
Streaming Event Detection in Microblogs:
Balancing Accuracy and Performance

Ozlem Ceren Sahin1, Pinar Karagoz1, and Nesime Tatbul2

1 METU, Ankara, Turkey
{e1746668,karagoz}@ceng.metu.edu.tr

2 Intel Labs and MIT, Cambridge, MA, USA
tatbul@csail.mit.edu

Abstract. In this work, we model the problem of online event detec-
tion in microblogs as a stateful stream processing problem and offer a
novel solution that balances result accuracy and performance. Our new
approach builds on two state of the art algorithms. The first algorithm is
based on identifying bursty keywords inside blocks of blog messages. The
second one involves clustering blog messages based on similarity of their
contents. To combine the computational simplicity of the keyword-based
algorithm with the semantic accuracy of the clustering-based algorithm,
we propose a new hybrid algorithm. We then implement these algorithms
in a streaming manner, on top of Apache Storm augmented with Apache
Cassandra for state management. Experiments with a 12M tweet dataset
from Twitter show that our hybrid approach provides a better accuracy-
performance compromise than the previous approaches.

Keywords: Online event detection · burst detection · stream processing
· data stream management · microblogging.

1 Introduction

The emergence of microblogging services such as Twitter has caused a revolution
in the way information is created and exchanged on the web [16]. Microblogs
are user-generated short messages, typically in textual format. Twitter is the
most popular microblogging service provider, with more than 300M monthly
active users posting more than 500M tweets every day. As such, it constitutes
a rich source of information for wide range of use, from market studies to real-
time dissemination of breaking news. There has been a plethora of research in
analyzing social media data, including microblogs posted on Twitter [5], [17],
[3], [27]. In this paper, we focus on one particular form of social media data
analysis, that is, event detection. We consider an event as a happening that
takes place at a certain time and place, causing a short window of sudden burst
in attention from the microbloggers. The capability to accurately detect events
as soon as they happen, i.e., in an online fashion, can be important in many
ways, from timely access to interesting news to tracking life-critical phenomena
such as natural disasters [20], [11].

2 Sahin et al.

In this work, we hypothesize that online event detection is fundamentally
a stream processing problem. Stream processing systems have been around for
more than a decade, and today many mature, industrial-quality platforms are
publicly available [1], [6]. These systems are highly tuned for low-latency / high-
throughput processing over real-time data, making them ideal base platforms
for building online event detection dataflows. Furthermore, we believe that cap-
turing events accurately (i.e., no false positives or false negatives) is as equally
important as detecting them with low latency. Unfortunately, while online event
detection in social media has seen much attention from the research community
[24], [5], [22], [23], [29], [2], [7], solutions that aim at addressing both accuracy
and performance are limited to only a couple [13], [28].

In this paper, we explore the tradeoff between event detection accuracy
and performance through stream-based design and implementation of two well-
known algorithms from the literature, with opposite characteristics: a keyword-
based algorithm and a clustering-based algorithm. The keyword-based algorithm
is purely a syntactical approach in that, it is based on counting the occur-
rence of words, without paying attention to their meanings or relationships.
The clustering-based algorithm, on the other hand, groups tweets by the sim-
ilarity of their contents. While the former is simpler and faster, the latter is
expected to produce more accurate results at the expense of taking a longer
time to compute. As a novel contribution, we then propose a two-phase, hybrid
algorithm, which first applies the keyword-based algorithm as an initial filtering
phase, followed by the clustering-based algorithm as the final event detection
phase. All of our techniques have been implemented on top of the Apache Storm
distributed stream processing system augmented with the Apache Cassandra
key-value store for state management, and have been experimentally tuned and
evaluated based on a 12M tweet dataset that we collected from Twitter. We find
that there is a clear accuracy-performance tradeoff between the keyword-based
approach and the clustering-based approach. Moreover, the experiments verify
our intuition that the hybrid approach can provide a good compromise between
the two. More specifically, this work makes the following contributions:

– Parallel, stateful, stream-based design and implementations of two state of
the art algorithms for online event detection,

– A new hybrid algorithm that combines the advantages of these two algo-
rithms to balance event detection accuracy and performance,

– A detailed experimental evaluation based on Apache Storm and Apache
Cassandra, using a real Twitter workload,

– Revealing of new research directions for improving both the algorithmic and
the systems components of the problem space.

In the rest of this paper, we first present our event detection methods, their
implementation, and experimental evaluation in Sections 2, 3, and 4, respectively.
We then summarize related work in Section 5, and conclude the paper with a
discussion of future directions in Section 6.

Streaming Event Detection in Microblogs 3

Preprocess

Preprocess

Count words Mark words with
highest weight increase

as events

Mark words with
highest growth rate

as events

Calculate
weights

Tweets

Pre-processed
tweets

High frequency
words

High frequency
words with
weight

Detected
events

Tweets

Pre-
processed

tweets

Local
Clusters

Global active
clusters

Detected
Events

Local clustering &
merge operations

Global clustering &
merge, delete
 operations

Keyword-based event detection
Clustering-based event detection
Hybrid event detection

Fig. 1: Event Detection Methods

2 Event Detection Methods

In this section, we present three different event detection methods applied on
streaming data. The first two are based on state of the art algorithms from the
event detection literature, and the third is a hybrid extension of these that we
newly propose in this paper. In all three methods, streaming posts are processed
in windows of predefined time intervals, which are called rounds. In each round,
the stream is processed as a chunk of tweets, resulting in a state. Hence, we
can consider event detection as a state that is reached according to the change
between two consecutive states.

For all three methods, first the following preprocessing step is applied: First,
messages are tokenized and stemmed through an NLP parser 3. Afterwards, stop
words and geo-references including the phrase “I am at” are eliminated. Addi-
tionally, we normalize the words having characters that repeat more than two
times (such as “gooooaaaal!”). Applying stemming and normalization are par-
ticularly important for aggregating the different occurrences of the same word.

2.1 Keyword-based Event Detection Method

Our first method relies on detecting the unexpected increase in the occurrence
or observation of the words with respect to a previous round. Then, such bursty
words are considered to express an event. This method consists of three main
steps that are applied in every round: word counting, word weight calculation,
and event detection (see Figure 1 for an overview). Hence, at the end of each
round a set of event keywords are obtained.

3 We use the Stanford NLP parser: https://nlp.stanford.edu/software/lex-parser.shtml

4 Sahin et al.

Word counting. Microblog postings are very short texts due to character limit.
Hence, we consider the set of postings in the same round as a single document.
As the postings are received from the input stream, the stemmed and normalized
words are counted. In order to limit time and space complexity in the following
steps, we eliminate the words whose frequency is below a given threshold.
Word weight calculation. Using word counts (i.e., frequency of words) may
be misleading for detecting bursts, as some of the words may be appearing in any
context. In order to normalize this effect, we measure the weight of the words
in terms of tf-idf, instead of frequency [25]. Since all the tweets in a round are
considered as a single document, frequency of a word denotes its frequency in
the round.
Event detection. In order to check the increase in observation of a word, we
compare the weight of the words in terms of tf-idf values in consecutive rounds.
The increase is compared against a threshold in order to be considered as an
event related word.

2.2 Clustering-based Event Detection Method

In the clustering-based method, the basic assumption is that a cluster of tweets
with high growth rate corresponds to an event. As in the keyword-based method,
each round is processed one by one and the resulting clusters are compared for
event detection.

The method is composed of two basic steps: cluster formation and event
detection (see Figure 1 for an overview). In each round, these steps are applied
in sequence.
Cluster formation. We use four basic cluster operations: creating a new cluster,
updating a cluster, merging clusters, and deleting a cluster. Each cluster has a
representative term vector, which includes the frequent terms of the tweets in the
cluster. Similarly, each tweet is represented by a term vector of stemmed words
in the tweet. Hence, similarity of a tweet to an existing cluster is measured
with cosine similarity between term vectors under a predefined threshold. As
the tweets are received in a round, one of the cluster operations is applied.

– If the tweet content is not similar to any of the clusters, a new cluster is
created.

– If the tweet content is similar to a cluster, then the cluster is updated by
including the tweet in the cluster and updating the cluster’s representative
term vector.

– Cluster merging is applied in two stages. First, within each round, clusters
are generated locally (i.e., only considering the tweets in the current round).
Furthermore, at the end of a round, similar local clusters are merged. As
the second stage of merging, the resulting local clusters are merged with the
global clusters (i.e., the cumulative set of active clusters since the beginning
of time) complying with the similarity threshold.

– In order to reduce the number of generated clusters, and hence improve
execution time performance, inactive clusters are deleted. The condition for

Streaming Event Detection in Microblogs 5

deletion is defined as follows: If a cluster is not active (i.e., not updated) for
the last two rounds, then it is deleted.

Event detection. In the clustering-based method, event detection is achieved
through tracking the growth rate of clusters. The growth rate is calculated using
the number of tweets that contribute to a cluster, as the ratio of the number of
tweets added to the cluster to the total number of tweets in the cluster. To mark
a cluster as an event, the cluster growth rate should be greater than a predefined
threshold.

2.3 Hybrid Event Detection Method

The hybrid method combines the previous two methods in order to increase the
efficiency of clustering by filtering tweets that do not include bursty keywords.
First, bursty keywords are found by applying the steps used in the keyword-based
event detection method, and then clustering is applied on tweets containing the
bursty keywords. Finally, by using the cluster growth rates, this technique marks
clusters as events (see Figure 1 for an overview; notice how the tweets with bursty
words found by the keyword-based method is fed as an input to the clustering-
based method).
Tweet filtering. As in the previous methods, words in a streaming tweet are
tokenized and stemmed. Words are counted and those with low frequency are
eliminated. By this elimination, we reduce the number of words to keep track of
for burstiness. As in the first method, burstiness of a word is checked through
the increase in its tf-idf value. The increase is compared against a predefined
threshold in order to be considered as bursty keyword. Additionally, if the tf-idf
value of a word is very high for only the last round, then we consider it as a
bursty term as well.
Clustering. The hybrid method uses the same clustering technique as in the
clustering-based method. Similarly, two-level clustering is applied, local and
global. The basic difference here is that, in a round, instead of clustering all
streaming tweets, only those that include any bursty term are fed into the clus-
tering phase. By this way, time efficiency can be significantly improved.
Detecting events using clusters. As the final step of the hybrid technique,
event detection is performed by checking the growth rate of the cluster as applied
in the clustering-based method.

3 Implementation

The three event detection methods studied in this work are implemented on
the Apache Storm stream processing framework 4. In Storm, an application is
defined as a topology. A topology is an arbitrarily complex multi-stage stream
computation. It is a graph of spouts and bolts, such that a spout is a source of
stream and a bolt is a stream processing task.

4 http://storm.apache.org/

6 Sahin et al.

Word Count
Task
(x5)

Word Count
Task
(x2)

Event
Detector

Task
(x2)

Event
Detector

Task
(x2)

Input
Stream

USA

CAN

(a) Keyword-based Topology

Clustering
Task
(x1)

Event
Detector

Task
(x1)

Event
 Detector

Task
(x1)

Input
Stream

USA

CAN

Clustering
Task
(x10)

(b) Clustering-based Topology

Clustering
Task
(x1)

Event
Detector

Task
(x1)

USA

CAN

Word Count
Task
(x5)

Word Count
Task
(x2)

Keybased
Event Detector

Task
(x2)

Keybased
Event Detector

Task
(x2)

Input
Stream

Clustering
Task
(x1)

(c) Hybrid Topology

Fig. 2: Storm Topologies

We use a single stream of tweets as our spout. In the experiments, we worked
on the tweet stream filtered by geographical boundary. We limited the stream
to the tweets posted in USA and Canada. Furthermore, we processed these two
groups of tweets in parallel. Alternatively, it is possible to consider two groups
of tweets as two separate streams, as well. We store the streamed data collection
in the Apache Cassandra key-value store 5 to maintain each round of tweets for
further processing in bolts. Within this spout, tokenization of the messages and
stemming of the words are performed as well. The stream is emitted as a set of
preprocessed words to the following bolt.

3.1 Keyword-based Event Detection Topology

The structure of the keyword-based event detection topology is presented in
Figure 2a. The topology basically includes a single spout (denoted as input
stream), and two types of bolts: word count bolt and event detector bolt. As
described in Section 2, the tweet stream is processed in terms of rounds. We
can consider the tweets in the same round as a single document. Word count
bolt keeps track of the count of the words in the document of a round. When
frequency counting is completed, event detector bolt calculates tf-idf values for
the words, and compares the value with that of the previous round to determine
bursty keywords.

5 http://cassandra.apache.org/

Streaming Event Detection in Microblogs 7

The topology given in Figure 2a shows the parallelism and distribution ap-
plied in the experimental analysis. The upper path in the topology graph includes
the bolts reserved for tweets from USA, whereas the lower path is for processing
tweets from Canada. The figure shows the number of bolts allocated for each
task, as well (the numbers given in parenthesis at the end of task label). The
number of bolts to be allocated are determined empirically according to the work
load on the task.

3.2 Clustering-based Event Detection Topology

The structure of the clustering-based event detection topology is presented in
Figure 2b. As in the keyword-based approach, there is a single spout (denoted
as input stream), and two types of bolts, but the tasks of the bolts are different
than those in the previous topology.

Clustering bolt is responsible for clustering the incoming tweets on the basis of
the similarity between the tweet and cluster representative vector. Event detector
bolt keeps track of change in the size of the clusters to detect a burst in the size
(hence to detect an event). As described in Section 2, various operations are
applied on clusters. New cluster construction, and cluster update operations are
performed in the clustering bolt, whereas cluster deletion is done as the last step
in the event detection bolt. Cluster merging is applied in two stages. Within
each round, clusters are generated locally. At the end of the round, similar local
clusters are merged. As the second stage of merging, the resulting local clusters
are merged with the global clusters complying with the similarity threshold.

Clustering in two stages, local and global, serves for two purposes. As the first
one, storage access for updating the global clustering is more costly than doing
so for the local clustering, due to the size of the clusters. Therefore, updating
the clusters locally for processing the streaming tweets improves time perfor-
mance. The second reason is due to the lack of transactional support in Storm’s
stream processing environment. When the streaming tweets are processed in a
distributed way, different tweet processing nodes may access the same cluster for
updating the cluster’s term vector concurrently. This causes the loss of some of
the updates and leads to incorrect clusters. While building the clusters locally,
this problem is considerably reduced, since the local clusters are much smaller,
and the tweets are processed in sequence within a bolt. This is an interesting
technical problem that this work revealed, which we would like to study as part
of our future work. For example, it would be interesting to explore the use of a
transactional stream processing engine such as S-Store [15], as an alternative to
Storm and Cassandra to handle both streaming and storage needs in a transac-
tional manner. This could potentially improve both correctness and performance
of our techniques.

As in the keyword-based topology, the clustering-based event detection topol-
ogy given in Figure 2b shows the parallel execution paths in the experiments for
processing tweets from USA and Canada. Additionally, the number of bolts cre-
ated for each task is shown as well. As presented in the figure, clustering task for

8 Sahin et al.

the upper path has the highest requirement for distribution, due to high number
of tweets and clusters.

3.3 Hybrid Event Detection Topology

The structure of the hybrid event detection topology is presented in Figure 2c.
As in the previous topologies, there is a single spout (denoted as input stream).
However, the topology includes bolts for both detecting bursty keywords (the
first two tasks in the topology) and clustering-based event detection (the last two
tasks). The basic idea in this method is to filter the tweets such that only those
tweets that contain some bursty keyword are clustered towards event detection.
By this way, the load on the clustering tasks is reduced. The reduction in the
load is obvious in the smaller number of bolts for the clustering task. As another
result of the reduced load, just a single event detector node is allocated for both
of the tweet processing paths.

In each of the three methods, it is important to create and manage state dur-
ing execution. We realize this via batch-based stream processing. More specifi-
cally, we consider tweet blocks collected within 6-minute rounds as batches. At
the end of each round, state is generated and saved into a Cassandra store so
that next round can use information resulting from the previous round. In the
keyword-based method, tf of the words are stored as the state of the round in
order to detect events through increment rate of tf-idf values. In the clustering-
based method, clusters created/updated in each round constitute the state. Fi-
nally, for the hybrid method, both tf values and clusters created/updated in the
round are stored as the state at the end of the round. Note that, event detection
accuracy depends on correct state maintenance, as well as the event detection
method employed.

4 Experimental Evaluation

In this section, we present an experimental evaluation of our event detection
techniques in terms of accuracy and performance.

4.1 Setup

All experiments were run on a MacOS Version 10.13.3 machine with an Intel R©

Core
TM

i5 processor running at 3.2 GHz with 16 GB of memory.
We used a real Twitter dataset with nearly 12M tweets that we collected

within a week, from May 31, 2016 to June 7, 2016. We filtered tweets by geo-
graphic location and worked with only the ones posted from USA and Canada.
The complete dataset is stored in Cassandra and we replay it in a streaming
fashion in our experiments in order to simulate a behavior similar to the real
Twitter Firehose. In each of the experiments, we processed the tweets in rounds
(i.e., time windows) of 6 minutes. We chose this window size so as to create a
behavior that is as close to a realistic and stable system scenario as possible

Streaming Event Detection in Microblogs 9

(i.e., tweet collection rate matches the processing rate, and the total latency of
buffering and processing each tweet is not too high).

Our main evaluation metrics are the well-known Precision, Recall, and F1-
measure for accuracy, and throughput (i.e., total number of input tweets pro-
cessed per second) and total round processing latency for performance. The
clustering-based event detection method (and therefore, the hybrid method which
is also based on clustering) involves several parameters used as thresholds (such
as cosine similarity threshold to merge clusters or the number of tweets in a
local cluster). The optimal values for these parameters are obtained through
validation experiments that are conducted on a smaller sample of the whole
dataset.

4.2 Event Detection Accuracy and Performance

We now analyze the event detection accuracy of our methods against the ground
truth. Furthermore, we report our findings on their computational performance.

Ground Truth Construction. We determined the set of events that consti-
tute the ground truth through a user study involving three judges. The following
process is applied by each of the judges independently: Given all clusters gen-
erated by the cluster-based and the hybrid event detection methods, the most
frequent terms in representative term vectors of each cluster is examined in de-
tail, making use of web search with the frequent terms in order to match the
cluster with a real-world event that happened within the same time interval as
the dataset collection. Some of the events were very clear and well-known events,
such as Death of Muhammad Ali, which did not need detailed examination. On
the other hand, some other events, such as Offensive Foul by Kevin Love in
NBA Finals Game I, needed a more detailed web search. After the individual
evaluation session by each judge, another session is conducted to compare their
results. In this second session, the final set of events for the ground truth is
determined under full consensus from all three judges. As a result, the ground
truth includes 21 different events for the USA tweets and 4 different events for
the Canada tweets, including events from the 2016 NBA Finals, the 2016 NHL
Final, events about celebrities as well as first appearances of movie trailers and
music videos, and the death of Muhammad Ali.

Accuracy Comparison. For accuracy evaluation, we used the well-known rel-
evance metrics of Precision, Recall, and F1-measure. Since the output of the
keyword-based method is a set of bursty keywords denoting events, precision is
calculated as the ratio of the number of keywords matching some event to the
number of keywords found. For the clustering-based and the hybrid methods,
precision is calculated as the ratio of number of clusters matching some event to
number of clusters found. Recall is calculated in the same way for all three meth-
ods, as the ratio of the number of detected events to the total number of events
in the ground truth set. Finally, F1-measure is calculated conventionally, as the
harmonic mean of precision and recall. Precision, Recall, and F1-measure values

10 Sahin et al.

Table 1: Accuracy Results for the Keyword-based Method

Method Stream Detected Detected Undetected Precision Recall F1
Bursty Events Events

Keywords

Keyword

USA 220 14 (matching 7 61% 67% 64%
135 keywords)

CAN 17 2 (matching 2 41% 50% 45%
7 keywords)

All 237 16 (matching 142 9 60% 64% 62%
keywords)

Table 2: Accuracy Results for the Clustering-based and the Hybrid Methods

Method Stream Constructed Event Undetected Precision Recall F1
Clusters Clusters Events

Clustering
USA 74 39 0 53% 100% 69%
CAN 7 5 0 71% 100% 83%
All 81 44 0 54% 100% 70%

Hybrid
USA 87 53 4 61% 80% 69%
CAN 3 3 1 100% 75% 86%
All 90 56 5 62% 79% 69%

Table 3: Clustering Analysis for the Clustering-based and the Hybrid Methods

Method Stream No. of Clusters Avg. SC Min. SC Max. SC Std. dev.

Clustering USA 74 0.855 0.15 1.0 0.276
Clustering CAN 7 1.0 1.0 1.0 0.0

Hybrid USA 87 0.62 0.0 1.0 0.41
Hybrid CAN 3 1.0 1.0 1.0 0.0

for the methods are shown in Table 1 and Table 2. As seen in the results, the
clustering-based method provides the highest recall, whereas the hybrid method
performs better in terms of precision. This result is reflected in Table 3, as well.
The clusters generated by the hybrid method for the USA tweets are all event
clusters with high silhouette coefficient 6 values, whereas the clusters generated
by the clustering-based method have lower average silhouette coefficient as well
as a higher standard deviation. Keyword-based method has an intermediate-level
performance, performing slightly better for recall than for precision.

6 The silhouette coefficient (SC) essentially measures how similar a given object is to
its own cluster compared to the other clusters. Its value ranges between -1 and +1,
where a higher value indicates higher clustering quality.

Streaming Event Detection in Microblogs 11

Table 4: Performance Results for all Methods

Method Number of Tweets Number of Rounds Round Processing
Processed per Sec. Processed per Min. Time (Sec.)

Keyword 1200 9.3 6.5

Clustering 300 2.5 24

Hybrid 797 6.7251 8.96

Performance Comparison. In stream processing, processing time is an impor-
tant metric to be able to cope with continuous data. Additionally, online event
detection calls for timely processing to extract and present the events with the
least possible delay. Since the streaming behavior is simulated in our experi-
ments, the tweet arrival rates are set to the same level for each of the methods.
For performance, we focus on measuring the throughput in terms of number of
tweets processed per second, number of rounds processed per minute and round
processing time. Table 4 summarizes our results. As expected, the most effi-
cient method is the keyword-based event detection method with 1200 tweets per
second and 6.5 seconds of round processing time on average. In contrast, since
the clustering-based method performs many database accesses to maintain clus-
ter state and it has to iterate over larger amounts of data, it incurs the lowest
number of tweets processed per second and longest round execution time. The
hybrid method shows a major improvement over the clustering-based method,
bringing the round execution time down to 7.5 seconds. This proves that filtering
tweets based on bursty keywords can be effective in reducing the cost of cluster
computation.

4.3 Discussion

The key takeaways from our experimental study can be summarized as follows:

– The clustering-based method provides the highest recall value for USA events
and overall. This is an expected result, since this method generates more
number of clusters and performs a finer-grained analysis.

– On the other hand, the clustering-based method is also the least efficient
method due to higher load of cluster processing and storing state. However,
the idea of pre-filtering tweets using keyword counts is a promising way to
improve the performance of the clustering-based method, as the performance
results of our hybrid method indicate.

– The keyword-based method processes the tweet stream faster than the other
two methods, and the bursty keywords provide good hints for detecting the
events. However, the same keyword may be associated with several related
yet different events. For example, the bursty keyword game appears in sev-
eral clusters’ representative vectors. Therefore, it is not easy to associate a
keyword with an event precisely.

12 Sahin et al.

– Tweet filtering applied in the hybrid method brings considerable efficiency.
It also provides a rise in precision per country, and in F1-measure for Canada
events. However, there is a drop in recall, due to the filtering applied. Overall,
clusters generated by the hybrid method strongly indicate the occurrence of
relevant events from the ground truth dataset. The improvement in the time
efficiency over clustering-based method brings an advantage for practical use
as well.

– In the clustering-based method, we observed cases where multiple event clus-
ters are generated in the same round corresponding to the same event, caus-
ing fragmented clusters. For example, for the event Death of Muhammad Ali,
two clusters are generated in the same round, one of them containing fre-
quent terms champion, rest in peace, whereas the other one containing float,
butterfly, sting, referring to the famous quote ”Float like a butterfly, sting
like a bee”. Another advantage of the hybrid method we observed is that, it
reduces the degree of this kind of fragmentation.

– In burst detection, processing the rounds separately and keeping the state is
essential, yet this incurs a cost. Overall, this study shows that using a stream
processing framework for online event detection is a viable idea and can
facilitate implementation and scalability, while helping control accuracy. We
note that the benefit of this approach could be further improved by providing
stronger support for native storage of state and transactional processing to
efficiently coordinate concurrent data accesses, which we plan to investigate
in more depth as part of our future work.

5 Related Work

Event detection in social networks and microblogging platforms on the web has
been a popular research topic for the past decade [5], [17]. Like our work in
this paper, a significant portion of previous research has focused on analyzing
streams of Twitter posts [3] [8]. Some of these focus on detecting specific types of
events such as earthquakes [22], [23] or crime and disasters [10], while others, like
in our case, target detecting any type of event gaining interest among bloggers
[24], [21], [7]. In both cases, textual messages are first pre-processed to extract
important features such as geo-location, followed by a clustering/classification
step, where potential events are identified and selected.

Previous online event detection techniques follow various algorithmic ap-
proaches. Sayyadi et al. and Ozdikis et al. leverage keyword co-occurrence infor-
mation to discover similar tweets [26], [19], [20], whereas Zhou and Chen focus
on detecting composite social events based on a graphical model [32]. Petrovic et
al. propose detecting new events from tweets based on locality-sensitive hashing
(LSH) [21]. Systems like EvenTweet and Jasmine exploit location information
from geo-referenced messages to detect local events more accurately [2], [29],
while Osborne et al. leverage Wikipedia for enhancing story detection on Twit-
ter [18]. TwitterStand is a Twitter-based news processing system that focuses
on the problem of noise removal from tweets [24]. TwitterNews+ proposes incre-
mental clustering and inverted indexing methods for lowering the computational

Streaming Event Detection in Microblogs 13

cost of event detection on Twitter [7]. Others also looked into the bursty topic de-
tection problem [30], [31]. Trend detection on Twitter is another related problem
[12], [4], where the emphasis is more on identifying longer term events. In [11],
Liu et al., describe a system for removing noise in order to detect news events on
Twitter. As the employed technique, they focus on first story detection, rather
than burst detection.

Some of the studies use machine learning techniques for detecting events,
thus they need a training set or several keywords. Medvet and Bartoli’s study
requires set of potentially related keywords to detect trending events with their
sentiment polarity [14]. In [9], Illina et al. use textual messages and n-grams to
classify the social media postings as event related and non-event related.

Our work differs from the above related work in that we take a stateful stream
processing approach to accurate and efficient event detection. In this approach,
we leverage a state-of-the-art system infrastructure based on a distributed stream
processing system (Apache Storm) for low-latency event detection combined with
a scalable key-value storage system (Apache Cassandra) for maintaining state.
To our knowledge, there are two approaches that are the most closely related to
ours: McCreadie et al.’s work on distributed event detection [13] and the RBEDS
real-time bursty event detection system proposed by Wang et al. [28]. Like in our
approach, both of these also implement online event detection solutions on top
of Storm. However, they tackle different aspects of the problem. McCreadie et al.
focus on scaling event detection to multiple nodes using a new distributed lexical
key partitioning scheme as an extension to the LSH-based algorithm previously
proposed by Petrovic et al. [21], while Wang et al. focus on applying the k-means
clustering algorithm to the burst detection problem on Storm. Neither of these
approaches pays attention to statefulness aspect of the problem and the need for
balancing event detection accuracy and performance like we do. Thus, the three
approaches are complementary.

6 Conclusion and Future Work

In this work, we model event detection problem as burst detection in frequency
of keywords or in size of message clusters. We analyze the performance of three
methods for event detection implemented on the Apache Storm distributed
stream processing framework. These methods are evaluated on a real tweet
dataset collected over a week and replayed as a stream. The experimental results
show the applicability of our stream-based approach for online event detection.
Among the compared methods, hybrid method provides a better balance between
accuracy and processing time cost. It has lower recall value than clustering based
method, but can detect event with higher precision.

This work uncovers several interesting problems that can be studied as fu-
ture work. Semantic similarity based measurements can be utilized to prevent
fragmentation of clusters related to the same event. On the other hand, fragmen-
tation can be useful to detect events that may have different durations, which
is an interesting direction for extending our work. In our stream simulations, we

14 Sahin et al.

did not apply any normalization on the load of the rounds, but the topology is
determined empirically to handle the average load. Automated adaptation of a
topology for load balancing can be further studied. As another research direc-
tion, utilization of a transactional stream processing engine (instead of Storm
and Cassandra) can be investigated and its effect on event detection accuracy
and performance can be analyzed.

References

1. IEEE Data Engineering Bulletin, Special Issue on Next-Generation Stream Pro-
cessing (2015)

2. Abdelhaq, H., et al.: EvenTweet: Online Localized Event Detection from Twitter.
PVLDB 6(12) (2013)

3. Atefeh, F., Khreich, W.: A Survey of Techniques for Event Detection in Twitter.
Computational Intelligence 31(1), 132–164 (2015)

4. Becker, H., et al.: Beyond Trending Topics: Real-World Event Identification
on Twitter. In: International AAAI Conference on Weblogs and Social Media
(ICWSM). pp. 438–441 (2011)

5. Cordeiro, M., Gama, J.: Online Social Networks Event Detection: A Survey. In:
Michaelis, S., Piatkowski, N., Stolpe, M. (eds.) Solving Large Scale Learning Tasks.
Challenges and Algorithms, Lecture Notes in Computer Science, vol. 9580, pp. 1–
41. Springer, Cham (2016)

6. González-Jiménez, M., de Lara, J.: Datalyzer: Streaming Data Applications Made
Easy. In: International Conference on Web Engineering (ICWE). pp. 420–429
(2018)

7. Hasan, M., et al.: TwitterNews+: A Framework for Real Time Event Detection
from the Twitter Data Stream. In: Spiro, E., Ahn, Y.Y. (eds.) Social Informat-
ics, Lecture Notes in Computer Science, vol. 10046, pp. 224–239. Springer, Cham
(2016)

8. Hromic, H., et al.: Graph-based Methods for Clustering Topics of Interest in Twit-
ter. In: International Conference on Web Engineering (ICWE). pp. 701–704 (2015)

9. Ilina, E., et al.: Social Event Detection on Twitter. In: International Conference
on Web Engineering (ICWE) (2012)

10. Li, R., et al.: TEDAS: A Twitter-based Event Detection and Analysis System.
In: IEEE International Conference on Data Engineering (ICDE). pp. 1273–1276
(2012)

11. Liu, X., et al.: Reuters Tracer: A Large Scale System of Detecting & Verifying
Real-Time News Events from Twitter. In: ACM International on Conference on
Information and Knowledge Management (CIKM). pp. 207–216 (2016)

12. Mathioudakis, M., Koudas, N.: TwitterMonitor: Trend Detection over the Twitter
Stream. In: ACM SIGMOD International Conference on Management of Data
(SIGMOD). pp. 1155–1158 (2010)

13. McCreadie, R., et al.: Scalable Distributed Event Detection for Twitter. In: IEEE
International Conference on Big Data. pp. 543–549 (2013)

14. Medvet, E., Bartoli, A.: Brand-Related Events Detection, Classification and Sum-
marization on Twitter. In: IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technology (WI-IAT). pp. 297–302 (2012)

15. Meehan, J., et al.: S-Store: Streaming Meets Transaction Processing. The Proceed-
ings of the VLDB Endowment (PVLDB) 8(13), 2134–2145 (2015)

Streaming Event Detection in Microblogs 15

16. Milstein, S., et al.: Twitter and the Micro-Messaging Revolution: Com-
munication, Connections, and Immediacy – 140 Characters at a Time
(An O’Reilly Radar Report). http://weigend.com/files/teaching/haas/2009/
readings/OReillyTwitterReport200811.pdf (2008)

17. Mokbel, M.F., Magdy, A.: Microblogs Data Management Systems: Querying, Anal-
ysis, and Visualization (Tutorial). In: ACM SIGMOD International Conference on
Management of Data (SIGMOD). pp. 2219–2222 (2016)

18. Osborne, M., et al.: Bieber no more: First Story Detection using Twitter and
Wikipedia. In: SIGIR Workshop on Time-aware Information Access (TAIA) (2012)

19. Ozdikis, O., et al.: Semantic Expansion of Tweet Contents for Enhanced Event
Detection in Twitter. In: International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). pp. 20–24 (2012)

20. Ozdikis, O., et al.: Incremental Clustering with Vector Expansion for Online Event
Detection in Microblogs. Social Network Analysis and Mining 7(1), 56 (2017)

21. Petrovic, S., et al.: Streaming First Story Detection with Application to Twitter.
In: Human Language Technologies: Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-NAACL). pp. 181–189 (2010)

22. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake Shakes Twitter Users: Real-time
Event Detection by Social Sensors. In: International Conference on World Wide
Web (WWW). pp. 851–860 (2010)

23. Sakaki, T., et al.: Tweet Analysis for Real-Time Event Detection and Earthquake
Reporting System Development. IEEE Transactions on Knowledge and Data En-
gineering (TKDE) 25(4), 919–931 (2013)

24. Sankaranarayanan, J., et al.: TwitterStand: News in Tweets. In: ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems
(GIS). pp. 42–51 (2009)

25. Sarma, A.D., et al.: Dynamic Relationship and Event Discovery. In: ACM Interna-
tional Conference on Web Search and Data Mining (WSDM). pp. 207–216 (2011)

26. Sayyadi, H., et al.: Event Detection and Tracking in Social Streams. In: Interna-
tional Conference on Web and Social Media (ICWSM). pp. 311–314 (2009)

27. Sellam, T., Alonso, O.: Raimond: Quantitative Data Extraction from Twitter to
Describe Events. In: International Conference on Web Engineering (ICWE). pp.
251–268 (2015)

28. Wang, Y., et al.: A Storm-Based Real-Time Micro-Blogging Burst Event Detection
System. In: Wang, X., Pedrycz, W., Chan, P., He, Q. (eds.) Machine Learning and
Cybernetics, Communications in Computer and Information Science, vol. 481, pp.
186–195. Springer (2014)

29. Watanabe, K., et al.: Jasmine: A Real-time Local-event Detection System based on
Geolocation Information Propagated to Microblogs. In: ACM International Confer-
ence on Information and Knowledge Management (CIKM). pp. 2541–2544 (2011)

30. Xie, W., et al.: TopicSketch: Real-Time Bursty Topic Detection from Twitter.
IEEE Transactions on Knowledge and Data Engineering (TKDE) 28(8), 2216–
2229 (2016)

31. Zhang, T., et al.: A Refined Method for Detecting Interpretable and Real-Time
Bursty Topic in Microblog Stream. In: Web Information Systems Engineering
(WISE). pp. 3–17 (2017)

32. Zhou, X., Chen, L.: Event Detection over Twitter Social Media Streams. The
VLDB Journal 23(3), 381–400 (2014)

