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Abstract

This paper describes a work�ow specication language
 namely MFDL
 and the implementation
of its scheduler in a distributed environment� Distributed nature of the scheduling provides failure
resilience and increased performance� Since work�ow scheduling and management is highly a�ected
from the way the work�ow is specied
 a work�ow specication language should be e�cient to prevent
the problems of complexity in work�ow specication and di�culties in debugging�testing the further
steps of the work�ow management system development� MFDL
 being a block�structured procedural
work�ow specication language
 is capable of dening a work�ow in an easy
 comprehensible and clear
way so that implementation of the scheduler is simplied� The paper also presents task handling in
the system through a CORBA compliant ORB�

� Introduction

Work�ow management systems �WFMSs� automate the execution of business processes� WFMSs achieve
considerable improvements in critical� contemporary measures of performance� such as cost� quality� ser�
vice� and speed by coordinating and streamlining complex business processes within large organizations�

A work�ow system can be de�ned as a collection of processing steps �also termed as tasks or activities�
organized to accomplish some business process� A task can be performed by one or more software systems�
or� by a person or a team� or a combination of these� In addition to the collection of tasks� a work�ow
de�nes the order of task invocation or condition�s� under which tasks must be invoked �i�e� control��ow�
and data��ow between these tasks�

In general a work�ow task is considered to be a black box that is functional in nature� i�e�� the
functionality of the task is orthogonal to that of the work�ow process� The tasks could be transactional
or non�transactional in nature� Transactional tasks are those that access data controlled by Resource
Managers �RMs� with transactional properties �i�e� ACID�� Non�transactional tasks access data controlled
by RMs without transactional properties such as �le systems�

In a work�ow speci�cation language� the tasks involved in a business process and the execution
and data dependencies between these tasks are provided� One of the weaknesses of current WFMSs
is their speci�cation language �Sheth et�al� �		
�� state�of�the�art work�ow speci�cation languages are
unstructured and�or rule based� Unstructured speci�cation languages make debugging�testing of complex
work�ow dicult and rule based languages become inecient when they are used for speci�cation of large
and complex work�ow processes� This is due to the large number of rules and overhead associated with
rule invocation and management�
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Furthermore� a work�ow speci�cation language that speci�es the control��ow and data��ow among
tasks by itself is not enough �Krishnakumar and Sheth �		��� there is a need for a task speci�cation
language to specify the task interface for executing the task at the processing entity� for handling the error
messages produced by the processing entity and also for revealing the task state for control purposes�

In order to meet the requirements cited above� we have designed work�ow de�nition language� namely�
METUFlow De�nition Language �MFDL� and implemented the scheduler corresponding to this speci�
�cation� MFDL also has a graphical user interface developed through Java which makes it possible to
de�ne a work�ow by accessing METUFlow through the Internet�

MFDL is a block�structured language that contains seven types of blocks� namely� serial� and parallel�
or parallel� xor parallel� contingency� conditional and iterative blocks� MFDL overcomes the problems of
unstructured and rule based languages through its block structures� The further advantages brought by
this language can be summarized as follows�

� A block structured language con�nes the intertask dependencies to a well formed structure which
in turn proves extremely helpful in implementing a distributed scheduler for the system�

� A block clearly de�nes not only the data and control dependencies among tasks but also presents
a well de�ned recovery semantics� i�e�� when a block aborts� the tasks that are to be compensated
and the order in which they are to be compensated are already provided by the block semantics�

Work�ow systems are expected to work in distributed heterogeneous environments which are very
common in enterprises of even moderate complexity� CORBA is one of the major standardization initia�
tives of the computer industry for handling heterogeneity in distributed environments �OMG �		�� Soley
and Stone �		��� CORBA provides a standard communication mechanism which enables distributed
objects to operate on each other� In CORBA only the ORB �Object Request Broker� knows the imple�
mentation details and actual locations of the components �objects� in the system� Clients and servers
only know the interfaces of the components� The only way of communication is the requests and the
responses� In this way a distributed� heterogeneous environment becomes virtually local and homoge�
neous to the client� The interfaces are de�ned using IDL �Interface De�nition Language� which resembles
a declarative subset of C�� but it is not a programming language� making ORB object development
implementation language independent� METUFlow� by allowing CORBA�IDL to be used in task speci��
cation� makes it possible to invoke tasks in distributed heterogeneous environments and meets the need
for a task speci�cation languauge�

METUFlow has a distributed scheduling mechanism� In current commercial work�ow systems� the
work�ow scheduler is a single centralized component� A distributed work�ow scheduler on the other
hand should contain several schedulers on di�erent nodes of a network each executing parts of process
instances� Such an architecture �ts naturally to the distributed heterogeneous environments� Further
advantages of such an architecture are failure resiliency and increased performance since a centralized
scheduler is a potential bottleneck�

The paper is organized as follows� Section � describes the process model and its speci�cation in
METUFlow De�nition Language� In Section �� the distributed scheduling mechanism corresponding to
MFDL is provided� Section � discusses the task handling in METUFlow� Finally� Section � concludes
the paper�

� The Process Model and MFDL

We de�ne a work�ow process as a collection of blocks� tasks and other subprocesses� A task is the
simplest unit of execution� Processes and tasks have input and output parameters corresponding to
work�ow relevant data to communicate with other processes and tasks� We use the term activity to
refer to a block� a task or a process� Blocks di�er from tasks and processes in that they are conceptual
activities which are present only to specify the ordering and the dependencies between activities�

The following de�nitions describe the semantics of the block types where A stands for an activity
�block� task or process�� B for a block and T for a task�

Serial Block B � �A��A��A�� ������An�� Start of a serial block B causes A� to start� Commitment of A� causes
start of A� and commitment of A� causes start of A�
 and so on� Commitment of An causes commitment
of B� If one of the activities aborts
 the block aborts� If the block aborts
 its committed activities should
be compensated in the reverse order�

And Parallel Block B � �A� � A� � ����� � An�� Start of an and parallel block B causes start of all of the
activities in the block in parallel� B commits only if all of the activities commit� If one of the activities
aborts
 the block aborts� If the block aborts
 its committed activities should be compensated in parallel�



Or Parallel Block B � �A�jA�j�����jAn�� Start of an or parallel block B causes start of all of the activities in
the block in parallel� At least one of the activities should commit for B to commit but B can not commit
until all of the activities terminate� B aborts if all the activities abort� If B aborts
 its committed activities
should be compensated in parallel�

Xor Parallel Block B � �A�jjA�jj�����jjAn�� Start of an xor parallel block B causes start of all tasks in the
block in parallel� B commits if one of the activities commits
 and commitment of one activity causes other
activities to abort� If all of the activities abort
 the block aborts�

Contingency Block B � �A�� A�� �����An�� Start of a contingency block B causes start of A�� Abort of A� causes
start of A� and abort of A� causes start of A�
and so on� Commitment of any activity causes commitment
of B� If the last activity An aborts
 the block aborts�

Conditional Block B � �condition
A�� A��� Conditional block B has two activities and a condition� If the
condition is true when B starts
 then the rst activity starts� Otherwise
 the other activity starts� The
commitment of the block is dependent on the commitment of the chosen activity� If the chosen activity
aborts
 then B aborts�

Iterative Block B � �condition�A��A�� ������An�� The iterative block B is similar to serial block
 but start of
iterative block depends on the given condition as in a while loop and execution continues until either the
condition becomes false or any of the activities aborts� If B starts and the condition is true
 then A� starts
and continues like serial block� If An commits
 then the condition is reevaluated� If it is false
 then B
commits� If it is true
 then A� starts executing again� If one of the activities aborts at any one of the
iterations
 B aborts� If B aborts
 its committed activities for all the iterations should be compensated in
the reverse order�

Compensation Activity of A � �Ac
 AbortList�Ac��� The compensation activity Ac of A starts if A has
committed and any of the activities in AbortList�Ac� has aborted� AbortList is a list computed in compile
time which contains the activities whose aborts necessitate the compensation of A� If both an activity and
its subactivities have compensation
 only the compensation of the activity is used� If only the subactivities
have compensation
 it is necessary to use compensations of the subactivities to compensate the whole
activity�

Undo Task of T � Tu� The undo task Tu of T starts if the non�transactional task T fails�

In addition to activities� there are also assignment statements in our language which access and update
work�ow relevant data�

We have implemented a speci�cation language based on these structures� called METUFlow De�nition
Language �MFDL�� within the scope of the METUFlow project� The following is an example work�ow
de�ned in MFDL�

TRANS�ACTIVITY register�patient �OUT int patient�id��

TRANS�ACTIVITY delete�patient�IN int patient�id��

USER�ACTIVITY examine�patient �IN int patient�id�

OUT int blood�test�type�list�

OUT int roentgen�list�

PARTICIPANT DOCTOR�

USER�ACTIVITY blood�exam �IN int patient�id�

IN int blood�test�type�list� OUT STRING result�

PARTICIPANT LABORANT�

USER�ACTIVITY roentgen �IN int patient�id�

IN int roentgen�list� OUT STRING result�

PARTICIPANT ROENTGENOLOGIST�

USER�ACTIVITY check�result �IN int patient�id�

IN string result�� IN STRING result��

PARTICIPANT DOCTOR�

USER�ACTIVITY cash�pay �IN int patient�id�

PARTICIPANT TELLER�

USER�ACTIVITY credit�pay �IN int patient�id�

PARTICIPANT TELLER�

DEFINE�PROCESS check�up �IN int patient�id�

�

ACTIVITY register�patient register�

ACTIVITY delete�patient delete�

ACTIVITY examine�patient examine�

ACTIVITY blood�exam blood�

ACTIVITY roentgen roent�

ACTIVITY check�result check�

ACTIVITY cash�pay cash�

ACTIVITY credit�pay credit�

var STRING result�� result��

var int blood�test�type�list� roentgen�list�
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IF �patient�id 		 
�

register�patient�id� COMPENSATED�BY delete�patient�id��

examine�patient�id� blood�test�type�list� roentgen�list��

AND�PARALLEL

� blood�patient�id� blood�test�type�list� result���

WHILE �result� 		 NULL�

roent�patient�id� roentgen�list� result��� �

check�patient�id� result�� result���

CONTINGENCY

� cash�patient�id��

credit�patient�id�� � �

The above example is a simpli�ed work�ow of a check�up process carried out in a hospital� First� a
patient is registered to the hospital� if she�he has not registered before� Then� she�he is examined by a
doctor and according to the doctor�s decision� a blood test is made and roentgen is taken for the patient
in parallel� Since the patient need not wait for blood test to be �nished in order roentgen to be taken�
these two tasks are executed in an and parallel block� Roentgen can be taken more than once� if the
result is not clear� This is accomplished by an iterative block� After the results are checked by the doctor�
the patient pays the receipt either in cash or by credit� These two tasks are placed in a contingency block
so that� if the patient can not pay in cash� she�he is given the chance to pay by credit�

In METUFlow� there are �ve types of tasks� These are TRANSACTIONAL� NON TRANSACTIONAL�
NON TRANSACTIONAL with CHECKPOINT� USER and �PC TRANSACTIONAL tasks� USER
tasks are in fact NON TRANSACTIONAL tasks� They are speci�ed separately in order them to be
handled by the worklist manager of the system� The states and transitions between the states for each of
the task types are demonstrated in Figure �� It should be noted that a task structure does not determine
the means of execution nor the functionality of the task� but only a high level description of the visible
state transitions�

We have chosen to include a second type of non transactional task� namely� NON TRANSACTIONAL
with CHECKPOINT� in our model by making the observation that certain non transactional tasks in
real life� take checkpoints so that when a failure occurs� an application program rolls the task back to
the last successful checkpoint�

These task types may have some attributes such as CRITICAL� NON VITAL and CRITICAL NON�
VITAL� Critical tasks can not be compensated and the failure of a non vital task is ignored �Dayal and
et�al� �		�� Chen and Dayal �		��� Besides these attributes� tasks can also have some properties like
retriable� compensable� and undoable� A retriable task restarts execution depending on some condition
when it fails� Compensation is used in undoing the visible e�ects of tasks after they are committed�
E�ects of an undoable task can be removed depending on some condition in case of failures� Some
of these properties are special to speci�c task types� Undo conditions and tasks are only de�ned for
non transactional tasks� because transactional tasks do not leave any e�ects when they abort� Only
�PC transactional tasks can be de�ned as critical� Note that the e�ects of critical tasks are visible to the
other tasks in the work�ow but the commitment of these tasks are delayed till the successful termination
of the work�ow� A task can be both critical and non vital at the same time� but can not be critical and
compensable� The example work�ow de�nition of a check�up process illustrates the use of these di�erent
types of tasks�

In MFDL� activities in a process are declared using ACTIVITY reserved word� This declaration allows
us to use activities sharing the same activity de�nition with di�erent attributes and properties in the
same work�ow process�
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� Distributed Scheduler of METUFlow

Work�ow scheduler is the core component of a work�ow management system� It instantiates processes
according to the process description and controls correct execution of activities interacting with users via
worklists and invoking applications as necessary�

A simpli�ed architecture of METUFlow system is given in Figure �� In METUFlow� �rst a work�ow is
speci�ed using a graphical work�ow speci�cation tool which generates the textual work�ow de�nition in
MFDL as explained in Section �� A process tree is then generated from this textual de�nition to determine
the control��ow in terms of guards on events like start� abort and commit� Guards are expressions
de�ned on events and occurrences of events are permitted only if their guards are true� Since METUFlow
execution environment is distributed on the basis of activities� each activity should know when to start�
abort or commit without consulting to a top�level central decision mechanism� For this purpose� a guard
handler is associated with each activity instance which contains the guard expressions for the events of
that activity instance�

During the construction of guards� the process tree of the work�ow which consists of nodes representing
processes� blocks and tasks is used� This tree explicitly shows the dependencies between the activities
of the work�ow� In Figure �� the process tree corresponding to MFDL example of Section � is given�
Each of the nodes is given a unique label to refer it in the execution phase� These activity labels make
it possible for each task instance to have its own uniquely identi�ed event symbols� The nodes shown
in dashed lines are the compensation activities for the corresponding nodes� The guards of events are
generated from the process tree in a straight forward way �Gokkoca et�al� �		
�� As an example� guard
expressions for start� commit and abort events of and parallel block �labeled � in Figure �� are given in
the following�

Start� examine�commit
It means that and parallel block can start only after examine commits�

Abort� blood�abort OR iterative�abort
When one of blood task or iterative block aborts� and parallel block aborts�

Commit� blood�commit AND iterative�commit
and parallel block can only commit if both blood task and iterative block commit�

Guard handlers generated for each of the activities evaluate the guard expressions like those given
above through the event occurrence messages they receive� For example� when examine task commits�
its guard handler noti�es the guard handler of and parallel block about the occurrence of this event and
the start guard of and parallel block evaluates to true�

There exists a task handler for each task instance which embodies a coarse description of the task
instance including only the states and transitions �i�e� events� that are signi�cant for coordination� The
task handler acts as an interface between the task instance and its guard handler� A guard handler
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provides the message �ow between the task�s task handler and the other guard handlers in the system�
According to the message it receives from the guard handler� a task handler causes the events related
with that task to occur�

Each node in the process tree is implemented as a CORBA object with an interface for the guard
handler to receive and send messages� At compile time the guards are generated and stored locally with
the related objects� The objects to which the messages from this object are to be communicated are
also recorded� A guard handler maintains the current guard for the events of the activity and manages
communications� An event can happen only when its guard evaluates to true� If the guard for the
attempted event is true� it is allowed right away� If it is false� it is rejected� Otherwise� it is parked�
Parking an event means disabling its occurrence until its guard evaluates to true or false� When an event
happens� messages announcing its occurrence are sent to the guard handlers of other related activities�
Persistent queues are used to provide reliable message passing� When an event announcement arrives�
the receiving guard handler simpli�es its guard to incorporate this information� If the guard becomes
true� then the appropriate parked event is enabled�

� Task Handling in METUFlow

A task handler is created for each task instance� It acts as a bridge between the task and its guard
handler� The guard handler sends the information necessary for the execution of the task� like the name
of the task� parameters to the task handler and the task handler sends the information about the status
of the task to the guard handler� When a task starts� its status becomes Executing� If it can terminate
successfully� then its status is changed to Committed or Done depending on whether it is a transactional
or a non�transactional task� In case the task fails� its status becomes Abort or Failed�

Task handler is a CORBA object and has a generic interface which contains the following methods
to communicate with its associated guard handler�

� Init This method is used for passing initial data such as name of the task and initial parameters
to the task handler�

� Start This method is called by the guard handler when the start guard of the task evaluates to
true� This causes the task handler to invoke the actual task�

The task handlers for each di�erent type of tasks inherit from this interface and provide overloading
of these methods and�or further methods as necessary as explained in the following�

� Transactional task handler This type of task handler is coded for the transactional tasks� Even
if a transactional task terminates successfully� its task handler should wait for the commit or abort
message from the guard handler� For this purpose� in addition to the common methods described
above� this type of task handler provides two more methods namely� Commit and Abort to be called
by the guard handler when a task can commit or abort respectively�

� Non�transactional task handler This type of task handler handles tasks which are either non�
transactional or non�transactional with checkpoint� The di�erence between non�transactional and
non�transactional with checkpoint is that in the latter in case of a failure the application is rolled



{

    

        A new patient_id is generated for this patient 

register_patient()

   TaskExecuting();

    /* This part of the code gets patient information from the user.

    Connect_to_Database();

   */

   Insert_Into_Database(patient_info,status);
   if(status == True){
        ReadyToCommit();
        if( GetStatus() == Commit) {
         Commit();

         Return(patient_id);
         TaskCommitted();

        

    }
 TaskAborted();

    Abort();

}
}

    TaskAborted();

} else {

      } else {

 Abort();

Task
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TaskCommitted(9)Reply(10)

Start(1)

Reply(4)

IsCommitOk(6) ReadyToCommit(5)

Exec(2)
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Figure �� Communication among Guard Handler� Task Handler and Task

back to the latest checkpoint and not to the beginning� Since this does not a�ect the communication
between the task and task handler� only one type of task handler is de�ned for both of them�
Note that� non�transactional tasks terminate without waiting for any con�rmation from the guard
handler� They only inform the task handler about the status �Done or Failed��

� Two phase commit task handler This type of task handler is required for two phase commit
transactional tasks� The di�erence between this type of task and transactional tasks is that� the
former provides an additional status message� namely Prepared� Thus� this type of task handler
provides a method called Prepare to be called by the transaction manager�

� User task handler This type of task handler is coded for the user tasks� User tasks are handled
by work item scheduler and worklist handler �see Figure ��� The user task handler just stores the
name of the task and the other necessary information to the repository from where the work item
scheduler retrieves� The work item scheduler together with the worklist handlers informs the user
about the tasks that she�he is responsible for and sends the status of the task to the user task
handler�

� Assignment task handler This task handler does not cause any task to begin� but only a work�ow
relevant data assignment is done within the scope of a transaction�

In Work�ow Reference Model of the Work�ow Management Coalition �Hollingsworth �		��� the task
handlers are classi�ed according to having local or remote access� This classi�cation is due to the
assumption that the scheduler is centralized� Since scheduling is handled in a distributed manner in
METUFlow� there is no need for such a classi�cation�

The tasks may de�ne their status in a way that the task handler can not understand or the task may
not understand the messages coming from the task handler� Therefore� it becomes essential to interfere
the source code of existing tasks� If it is possible to make changes in the task� then additional calls are
added to the code of the task to convert the status information and error messages so that task handler
and task can understand each other� If this is not possible� then the existing task is encapsulated by a
code which provides the required conversion�

In Figure �� we provide the modi�ed code of the transactional task� register patient� taken from the
example given in Section � to illustrate the �rst strategy� The calls which are written in boldface are
added to the original code of the task� The meanings of these calls are as follows�

� TaskExecuting�� informs the task handler that it has started executing�

� ReadyToCommit�� informs the task handler that operation is terminated successfully�



� TaskAborted�� informs the task handler that the �nal status is Abort�

� TaskCommited�� informs the task handler that the �nal status is Commit�

� GetStatus�� checks the status message coming from the task handler�

In the �gure� the labels of the arrows show the message passing between the entities� The labels are
numbered according to the order in which the calls are made and the �gure describes the �ow of messages
for the scenario in which the task terminates successfully and its commit guard evaluates to true� When
the start guard of the task evaluates to true� the guard handler of the task calls Start method of the task
handler� This causes the task handler to start execution of the task� When the task starts executing� as
the �rst operation� task handler is informed by calling TaskExecuting call� The status of the task is
sent to the guard handler by the task handler in Reply method with the parameter Executing� Then the
normal �ow of the task begins� If patient information is written to the database successfully� the task
handler is sent ReadyToCommit call� The task handler informs the guard handler that the task is
ready to commit by calling its IsCommitOk method� If the commit guard of the task evaluates to true�
the guard handler informs task handler about this situation by calling its Commit method� Otherwise�
Abort method is called� Task checks whether the message sent is Abort or Commit by the GetStatus
call� If task handler sends Commit� then task commits actually and claims the �nal state as Commit� In
case of Abort message� task aborts and sends the �nal abort status� When �nal status is claimed by the
task� the task handler informs the guard handler about the �nal status by calling Reply method again�

� Conclusion

In this paper� a block structured speci�cation language� namely MFDL� and its scheduler implemented
in a distributed environment through a CORBA compliant ORB are presented� The block structured
procedural nature of MFDL provides both eciency in execution and ease in testing and debugging� The
task handling in the system is also discussed�

The future work includes incorporating correctness measures to guards� and providing ecient moni�
toring of the system�
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