clients access to
the domain manager via their Web browsers and in
response to their authorized service requests the do-
main manager downloads appropriate Java applets to
the client which then handle subsequent requests of
the same client for that particular service which is pro-
vided by a component server. If the client needs a
different WFMS service, the domain manager is then
accessed again via the Web browser and another Java
applet is downloaded. The domain manager keeps
runtime information such as list of active process in-
stances, active component servers, list of participating
sites, etc. for domain monitoring purposes.

5. Workflow Process Instance Object (WPIO): When
a user wants to initiate a new instance of a pre-
specified workflow, the Domain Manager creates a
new Workflow Process Instance Object (WPIO). The
main method of this object is Basic Enactment Method
(BES) which is activated by the Domain Manager on
behalf of the client. The Workflow Process Instance
Object (WPIO) contains all the data (such as workflow
process definition, workflow relevant data, enactment
history of that instance up to the current execution sta-
tus, etc.) required to complete the execution of the pro-
cess instance. When a WPIO completes its execution it
is destroyed after being durably stored. That is, WPIOs
exist only for active process instances. A WPIO con-
tains all the run-time information about its own pro-
cess instance which might be needed to migrate the
process instance from one site to another or to rescue
an instance in case of failures. Since a WPIO contains
the workflow process definition and all the run-time in-
formation about its own process instance, the dynamic
modification of the workflow process definition con-
tained in that WPIO is simply enabled by dynamically
modifying the WPIO. The dynamic modification of a
WPIO may be initiated in two ways: either by a user or
by means of a special activity specified in the process
definition as explained in the following:

� A user via his Web browser may access the



Workflow Domain Manager and download the
Dynamic Modification tool. The user is supposed
to provide the WPIO-identifier which otherwise
may be obtained by the Dynamic Modification
tool from the List of Active Process Instances
contained in the Workflow Domain Control Data.
Once the WPIO to be modified is identified en-
actment service of the WPIO is paused by send-
ing a proper message to its BES and from thereon
the Dynamic Modification tool has control of the
WPIO. The user modifies the workflow process
definition contained in the WPIO as s/he wishes.
If the modification requires undoing some activi-
ties that have been already executed, correspond-
ing compensation activities are included as part
of the modification such that when the enactment
service resumes, those already executed activities
are compensated first. After the user indicates ex-
plicitly that the modification is completed the en-
actment service of the WPIO resumes by sending
another message to its BES. The user has at his
will the choice of applying this modification to
the other instances of the same workflow process
or even to update the process template stored in
the Workflow Process Definitions Library.

� Workflow process definition contains a special
activity called Workflow Process Modification
Activity (WPMA) that when executed automat-
ically invokes the Dynamic Modification tool on
behalf of a user so that the user can modify
the WPIO. The WPMA handles instance-specific
differences of the process definition when neces-
sary. Each specification of the WPMA activity
results in a separate modification of the WPIO.
A WPMA initiated modification may not affect
other instances of the same workflow process or
the Workflow Process Definitions Library.

� Dynamic Workflows which have no pre-specified
process definition are handled with another spe-
cial activity called Dynamic Workflow Special
Activity (DWSA) that automatically invokes the
Dynamic Modification tool on behalf of a user so
that the user can specify the next activity to be ex-
ecuted. A dynamic workflow process definition
initially includes only one activity: the DWSA.
When this process is initiated, the DWSA in-
vokes the Dynamic Modification tool and awaits
the user to specify activities to be executed.
When the user specifies the next activity or activ-
ities, another DWSA is appended automatically
such that after the user-specified next activity(s)
is executed, the DWSA will be invoked again.
The DWSA will not be appended if the user ex-

plicitly indicates that no more activities are to be
specified in which case the termination of DWSA
will indicate the termination of the WPIO. In this
way a workflow process can interactively be de-
fined on-the-fly by a user and it is saved in the
Workflow Process Definition Library if the user
specifies so when terminating DWSA.

���� Advantages of the proposed architec�
ture

The run-time system despite having a central control
on a process instance basis brings out all the benefits of
highly distributed environments. Each WPIO instance of
a workflow process may execute at a different site. The
Component-Server Repository, Workflow Definition Li-
brary, Workflow Domain Control Data and the Workflow
Domain Manager may all be replicated for better perfor-
mance and availability. Each participating site may have its
own replication of Workflow Domain Manager as the Site
Manager. Since no prior installation of any WFMS software
is required on the client side, the system is highly dynamic
and thus any component-server implementation may be up-
graded at the server side without necessitating any changes
on the client side. In addition a site failure can be handled
simply by migrating the WPIOs to be executed on that site
to another site/other sites.

3. An example electronic commerce applica-
tion

In this section, an example application describing the use
of the proposed workflow system architecture in electronic
commerce is presented. An electronic marketplace architec-
ture is designed as an application. In this marketplace, elec-
tronic commerce is realized through the adaptable workflow
templates provided by the marketplace to its users.

���� Requirements of electronic market�
places

In addition to the general requirements of electronic
commerce discussed in Section 1, electronic marketplaces
also have some specific requirements to be met. The mar-
ketplace is designed with the following issues under consid-
eration:

1. Electronic commerce processes in the marketplace are
modeled as workflow processes.

Many researchers as well as commercial companies
have created systems that support various aspects of
electronic commerce such as online shopping, virtual



catalogs or electronic marketplaces. While these sys-
tems provide interesting shopping experiences, they
fall short in fully exploiting the capabilities offered by
the electronic medium [2].

These systems can not handle diversity of customer
needs. As an example, a customer may want to buy
more than one related item and there can be dependen-
cies among the items and also compatibility require-
ments that stem from the nature of these items. For
example, s/he may want to buy a printer together with
a personal computer. This creates a dependency be-
tween the computer and the printer. Also, for the spe-
cific software that s/he considers there could be a cer-
tain amount of memory requirement. This illustrates
a compatibility requirement. In contrast, current sys-
tems are mostly designed to handle one request at a
time. For instance, a customer may buy an item by
searching several shops/stores but can not make sev-
eral inquiries in one step to buy several compatible and
related items and/or services. Shopping carts support
several inquiries of a buyer however the buyer cannot
give dependencies among the items or the specific or-
der of the related purchases. Also, no support is pro-
vided for compatibility requirements. In our approach,
the dependencies expressed by the user are represented
through control flow dependencies. For expressing
the compatibility requirements among items, there is
a need for a knowledge base to store the rules.

More importantly, most of the systems developed do
not have enough facilities to automate the business
processes conducted by the user/customer. In this re-
spect, we propose to organize the electronic commerce
processes into workflow templates adaptable to user
needs. Workflow based approach allows involved par-
ties to define their own tasks and to invoke already
existing applications within the workflow and to re-
structure the control and data-flow among the tasks,
in other words, to automatically create a custom built
workflow from the workflow template. The higher
level of abstraction provided by the workflow technol-
ogy makes this customization of processes for differ-
ent users possible. In addition, the workflow defini-
tion makes it possible to invoke any number of activ-
ities in parallel to provide efficiency and to dynami-
cally reengineer the commerce processes not only to
the user needs but also to balance the system work-
load. For example, the search and purchase of related
items from different stores can be activated in parallel.
Furthermore the recovery functionality of a workflow
system allows to automatically rollback the necessary
activities if a dependent activity fails, eg., a desk pur-
chase request of a user executing in parallel with his
computer purchase request can be automatically rolled

back if the computer purchase request fails.

2. The communication infrastructure of the underlying
workflow system is CORBA. All data exchanges are
realized through XML (Extensible Markup Language).

For electronic commerce to become really ubiquitous,
electronic commerce architectures should be open, that
is, they should be based on infrastructures provid-
ing for semantic interoperability. The most promis-
ing proposal in providing an open and interoperable
electronic commerce architecture seems to be the ef-
forts of World Wide Web Consortium (W3C) in pro-
viding data exchange and data semantic standards like
XML, RDF (Resource Description Framework) and
CommerceNet’s efforts on developing an open elec-
tronic commerce framework based on Common Busi-
ness Library (CBL).

The Extensible Markup Language (XML) is a data for-
mat for structured document interchange on the Web.
It provides a framework for tagging structured data by
allowing developers to define an unlimited set of tags
bringing great flexibility. XML resembles and comple-
ments HTML. XML describes data such as city name,
temperature, and HTML defines tags that describe how
the data should be displayed such as with a bulleted
list or a table. Document Type Definitions (DTDs)
may accompany an XML document, essentially defin-
ing the rules of document, such as which elements are
present and the structural relationships between the el-
ements. DTDs help to validate the data. XML brings
so much power and flexibility to Web-based applica-
tions that it provides a number of benefits to developers
such as being able to do more meaningful searches.

XML has gained a great momentum and is emerging as
the standard for self-describing data exchange on the
Internet. Its power lies in its extensibility and ubiquity.
Anyone can invent new tags for particular subject ar-
eas and they define what they mean in document type
definitions. Content oriented tagging enables a com-
puter to understand the meaning of data. But if ev-
ery business uses its own XML definition for describ-
ing its data, it is not possible to achieve interoperabil-
ity. The tags need to be semantically consistent across
merchant boundaries. For this reason, CBL which con-
sists of product taxonomies and message formats as
XML DTDs, has been developed [10] and the baseline
version (1.1) is available from [17]. CBL contains a
set of building blocks common to many business do-
mains such as address (location.dtd), price (value.dtd),
purchase order (order.dtd) and standard measurements
(measures.dtd), and thus provides the much needed
basis to ensure interoperability among XML applica-
tions. When this is complemented by a set of DTDs



common for specific industries, that is for vertical do-
mains, the open electronic commerce infrastructure
will be achieved.

���� The electronic marketplace architec�
ture

Having explained our workflow management system ar-
chitecture, we now discuss how this architecture can be used
in building an electronic marketplace where sellers and buy-
ers meet and negotiate to make the best deal. Figure 2 shows
the general outlook of the marketplace architecture. In our
marketplace, electronic commerce processes are realized
through the adaptable workflow templates provided by the
marketplace to its users. The templates contain agents (both
buying and selling) as well as existing applications invoked
by the workflows and are stored in the Intelligent Direc-
tory Service (IDS) of the marketplace. IDS constitutes the
core of the marketplace architecture and provides document
type definitions (DTDs), a dictionary of synonyms, repos-
itories for agents, workflow templates, a knowledge base
(KB) for item compatibilities and some library modules for
agents’ use. IDS also contains a match making mechanism
for agents to find out about each other and the related Doc-
ument Type Definitions (DTDs) to eliminate the need for an
ontology in agent communication.

When a customer wants to buy a service or an item from
the marketplace, s/he contacts a pre-specified URL, and an
applet is downloaded which presents a form to be filled in.
The user fills in the fields (customer info and the name of
the item). This in turn activates a workflow template on the
server. The first activity invoked registers the buyer to the
IDS. The next activity checks the related DTDs in IDS with
the item name specified by the buyer. Since the buyer may
not know the right term (used in DTD) to use for the item,
an intelligent dictionary of synonyms is used. For example,
consider a computer shop using a computer DTD in describ-
ing its service. If a customer wants to buy a CPU and uses
the term ”Processor” and if ”CPU” is the term used in DTD,
then dictionary of synonyms is used to match the word ”Pro-
cessor” with ”CPU”. The names and types of the properties
obtained from the related DTD by the activity are passed to
the buying agent activated. Obtaining the names and types
of properties from DTDs is necessary since the buyer may
not know in advance all the properties of the item.

The buying agent which presents the user a form contain-
ing the values or ranges for the properties of the item along
with the criteria that the customer wishes to be optimized
in the negotiation phase and the required parameters. Note
that the choices made by the user on this form affects how
the rest of the workflow process is to be formed. The buying
agent negotiates with the related selling agents to realize the
deal.

When a seller wants to sell some service or an item
through the marketplace, s/he contacts a pre-specified URL,
and an applet is downloaded which presents a form to be
filled in. The form asks for the type of the service given
and under what conditions. When the form is submitted, a
workflow template is activated on the server. The first ac-
tivity of this workflow registers the seller to the marketplace
directory as in the buyer’s case.

Note that the workflow templates (buyer and seller work-
flow templates) stored in the marketplace directory only
contain the basic steps of the commerce process like reg-
istering to the marketplace, matchmaking, iniating a buy-
ing/selling agent to realize the actual negotiation step.
These templates can be modified at run time according to
the specific requirements of the users. This modification
phase is realized through the dynamic modification tool of
the underlying workflow system. This facility provides the
buyer the opportunity to buy more than one, related items
with dependencies among them. The item dependencies are
embedded into the buyer workflow template. The compat-
ibility constraints can also be checked from the IDS at this
step.

4. Related work

In [5, 4], we present some initial ideas on a workflow
based electronic marketplace on the Web.

In [7, 8], we present a workflow system, namely MAR-
IFlow, through cooperating agents for document flow over
the Internet. In that work we describe an architecture that
provides for automating and monitoring the flow of control
and data over the Internet among different organizations,
thereby creating a platform necessary to describe higher or-
der processes involving several organizations and compa-
nies. A workflow process is executed through cooperating
agents, called MARCAs (MARIFlow Cooperating Agents)
that are automatically initialized at each site that the process
executes. MARCAs handle the activities at their site, pro-
vide for coordination with other MARCAs in the system by
routing the documents in electronic form according to the
process description, keeping track of process information,
and providing for the security and authentication of docu-
ments as well as comprehensive monitoring facilities. Al-
though the application domain of the MARIFlow system is
maritime industry, the workflow system architecture is gen-
eral enough to be applied to any business practice. While
developing the architecure proposed in this paper, we have
made use of some of the ideas given in [7, 8].

The current marketplaces can be investigated in the fol-
lowing categories:

� In product brokering marketing systems the users de-
termine or identify the product that they want to



Agent Library (Modules)

D
ic

t.

D
T

D
s

Buyer Side

Seller Side

Seller

Buyer

:

workflow templates

Marketplace Directory

Repository

KB

Buyer Workflow

Seller Workflow

Selling Agent

Buying Agent

XML

CORBA

IDS

other applications

other applications

Figure 2. The general architecture of the electronic marketplace.

buy. PersonaLogic (www.personalogic.com) guides
the user through selection among various products by
presenting a large feature space. The system filters
out unwanted products according to the user-specified
constraints yielding the most appropriate ones to the
consumer. FireFly (www.firefly.com) uses the opin-
ions of like minded people to offer recommendations
of such commodity products as music and books, as
well as more difficult to characterize products such as
Web pages and restaurants.

� Another category is where the user selects the mer-
chant to buy from, according to merchant value-added
services like price, delivery time, warranty etc. An-
dersen Consulting’s BargainFinder (bf.cstar.ac.com),
the first intelligent agent to provide comparison shop-
ping, allows users to type in the name of a CD or mu-
sic group and then search on-line stores for the low-
est prices available. A more advanced system, Ex-
cite’s Jango (www.jango.com) has more product fea-
tures and shopping categories to search across however
other issues for selection like delivery time and war-
ranty are still amiss. The MIT Media Lab’s Kasbah
(kasbah.media.mit.edu) is a multi-agent system where
the user gives the agent s/he has created, some strate-

gic directions and the agents communicate with each
other in a centralized agent marketplace based on the
determined strategy. The new e-marketplace of MIT
Media Lab, Market Maker (maker.media.mit.edu) im-
proves upon Kasbah’s agent based transaction con-
cept, further extending agent capabilities with dy-
namic marketplace concept where new services and
products can be added dynamically. AuctionBot
(auction.eecs.umich.edu) is a general purpose auction
server developed and operating at University of Michi-
gan. It collects bids, determines a resulting allocation
as entailed by a well-defined set of auction rules, and
notifies the participants. Users can also generate their
own agents based on the API supplied as a part of the
project, and use them in auctions in the system. In
Tete-a-Tete (ecommerce.media.mit.edu/Tete-a-Tete), a
project within MIT Media Lab’s Agent-mediated Elec-
tronic Commerce Initiative, agents cooperatively ne-
gotiate across multiple terms of a transaction like de-
livery time, warrancy etc. Negotiation criteria are de-
termined by customer taste that is obtained through a
multi-attribute utility ranking of the merchant offer-
ings.

� Apart from these systems there are many catalog based



marketing systems where the users select the items
they want using a search engine. Amazon.com, Buy-
Books.com, BookFinder.com are the specialized ones
for buying and selling books while PriceWatch is for
computer products and Carpoint.msn is for automo-
biles. RoboShopper (www.roboshopper.com) and Net-
market (www.netmarket.com) are marketplaces that
comprise various products and are based on textual
search engines. RoboShopper tries to help the users
in selection of the merchant. It is a comparative shop-
ping marketplace price being the comparison criteria.
The comparison engine used belongs to PriceSCAN
(www.pricescan.com). eBay (www.ebay.com) is an-
other successful marketplace selling refurbished and
second hand products through a choice of auction pro-
tocols. eBay provides over a half million new auc-
tions every day from which users may choose from
more than 1,000 categories and participate in auctions
or create new auctions for their own goods. Com-
merce One MarketSite 3.0 Open Marketplace Plat-
form (www.commerceone.com) provides an open so-
lution for market makers to deploy interoperable mar-
ketplaces. It is comprised of software and commerce
services that enable trading partners to seamlessly ex-
change business information and provide access to
value-added services that are key to efficiently con-
ducting commerce. Commerce One MarketSite.net
(www.marketsite.net), built on MarketSite 3.0, is an
open business to business marketplace for electronic
procurement providing unprecedented commerce ser-
vices and the ability to interoperate with numerous
buying and selling applications.

� Many of the marketplaces today are auction based
and the auction mechanisms used imitate their real
life counter parts. They can be classified as follows:
single-sided auctions and double-sided auctions. In a
single-sided auction there is a single buyer and many
sellers or a single seller and many buyers. Examples
of such auctions include the English open outcry auc-
tion in which the auctioneer calls a price and the bid-
ders indicate their acceptance; the Dutch auction, in
which the auctioneer starts at a high price and lowers
it until someone accepts; or the Vickrey auction where
bids are sealed and the highest bidder wins at the sec-
ond bidder’s price. In a double-sided auction there are
many buyers and many sellers, and every buyer can
also be a seller. Examples include the continuous dou-
ble auction, in which bids and asks are matched in the
order received, and the sealed (clearinghouse) double
auction, where bids and asks are collected for a prede-
termined time interval and are matched at the end of
the interval according to price and arrival order. Auc-
tion based marketplaces require consumers to man-

age their own negotiation strategies over an extended
period of time and this is where the agent technolo-
gies come in. When agents are involved negotiation
schemes can be automated relieving the user from this
task. Many attributes such as price, deadline, deliv-
ery time, etc. can be negotiated among many agents.
Therefore, a multi-issue, multi-party negotiation algo-
rithm is necessary. Negotiation model can be based
on Raiffa’s bilateral (two parties, many issue) negoti-
ation. This bilateral negotiation model can be trans-
formed into multilateral (many parties, many issues)
negotiation model by using a set of mutually influenc-
ing two parties, many issues negotiations. This type
of negotiation is also called as integrative bargaining.
Buying and selling agents which realize the negotia-
tion process in our electronic marketplace makes use
of this multi-issue, multi-party negotiation algorithm.

5. Conclusions

Electronic commerce is one of the most exciting and
fast moving fields of today with a high demand for inno-
vative new technologies [1, 3, 6]. In this paper we de-
scribe a workflow architecture specifically designed for In-
ternet electronic commerce applications and describe its us-
age through an electronic marketplace scenario.

The proposed workflow architecture provides for the re-
quirements of the marketplace application described as fol-
lows:

� It is possible to model the whole commerce process
through workflow templates.

� It is possible to modify the templates according to cus-
tomer requirements by using the dynamic modification
tools provided by the system. For example if a cus-
tomer does not prefer automatic payment that activity
will not be included in the template definition.

� A customer only with a browser can access the system.

� The system is higly available since it is possible to
replicate the component repositories and the domain
monitoring tools through the proposed workflow archi-
tecture.

� The system is highly scalable since the components are
activated only when they are actually needed.

� The system has an open infrastructure based on
CORBA and XML.

Currently we are in the process of implementing the pro-
posed architecture. Future work includes research in how
the workflow system architecture can be enhanced to meet
the requirements of supply-chain management across orga-
nizations.



References

[1] N. Adam, and Y. Yesha, Electronic Commerce: An
Overview, Springer Verlag, 1996.

[2] S. Arpinar, A. Dogac, and N. Tatbul, An Open Elec-
tronic Marketplace through Agent-based Workflows:
MOPPET, International Journal on Digital Libraries, to
appear.

[3] A. Dogac, Guest Editor, ACM Sigmod Record Spe-
cial Section on Electronic Commerce, 27(4), December
1998.

[4] A. Dogac, I. Durusoy, S. Arpinar, E. Gokkoca, N. Tat-
bul, and P. Koksal,METU-EMar: An Agent-based Elec-
tronic Marketplace on the web, in [12].

[5] A. Dogac, I. Durusoy, S. Arpinar, N. Tatbul, P. Koksal,
I. Cingil, and N. Dimililer, A Workflow-based Electronic
Marketplace on the web, in [3].

[6] A. Dogac, Guest Editor, Distributed and Parallel
Databases, Special Issue on Electronic Commerce, 7(2),
Kluwer, April 1999.

[7] A. Dogac, C. Beeri, A. Tumer, M. Ezbiderli, N. Tatbul,
C. Icdem, G. Erus, O. Cetinkaya, and N. Hamali, MAR-
IFlow: A Workflow Management System for Maritime
Industry, MAREXPO Book, to appear.

[8] A. Dogac, M. Ezbiderli, N. Tatbul, A. Tumer, C. Ic-
dem, G. Erus, O. Cetinkaya, and C. Beeri, A Workflow
System through Cooperating Agents for Document Flow
over the Internet, Technical Report, SRDC, Middle East
Technical University, April 1999.

[9] P. Koksal, I. Cingil, and A. Dogac, A Component-based
Workflow System with Dynamic Modifications, in Proc.
of the Next Generation Information Technologies and
Systems (NGITS’99), Israel, 1999.

[10] B. Meltzer, and R. Glushko, XML and Electronic
Commerce: Enabling the Network Economy, in [3].

[11] P. Muth, J. Weissenfels, and G. Weikum, What Work-
flow Technology Can Do for Electronic Commerce, in
Current Trends in Database Technology, A. Dogac, T.
Ozsu, O. Ulusoy, editors, Idea Group Publishing, 1998.

[12] C. Nicolaou, and C. Stephanidis, editors, Research
and Advanced Technology for Digital Libraries, Lecture
Notes in Computer Science, Springer.

[13] R. Orfali, D. Harkey, and J. Edwards, The Essential
Client/Server Survival Guide, Second Edition, John Wi-
ley, 1996.

[14] R. Orfali, and D. Harkey, The Essential Client/Server
Programming with JAVA and CORBA, John Wiley, 1997.

[15] P. Timmers, Internet Electronic Commerce Busi-
ness Models, http://www.ispo.cec.be/ ecommerce/ busi-
mod.htm.

[16] Extensible Markup Language (XML), http://www.
w3.org/XML/.

[17] VEO Systems Inc., http://www.veosystems.com, 1998.


