
TASK HANDLING IN WORKFLOW

MANAGEMENT SYSTEMS

Pinar Karagoz� Sena Arpinar� Pinar Koksal� Nesime Tatbul�

Esin Gokkoca� Asuman Dogac

Software Research and Development Center

Dept� of Computer Engineering

Middle East Technical University �METU�

����� Ankara Turkiye

asuman	srdc�metu�edu�tr

ABSTRACT

Work�ow management systems aim to automate the
execution of business processes� One of the objectives of
the work�ow systems is to include the already existing
applications such as legacy applications as well as new
applications� which are termed as tasks� into the system
and provide synchronized execution among them� To
achieve this� a mechanism is necessary to support the
communication between the tasks and the system� The
communication mechanism should handle the transfer
of data necessary for the execution of the tasks and for
the scheduling of the tasks� Another point to be noted
is the necessity of the handling user tasks that have
to be performed by the users of the work�ow system�
Since the trend is toward distributed execution to avoid
the bottlenecks due to the nature of central systems�
we considered these issues in a distributed execution
environment� Therefore� in this paper� task handling
in a truely distributed work�ow management system
that is being developed at METU� namely METUFlow�
is described� Yet the techniques described are general
enough to be applicable to any work�ow management
system�

� INTRODUCTION

Work�ow Management Systems �WFMS� achieve
considerable improvements in critical� contemporarymea�
sures of performance such as cost� quality� service� and
speed by coordinating and streamlining complex busi�
ness processes within large organizations�

A work�ow system can be de�ned as a collection of
processing steps �also termed as tasks or activities� or�
ganized to accomplish some business process� A task
can be performed by one or more software systems� or�

by a person or a team� or a combination of these� In ad�
dition to the collection of tasks� a work�ow de�nes the
order of task invocations or condition�s� under which
tasks must be invoked� i�e� control �ow� and data �ow
between these tasks�

In general� a work�ow task is considered to be a
black box that is functional in nature� i�e�� the func�
tionality of the task is orthogonal to that of the work�
�ow process� The tasks could be transactional or non�
transactional in nature� Transactional tasks are those
that access data controlled by resource managers with
transactional properties �i�e� ACID�� Non�transactional
tasks access data controlled by resource managers with�
out transactional properties such as �le systems�

Work�ow systems are expected to work in distributed
heterogeneous environments which are very common
in enterprises of even moderate complexity� Further�
more� the applications running on these environments
may be legacy applications� which are meant to work
standalone� and some other new applications may be
needed for the work�ow system� In addition to these
applications� tasks which are to be performed by the
users� namely user tasks� may take part in the work�ow
management system� Each of these activities should be
wrapped appropriately to work in harmony with the
work�ow system�

In this paper� we describe task handling in a work�
�ow management system� namely METUFlow� that is
being developed at METU� based on a CORBA com�
pliant ORB� Yet the techniques described are general
enough to be applicable to any work�ow system�

CORBA provides a standard communication mech�
anism which enables distributed objects to communi�
cate with each other� METUFlow� by allowing CORBA�
IDL to be used in task speci�cation� makes it possible to
invoke tasks in distributed heterogeneous environments
and meets the need for a task wrapper�

App. agent

Invoked
Applications

Workflow
enabled app.

Workflow
Engine

Fig� � Invoked Application Interface of WfMC

The paper is organized as follows� In Section 	� the
related work on task handling in work�ow systems is
provided� METUFlow architecture is explained brie�y
in Section
� In Section �� task handling mechanism
is explained� Section � presents user task handling to�
gether with worklist handling� Finally� the paper is
concluded in Section
�

� RELATED WORK

Although task management is an integral and im�
portant part of work�ow systems� it is not very much
emphasized in the literature�

In work�ow management system design� the pri�
mary guide is the standards that are published byWork�
�ow Management Coalition �WfMC�� WfMC has been
established to identify the functional areas and develop
appropriate speci�cations for implementation in work�
�ow products �Holligsworth� ������ Among these� the
speci�cations for invoked applications are also included�

According to WfMC� any particular WFMS imple�
mentation will not have su�cient logic to understand
how to invoke all potential applications which might
exist in an heterogeneous product environment� As de�
picted in the Figure �� WfMC proposes two ways to
cope with this heterogeneity�

� Using Application Agents � Application agents
contain variety of method invocations behind a
standard interface into the work�ow enactment
service�

� Developing Work�ow Enabled Application Tools
� These tools use a standard set of APIs to com�
municate with the work�ow enactment service to

accept application data� signal and respond to ac�
tivity events� etc�

The detailed semantics and syntax of an API set for
application invocation have not been presented by the
Coalition yet�

In METUFlow task handling mechanism� task han�
dlers correspond to the application agents of WfMC�
Task handler�s methods provide parameter passing� start�
ing and aborting the task which match the command
set of WfMC API�

As presented in �Krishnakumar� N� and Sheth� A��
�������Sheth� A� and Kochut� K�� ������ METEOR
�Managing�End�To�End OpeRations� project is one of
the works in which task integration is discussed�

In METEOR work�ow model� TSL �Task Speci��
cation Language� supports the detailed speci�cation of
each task and its interaction with the interfaces � pro�
cessing entities in a distributed environment� Each task
speci�cation is executed by a task manager�

There are some common points in the task handling
techniques of METEOR and METUFlow� However� in
METUFlow� the communication mechanism between
the task and the task handler in terms of status mes�
sage and parameter passing with a well�de�ned task
handler interface is emphasized� As another di�erence�
in METUFlow� handling of user tasks in collaboration
with worklist handlers is also considered�

� METUFlow ARCHITECTURE

A simpli�ed architecture of METUFlow system is
given in Figure 	� In METUFlow� �rst a work�ow is
speci�ed using a graphical work�ow speci�cation tool
which generates the textual work�ow de�nition in METU�
Flow De�nition Language �MFDL�� The functionality
of the scheduler is distributed to a number of guard han�
dlers which contain the guard expressions for the events
of the activity instances� Guards are temporal expres�
sions de�ned on events �Gokkoca� E� et al�� �������Tat�
bul� N� et al�� ������ There exists a task handler for
each task which acts as an interface between the activity
instance and its guard handler� In a work�ow manage�
ment system� there are activities in which human inter�
actions are necessary� In METUFlow� user task handler
manages such interactions� User task handler is a kind
of task handler that is responsible for progressing work
requiring user attention� User task handler uses the
authorization service to determine the authorized roles
and users� History manager provides the mechanisms
for storing and querying the history of both ongoing
and past processes� It communicates with the sched�
uler through a reliable message queue to keep track of
the execution of processes� In METUFlow� the work�

Message Passing using Reliable Queue

Guard
Handler

Guard
Handler

Guard
Handler

Guard
Handler

Guard
Handler

Worklist
Handler

Worklist
Handler

Worklist
Handler

Task Task Task Task

Reliable Queue

Non-trans.

User UserUser

User

Scheduler

Task Handler

Service

OTS

History
Manager

WRD
Objects

T. Handler T. Handler T. Handler T. Handler T. Handler
2PC trans. Assign.

Author.

Transact.

Fig� � The simpli�ed architecture of METUFlow

�ow relevant data of the work�ow management system
that are de�ned in the system speci�cation are kept as
CORBA objects� WRD objects keep the values and
versions of the variables of the work�ow system that
are to be used by the underlying tasks�

The communication infrastructure of METUFlow
is CORBA� but CORBA does not provide for reliable
message passing� that is� when ORB crashes� all of the
transient messages are lost� For this reason� a reliable
message passing mechanism which uses Object Transac�
tion Service �OTS� based transaction manager to com�
mit distributed transactions is implemented� Note that
reliable message passing is necessary among all the com�
ponents of METUFlow such as between guard handlers
and task handlers as indicated in Figure 	� Detailed de�
scription of the system is explained in �Dogac� A et al��
������

� TASK HANDLING IN METUFlow

In METUFlow� a distributed environment is pro�
vided using the guards� guard handlers and task han�
dlers� The scheduling of the tasks are distributed on
guard handlers through guards� Task handlers encap�
sulate the tasks as objects and each task handler binds
its task to the associated guard handler� Thus� tasks�
having their own guards on their guard handlers� have
the responsibility of correctness of their own execution�

The guard evaluation is done by the guard handler�
The skeleton of a guard handler for each task is gen�
erated at compile time of the work�ow de�nition and
the guard handler is created at run time� The tasks
communicate with each other and with the other com�
ponents of the work�ow through guard handlers� Guard

handler keeps the guards in the form of conjunction or
disjunction of boolean expressions� and the messages
coming from the other tasks are kept in a queue� An
event of a task �start� abort� commit� can execute only
if its associated guard evaluates to true� According to
the incoming messages� if the guard evaluates to �true��
the guard handler sends the appropriate message to its
task handler�

A task handler is� in fact� the wrapper for the task
implemented as a CORBA object� As for guard handler
objects� skeleton of a task handler object is generated
at compile time and object itself is created at run time�
It acts as a bridge between the task and its guard han�
dler� While the task handler integrates the task to the
work�ow system� the guard handler obtains the rele�
vant information from the system� The guard handler
sends the information necessary for the execution of the
task� like the arguments� to the task handler and the
task handler sends the information about the status of
the task and new values of arguments which are set by
the task to the guard handler� The status messages are
as follows� When a task starts� its status becomes Exe�
cuting� If it can terminate successfully� then its status is
changed to Committed or Done depending on whether
it is a transactional or a non�transactional task� In case
the task fails� its status becomes Aborted or Failed�

In METUFlow� six types of tasks are de�ned as fol�
lows�

� Transactional Tasks � these are the tasks which
are controlled by a transactional resource man�
ager� These tasks can either commit or abort�
The �nal status of these tasks can be controlled
by the resource manager that has ACID proper�
ties�

� Non�Transactional Tasks � these tasks access data
controlled by resource managers without transac�
tional properties such as �le systems� Therefore�
their �nal status are not controllable�

� Non�Transactional Tasks with Checkpoint � they
are the same as non�transactional tasks with the
exception of checkpoints� Such an extension is
the result of observation that in some business
applications� it is necessary to take checkpoints
and guarantee the correctness of execution until
that point so that recovery becomes easier in case
of a failure�

� Two�Phase�Commit Tasks � these are transactional
tasks which communicate with transaction man�
ager that takes the �nal decision on whether to
commit the distributed transaction�

� User Tasks � this type of tasks need human inter�
vention and are handled via the worklist handler�

� Assignments � these tasks make necessary assign�
ments in the work�ow process instance� They are
not external applications� but provide accesses to
work�ow relevant data�

Each task is integrated to the system via its task
handler� The implementation of the task handlers may
di�er according to the type of the task they wrap� as
explained in the following section�

��� GENERAL STRUCTURE OF THE TASK
HANDLER

Each task of a work�ow system is accompanied by a
task handler� Task handler is a CORBA object and has
a generic interface which contains the following meth�
ods to communicate with its associated guard handler�

� Init This method is used for passing initial data
such as name of the task and signature of param�
eters to the task handler�

� Start This method is called by the guard handler
when the start guard of the task evaluates to true�
This causes the task handler to invoke the actual
task�

Task handlers for each di�erent type of tasks inherit
from this interface and provide overloading of these
methods and�or further methods when needed as ex�
plained in the following�

� Transactional task handler This type of task
handler is for the transactional tasks� Even if a
transactional task terminates successfully� its task

handler should wait for the commit or abort mes�
sage from the guard handler� For this purpose�
in addition to the common methods described
above� this type of task handler provides two more
methods namely� Commit and Abort to be called
by the guard handler to commit or abort the task
respectively�

� Non�Transactional task handler This type of
task handler handles tasks which are either non�
transactional or non�transactional with checkpoint�
The di�erence between non�transactional and non�
transactional with checkpoint is that in the latter
in case of a failure the application is rolled back
to the latest checkpoint and not to the beginning�
Since this does not a�ect the communication be�
tween the task and the task handler� only one type
of task handler is de�ned for both of them� Note
that� non�transactional tasks terminate without
waiting for any con�rmation from the guard han�
dler� They only inform the task handler about
their status �Done or Failed��

� Two�Phase�Commit task handler This type
of task handler is required for two phase com�
mit transactional tasks� The di�erence between
this type of task and transactional tasks is that�
the former provides an additional status message�
namely Prepared� Thus� this type of task handler
provides a method called Prepare to be called by
the transaction manager�

� User task handler User tasks are handled by
user task handler and worklist handler� The user
task handler stores the name of the task and the
other necessary information to the repository and
distributes these tasks to the users according to
role resolution information retrieved from the au�
thorization service� The worklist handler informs
the user about the tasks that she�he is responsi�
ble for and sends the status of the task to the user
task handler�

� Assignment task handler This task handler
does not cause any task to begin� but only a work�
�ow relevant data assignment is done within the
scope of a transaction�

��� COMMUNICATION BETWEEN TASK
AND TASK HANDLER

Generally� it is desired for a work�ow to encapsulate
the existing applications� However� these applications
are generally developed to execute as standalone appli�
cations on speci�c platforms� such as DOS� Windows� or
UNIX� Their error messages and parameter structures

Task

Task

Handler

Guard

Handler

Commit(7)

TaskCommitted(9)Reply(10)

Start(1)

Reply(4)

IsCommitOk(6) ReadyToCommit(5)

Exec(2)

TaskExecuting(3)

Status(8)

{

register_patient()

 TaskExecuting();

 /* This part of the code gets patient information from the user.

 Connect_to_Database();

 Insert_Into_Database(patient_info,status);
 if(status == True){
 ReadyToCommit();

 Commit();

 Return(patient_id);
 TaskCommitted();

 }
 TaskAborted();

 Abort();

}
}

 TaskAborted();

} else {

 } else {

 Abort();

 if(Status() == Commit) {

 A new patient_id is generated for this patient */

Fig� � Communication among Guard Handler
 Task Handler
and Task

are not common� Therefore� a common form of com�
munication structure between the tasks and the system
is needed� This can be achieved by interfering the code
of the application where possible� For the applications
where such an interference is not possible� an outer shell
should be created on the top of the existing application�
This outershell is a part of the task handler� It provides
for the status information and parameter passing�

����� STATUS INFORMATION PASSING IN
TASK HANDLER Status information transfer is
handled by adding necessary calls either to the code
of the task� or to the shell which covers the task and
acts as a translator between the task and the associated
task handler� For the correct scheduling of tasks� the
work�ow system needs to know the status of the tasks�
For this reason� as described in the previous section�
a set of status messages is de�ned �Initial� Executing�
Committed� Aborted� Failed� Done�� Through this set�
the communication message structure is uni�ed�

In Figure
� we provide the modi�ed code of a trans�
actional task� register patient to illustrate the case where
interference to the code is possible� Register patient is
a task which is a part of a work�ow process� Check�
Up�Patient� In this process� all the activities and their
�ow are de�ned� from the point the patient applies for

a check�up until the check�up of the patient �nishes�
In the register patient task� the information about the
patient who applied for check�up is registered to the
patient database� The calls which are written in bold�
face are added to the original code of the task� The
functionalities of these calls are as follows�

� TaskExecuting�� informs the task handler that
it has started executing�

� ReadyToCommit�� informs the task handler that
operation is terminated successfully�

� TaskAborted�� informs the task handler that
the �nal status is Abort�

� TaskCommited�� informs the task handler that
the �nal status is Commit�

� Status�� gets the status message from the task
handler�

In Figure
� the arrows show the message passing
between the involved entities� The labels of the arrows
are numbered according to the order in which the calls
are made and the �gure describes the �ow of messages
for the scenario in which the task terminates success�
fully and its commit guard evaluates to true� When
the start guard of the task evaluates to true� the guard
handler of the task calls Start method of the task han�
dler� This causes the task handler to start execution of
the task� When the task starts executing� task handler
is informed of this fact through the TaskExecuting
call� The status of the task is sent to the guard han�
dler by the task handler in Reply method of the guard
handler with the parameter Executing� Then the nor�
mal �ow of the task begins� If patient information is
written to the database successfully� the task handler is
sentReadyToCommit call� The task handler informs
the guard handler that the task is ready to commit by
calling its IsCommitOkmethod� If the commit guard
of the task evaluates to true� the guard handler informs
task handler about this situation by calling its Com�
mitmethod� Otherwise�Abortmethod is called� Task
checks whether the message sent is Abort or Commit by
the Status call� If task handler sends Commit� then the
actual commit of the task occurs� and the task claims
the �nal state as Commit� In case of Abort message�
task aborts and sends the �nal abort status� When �nal
status is claimed by the task� the task handler informs
the guard handler about the �nal status by calling Re�
ply method of the guard handler again�

����� PARAMETER PASSING IN TASK HAN�
DLER In METUFlow� two kinds of data pass among

increaseLength()
get_ver()

set() getL
ength()

L
astV

ersion()

setV
ersion()

getTypeDefn()

getFieldList()

get()
WRD OBJECT

(type)

due_date

(string)

product_no

(int)

part_no_list

(part_entry)

part_no
(int)

part_quantity
(int)

n_p_quantity
(int)

no_of_steps
(int)

steps
(step_list_type)

dest_cell_id
(int)

source_cell_id
(int)

part_no
(int)

part_quantity
(int)

n_p_quantity
(int)

no_of_steps
(int)

steps
(step_list_type)

dest_cell_id
(int)

source_cell_id
(int)

(part_entry)(int) (int)

product_list
(array of int) (array of struct)

Fig� � The structure of WRD object

the components of the system� The �rst one is the data
which the applications need for execution� The �ow of
this type of data is called Data Flow� The second one
is the data which the work�ow needs for the correct
execution of the whole system� The �ow of the second
type of data is Control Flow� The status information
which passes among task� task handler and guard han�
dler is a part of the control �ow� Similarly� the data �ow
between task� task handler and guard handler should be
de�ned�

When the task starts execution� it has to receive the
value of the parameters� At this point� it communicates
with the work�ow relevant data objects� Variable decla�
rations correspond to Work�ow Relevant Data �WRD�
that provide for the data �ow between the tasks and
the work�ow system� In METUFlow� a WRD is imple�
mented as a CORBA object with an interface for get�
ting� setting values and versions of the variables� The
interface of a WRD object is depicted in Figure ��

A WRD object contains the value and the versions
of the variable� If the variable is of simple type� the
value of the variable is retrieved directly from the cor�
responding WRD object� For the variables of com�
plex types� WRD object points to other WRD objects
which correspond to the subcomponents of the complex
type� By this way� an object tree is formed� In Figure
�� sample WRD objects are visualized� Among them�
product no� and due date are variables of simple types�
Product list is an array of integer and part no list is an
array of structure� The relevant information of these
complex�typed variables are kept in in corresponding

Task Handler Guard Handler

Simple Typed In Parameters

obj_id
value

value

Complex Typed In Parameters

Task Handler Guard Handler

obj_id

obj_id

value

Guard HandlerTask Handler

Inout / Out parameters

obj_id

obj_id
value

 pair
obj_id-value

new
value

(1)
(2)

(3) (1)

(2)

(3)

(1)

(2)

(3)

(4)

(5)

WRD WRD

WRD

Fig� � Parameter Passing

WRD object trees�
Parameters of a task is de�ned as either In� Inout

or Out according to the direction of �ow� The struc�
ture of the parameters a�ects the way they are retrived
from WRD objects� As shown in Figure �� the task
handler obtains the values of simple typed parameters
from the guard handler� whereas the values of complex
typed parameters are retrieved directly from the WRD
objects� If new values are to be returned from the task�
the task handler sends these values to the guard handler
as ObjectId�Value pairs and they are set by the guard
handler on WRD objects�

The reason behind accessing to corresponding WRD
objects di�erently for simple and complex typed vari�
ables is to decrease the communication tra�c between
the objects� For one complex typed variable� more than
one values are retrieved� By leaving the guard handler
out� these values are transmitted directly to the task
handler� Thus� the cost of carrying these values from
the work�ow relevant data handler to the guard han�
dler� and from the guard handler to the task handler
is prevented� On the other hand� the new values are
always sent to the guard handler and the updating of
WRDs with new values is performed by the guard han�
dler� This provides a more secure and resilient way
against the failures�

	 HANDLING USER APPLICATIONS IN
METUFlow

User task handler is the component of the work�ow
system which transmits the activities to the appropri�
ate users �work�ow participants� of the system� Like
other tasks of the work�ow management system� user
tasks communicate with the system through task han�
dler which embodies the task� Therefore� the system

:
:

:

:

:

Guard
Handler

Guard
Handler

Worklist
Handler

Worklist
Handler

Worklist
Handler

Worklist
Handler

User Task
Handler

User Task
Handler User Task

Handler

Guard
Handler

1

2

worklist

reply

request
list

retrieve

1

reply retrieve

assign

put request

start
reply2

put request

reply

2 3 4

3

assign

retrieve
retrieve retrieve

reply reply

assign inserts work items into the worklists of the user

retrieves the worklist contents for the presentation to the user

put request

start start

reply2

reply2

sends reply back (from user task handler to guard handler)reply2
sends reply back (from worklist handler to user task handler)

puts a work item into request list

Site 1 Site 2

Service
Author.

1

2

3

Fig� � Worklist Manager in METUFlow

does not realize the implementation di�erences between
a user task and other types of tasks�

The user task is not an external task� Therefore�
task handler of the user task does not need to call an
executable program� It stores the information about
the task to the persistent storage and makes the appro�
priate distribution of user tasks according to the role
resolution information of authorization service� The
worklist handler uses this storage to get the appropri�
ate information of activities to inform the users when
necessary�

In METUFlow� the worklists are distributed� that
is� a worklist at a site contains the work items to be
accessed by the users at that site�

When a user activity is to be invoked by the guard
handler� a user task handler created for this purpose
stores the request �work item� into a request list within
the scope of a transaction� Request list is a CORBA ob�
ject and its implementation in a particular site depends
on the persistent storage available in that site� that is�
this CORBA object is implemented on a DBMS if it is
available� otherwise it is implemented as a �le� As the
�rst step� user task handler decides on the assignment of
work items to the worklists of the users in cooperation
with the authorization service� The second component�
worklist handler is responsible for retrieving work items

to be presented to the user for processing�
A point to be noted over here is the following� CORBA

provides location transparency� in other words the users
need not be aware of the location of the objects to be
created� However� CORBA does provide mechanisms
to a�ect the object creation site although the speci�cs
depend on the ORB at hand� First� by default� an ob�
ject is created at the local site if it is possible� There�
fore� whenever there is a request to create a work list
handler� it is created at the same site with the user
task handler� In order to be able to create worklists at
the same host with the involved user �or role�� a list is
kept which stores the association between the user�ids
and host�ids� In METUFlow� lookup method of Orbix�s
locator class is used for this purpose �Iona� ���
�� Fig�
ure
 depicts the distributed worklist management in
METUFlow�

	�� WORKLIST MANAGEMENT

When user interactions are necessary within the pro�
cess execution� the related work items are placed onto
the worklists of related users by the user task handler�
Users are de�ned in the system as actors� Each actor
is assigned one or more roles� Role resolution infor�
mation is retrieved from the authorization service and
the distribution of the work items is done according
to this information� Worklist handler is a communica�
tion mechanism between the user and the task handler�
Worklist handler retrieves a work item from the work�
list of the user and after completion of the work item�
and informs the task handler about the status of the
work item�

Each worklist is accessed through a speci�c worklist
handler� For this reason a worklist handler factory is
developed� There must be as many worklist handlers
as the number of users in the system� This provides a
neat load distribution on worklist handlers�

Worklist handler created by the factory serves to the
users of the system� It interacts with the user through
the interface implemented using Java� Worklist handler
reads the worklist of the user and presents the activities
assigned to the user�

Methods of the worklist handler are�

� GetList
 This method retrieves the worklist of
this user�

� GetRequest
 This method parameter and re�
turns the information about the request whose
identi�er is given�

� Reply
 Reply method is used to inform the
task handler about the change in the status of
the request�

handler

Worklist

handler

Worklist

handler

Worklist

handler

Worklist

User

User Interface

User

User Interface

User

User Interface

User

User Interface

Worklist Interface

Oracle Interface

WorkFactory Interface

Creates

User Task Handler Interface

. . . .

Database

Server Oracle

DB

. . . .

User

Factory

Worklist

Task Handler

G
et

L
is

t

G
et

R
eq

ue
st

R
equestL

ist

U
serId

R
equestId

R
equestInfo

Guard
Handler

R
ep

ly

Reply

Fig� � Relations Among Components

The interaction of components and the usage of meth�
ods are depicted in Figure ��

The user interface provides a screen for the user to
show which work items are assigned to him�her by the
user task handler� Each user has a separate set of work
items which may contain same or di�erent work items
depending on the role of the user and the work item
distribution� therefore� each user will access to a dif�
ferent user interface� which gets the work items to be
presented� from a certain worklist�

One of the objectives of METUFlow is to provide ac�
cess to the system through WWW �World Wide Web��
Therefore� the user interface should be implemented on
a web browser� like Netscape� For this reason� Java is
chosen as the language for this implementation� Java
is a language designed for programming on the Inter�
net� The most important features of Java are its being
object�oriented� distributed� portable� multithreaded and
dynamic �Flanagan� ���
�� These features of Java pro�
vide also ease to connect to a CORBA compliant ORB�
which is used in worklist implementation�

For administrative purposes� a user screen which ac�
cesses to all worklists can be created� The work�ow
administrator can add� delete work items to and from
the worklists of users�

� CONCLUSION

In this paper� the techniques to integrate the under�
lying tasks to the work�ow system are discussed� These
techniques are implemented in the work�ow manage�
ment system that is being developed at METU� namely
METUFlow� Tasks that are usually developed to work
in heterogeneous� autonomous and distributed environ�
ments participate in a work�ow system� In addition
to this� some tasks are performed by the users of the
work�ow system� To handle such a diverse domain
of tasks� we de�ne a generic task object to introduce
tasks to the work�ow system� To simplify the mapping
of di�erent types of tasks to a generic interface� these
objects� i�e task handlers� are divided into �ve sub�
groups �transactional� two�phase�commit transactional�
non�transactional� assignment and user task handlers��
Each of the groups needs additional methods� Among
them� user task handler di�ers in that it works in col�
laboration with worklist handlers to inform the users
about the tasks they have to perform�

The overall approach provides a single interface of
tasks from work�ow system point of view� Hence� any
kind of task that works in any environment can easily
be integrated in the work�ow system�

REFERENCES

Dogac� A � Gokkoca� E�� Arpinar� S�� Koksal� P�� Cingil I�� Arpinar
B�� Tatbul N�� Karagoz� P�� Halici U�� and Altinel� M�
������� Design and implementation of a distributed work�
	ow management system
 Metu	ow� In NAT��ASI Ad�
vances in Work�ow Management Systems and Interoper�
ability� Istanbul�

Flanagan� D� ������� Java in a Nutshell� O�Reilly
 Associates�
Inc�

Gokkoca� E�� Altinel� M�� Cingil� I�� Tatbul� N�� Koksal� P�� and
Dogac� A� ������� Design and implementation of a dis�
tributed work	ow enactment service� In Conference on Co�
operative Information Systems �CoopIS�� Charleston�

Holligsworth� D� ������� The work	ow management coalition� the
work	ow referencence model� Technical report� Work	ow
Management Coalition�

Iona ������� Orbix Reference Guide� Iona Technologies Ltd�

Krishnakumar� N� and Sheth� A� ������� Managing heterogenous
multi�system tasks to support enterprise�wide operations�
Distributed and Parallel Databases� ��

Sheth� A� and Kochut� K� ������� Work	ow applications to
research agenda
 Scalable and dynamic work coordina�
tion and collaboration systems� In NAT��ASI Advances
in Work�ow Management Systems and Interoperability� Is�
tanbul�

Stevens� W� R� ������� Unix Network Programming� Prentice�
Hall� Inc�

Tatbul� N�� Arpinar� S�� Karagoz� P�� Cingil� I� Gokkoca� E��
Altinel� M�� Koksal� P�� and Dogac� A ������� A work�
	ow speci�cation language and its scheduler� In Interna�
tional Symposium on Computer Information Systems �IS�
CIS�� Antalya�

