
A Work�ow Speci�cation Language and its Scheduler �

Nesime Tatbul� Sena Arpinar� Pinar Karagoz� �Ibrahim Cingil�

Esin Gokkoca� Mehmet Altinel� Pinar Koksal� Asuman Dogac

Software Research and Development Center

Dept� of Computer Engineering

Middle East Technical University �METU�

����� Ankara Turkiye

asuman	srdc�metu�edu�tr

Tamer Ozsu

Department of Computing Science

University of Alberta
 Edmonton
 Alberta

Canada T�G �H�

ozsu	cs�ualberta�ca

Abstract

This paper describes a work�ow specication language
 namely MFDL
 and the implementation
of its scheduler in a distributed environment� Distributed nature of the scheduling provides failure
resilience and increased performance� Since work�ow scheduling and management is highly a�ected
from the way the work�ow is specied
 a work�ow specication language should be e�cient to prevent
the problems of complexity in work�ow specication and di�culties in debugging�testing the further
steps of the work�ow management system development� MFDL
 being a block�structured procedural
work�ow specication language
 is capable of dening a work�ow in an easy
 comprehensible and clear
way so that implementation of the scheduler is simplied� The paper also presents task handling in
the system through a CORBA compliant ORB�

� Introduction

Work�ow management systems �WFMSs� automate the execution of business processes� WFMSs achieve
considerable improvements in critical� contemporary measures of performance� such as cost� quality� ser�
vice� and speed by coordinating and streamlining complex business processes within large organizations�

A work�ow system can be de�ned as a collection of processing steps �also termed as tasks or activities�
organized to accomplish some business process� A task can be performed by one or more software systems�
or� by a person or a team� or a combination of these� In addition to the collection of tasks� a work�ow
de�nes the order of task invocation or condition�s� under which tasks must be invoked �i�e� control��ow�
and data��ow between these tasks�

In general a work�ow task is considered to be a black box that is functional in nature� i�e�� the
functionality of the task is orthogonal to that of the work�ow process� The tasks could be transactional
or non�transactional in nature� Transactional tasks are those that access data controlled by Resource
Managers �RMs� with transactional properties �i�e� ACID�� Non�transactional tasks access data controlled
by RMs without transactional properties such as �le systems�

In a work�ow speci�cation language� the tasks involved in a business process and the execution
and data dependencies between these tasks are provided� One of the weaknesses of current WFMSs
is their speci�cation language �Sheth et�al� �		
�� state�of�the�art work�ow speci�cation languages are
unstructured and�or rule based� Unstructured speci�cation languages make debugging�testing of complex
work�ow dicult and rule based languages become inecient when they are used for speci�cation of large
and complex work�ow processes� This is due to the large number of rules and overhead associated with
rule invocation and management�

� This work is partially being supported by the Turkish State Planning Organization� Project Number� AFP����
��DPT�	
K���
��� by the Scienti�c and Technical Research Council of Turkey� Project Number� EEEAG�Yazilim
� by
NATO Collaborative Research Grant No� CRG�	����� and by Sevgi Holding �Turkey��

Furthermore� a work�ow speci�cation language that speci�es the control��ow and data��ow among
tasks by itself is not enough �Krishnakumar and Sheth �		��� there is a need for a task speci�cation
language to specify the task interface for executing the task at the processing entity� for handling the error
messages produced by the processing entity and also for revealing the task state for control purposes�

In order to meet the requirements cited above� we have designed work�ow de�nition language� namely�
METUFlow De�nition Language �MFDL� and implemented the scheduler corresponding to this speci�
�cation� MFDL also has a graphical user interface developed through Java which makes it possible to
de�ne a work�ow by accessing METUFlow through the Internet�

MFDL is a block�structured language that contains seven types of blocks� namely� serial� and parallel�
or parallel� xor parallel� contingency� conditional and iterative blocks� MFDL overcomes the problems of
unstructured and rule based languages through its block structures� The further advantages brought by
this language can be summarized as follows�

� A block structured language con�nes the intertask dependencies to a well formed structure which
in turn proves extremely helpful in implementing a distributed scheduler for the system�

� A block clearly de�nes not only the data and control dependencies among tasks but also presents
a well de�ned recovery semantics� i�e�� when a block aborts� the tasks that are to be compensated
and the order in which they are to be compensated are already provided by the block semantics�

Work�ow systems are expected to work in distributed heterogeneous environments which are very
common in enterprises of even moderate complexity� CORBA is one of the major standardization initia�
tives of the computer industry for handling heterogeneity in distributed environments �OMG �		�� Soley
and Stone �		��� CORBA provides a standard communication mechanism which enables distributed
objects to operate on each other� In CORBA only the ORB �Object Request Broker� knows the imple�
mentation details and actual locations of the components �objects� in the system� Clients and servers
only know the interfaces of the components� The only way of communication is the requests and the
responses� In this way a distributed� heterogeneous environment becomes virtually local and homoge�
neous to the client� The interfaces are de�ned using IDL �Interface De�nition Language� which resembles
a declarative subset of C�� but it is not a programming language� making ORB object development
implementation language independent� METUFlow� by allowing CORBA�IDL to be used in task speci��
cation� makes it possible to invoke tasks in distributed heterogeneous environments and meets the need
for a task speci�cation languauge�

METUFlow has a distributed scheduling mechanism� In current commercial work�ow systems� the
work�ow scheduler is a single centralized component� A distributed work�ow scheduler on the other
hand should contain several schedulers on di�erent nodes of a network each executing parts of process
instances� Such an architecture �ts naturally to the distributed heterogeneous environments� Further
advantages of such an architecture are failure resiliency and increased performance since a centralized
scheduler is a potential bottleneck�

The paper is organized as follows� Section � describes the process model and its speci�cation in
METUFlow De�nition Language� In Section �� the distributed scheduling mechanism corresponding to
MFDL is provided� Section � discusses the task handling in METUFlow� Finally� Section � concludes
the paper�

� The Process Model and MFDL

We de�ne a work�ow process as a collection of blocks� tasks and other subprocesses� A task is the
simplest unit of execution� Processes and tasks have input and output parameters corresponding to
work�ow relevant data to communicate with other processes and tasks� We use the term activity to
refer to a block� a task or a process� Blocks di�er from tasks and processes in that they are conceptual
activities which are present only to specify the ordering and the dependencies between activities�

The following de�nitions describe the semantics of the block types where A stands for an activity
�block� task or process�� B for a block and T for a task�

Serial Block B � �A��A��A�� ������An�� Start of a serial block B causes A� to start� Commitment of A� causes
start of A� and commitment of A� causes start of A�
 and so on� Commitment of An causes commitment
of B� If one of the activities aborts
 the block aborts� If the block aborts
 its committed activities should
be compensated in the reverse order�

And Parallel Block B � �A� � A� � ����� � An�� Start of an and parallel block B causes start of all of the
activities in the block in parallel� B commits only if all of the activities commit� If one of the activities
aborts
 the block aborts� If the block aborts
 its committed activities should be compensated in parallel�

Or Parallel Block B � �A�jA�j�����jAn�� Start of an or parallel block B causes start of all of the activities in
the block in parallel� At least one of the activities should commit for B to commit but B can not commit
until all of the activities terminate� B aborts if all the activities abort� If B aborts
 its committed activities
should be compensated in parallel�

Xor Parallel Block B � �A�jjA�jj�����jjAn�� Start of an xor parallel block B causes start of all tasks in the
block in parallel� B commits if one of the activities commits
 and commitment of one activity causes other
activities to abort� If all of the activities abort
 the block aborts�

Contingency Block B � �A�� A�� �����An�� Start of a contingency block B causes start of A�� Abort of A� causes
start of A� and abort of A� causes start of A�
and so on� Commitment of any activity causes commitment
of B� If the last activity An aborts
 the block aborts�

Conditional Block B � �condition
A�� A��� Conditional block B has two activities and a condition� If the
condition is true when B starts
 then the rst activity starts� Otherwise
 the other activity starts� The
commitment of the block is dependent on the commitment of the chosen activity� If the chosen activity
aborts
 then B aborts�

Iterative Block B � �condition�A��A�� ������An�� The iterative block B is similar to serial block
 but start of
iterative block depends on the given condition as in a while loop and execution continues until either the
condition becomes false or any of the activities aborts� If B starts and the condition is true
 then A� starts
and continues like serial block� If An commits
 then the condition is reevaluated� If it is false
 then B
commits� If it is true
 then A� starts executing again� If one of the activities aborts at any one of the
iterations
 B aborts� If B aborts
 its committed activities for all the iterations should be compensated in
the reverse order�

Compensation Activity of A � �Ac
 AbortList�Ac��� The compensation activity Ac of A starts if A has
committed and any of the activities in AbortList�Ac� has aborted� AbortList is a list computed in compile
time which contains the activities whose aborts necessitate the compensation of A� If both an activity and
its subactivities have compensation
 only the compensation of the activity is used� If only the subactivities
have compensation
 it is necessary to use compensations of the subactivities to compensate the whole
activity�

Undo Task of T � Tu� The undo task Tu of T starts if the non�transactional task T fails�

In addition to activities� there are also assignment statements in our language which access and update
work�ow relevant data�

We have implemented a speci�cation language based on these structures� called METUFlow De�nition
Language �MFDL�� within the scope of the METUFlow project� The following is an example work�ow
de�ned in MFDL�

TRANS�ACTIVITY register�patient �OUT int patient�id��

TRANS�ACTIVITY delete�patient�IN int patient�id��

USER�ACTIVITY examine�patient �IN int patient�id�

OUT int blood�test�type�list�

OUT int roentgen�list�

PARTICIPANT DOCTOR�

USER�ACTIVITY blood�exam �IN int patient�id�

IN int blood�test�type�list� OUT STRING result�

PARTICIPANT LABORANT�

USER�ACTIVITY roentgen �IN int patient�id�

IN int roentgen�list� OUT STRING result�

PARTICIPANT ROENTGENOLOGIST�

USER�ACTIVITY check�result �IN int patient�id�

IN string result�� IN STRING result��

PARTICIPANT DOCTOR�

USER�ACTIVITY cash�pay �IN int patient�id�

PARTICIPANT TELLER�

USER�ACTIVITY credit�pay �IN int patient�id�

PARTICIPANT TELLER�

DEFINE�PROCESS check�up �IN int patient�id�

�

ACTIVITY register�patient register�

ACTIVITY delete�patient delete�

ACTIVITY examine�patient examine�

ACTIVITY blood�exam blood�

ACTIVITY roentgen roent�

ACTIVITY check�result check�

ACTIVITY cash�pay cash�

ACTIVITY credit�pay credit�

var STRING result�� result��

var int blood�test�type�list� roentgen�list�

Executing

Start

cm

cm

Start

2PC-TransactionalTransactional

ab

ab
done

Start

Failed Done CompensatedUndone

done

Start

Restart

Failed Done CompensatedUndone

Checkpointed

Non-Transactional with checkpointNon-Transactional

Compensated

Compensated

Committed

ab

Aborted

fail fail

ExecutingExecutingExecuting

Prepared

Aborted Committed

Transitions caused by activity’s own events

Transitions made by other events under Scheduler control

pr

st st stst

Figure �� Typical task structures

IF �patient�id 		
�

register�patient�id� COMPENSATED�BY delete�patient�id��

examine�patient�id� blood�test�type�list� roentgen�list��

AND�PARALLEL

� blood�patient�id� blood�test�type�list� result���

WHILE �result� 		 NULL�

roent�patient�id� roentgen�list� result��� �

check�patient�id� result�� result���

CONTINGENCY

� cash�patient�id��

credit�patient�id�� � �

The above example is a simpli�ed work�ow of a check�up process carried out in a hospital� First� a
patient is registered to the hospital� if she�he has not registered before� Then� she�he is examined by a
doctor and according to the doctor�s decision� a blood test is made and roentgen is taken for the patient
in parallel� Since the patient need not wait for blood test to be �nished in order roentgen to be taken�
these two tasks are executed in an and parallel block� Roentgen can be taken more than once� if the
result is not clear� This is accomplished by an iterative block� After the results are checked by the doctor�
the patient pays the receipt either in cash or by credit� These two tasks are placed in a contingency block
so that� if the patient can not pay in cash� she�he is given the chance to pay by credit�

In METUFlow� there are �ve types of tasks� These are TRANSACTIONAL� NON TRANSACTIONAL�
NON TRANSACTIONAL with CHECKPOINT� USER and �PC TRANSACTIONAL tasks� USER
tasks are in fact NON TRANSACTIONAL tasks� They are speci�ed separately in order them to be
handled by the worklist manager of the system� The states and transitions between the states for each of
the task types are demonstrated in Figure �� It should be noted that a task structure does not determine
the means of execution nor the functionality of the task� but only a high level description of the visible
state transitions�

We have chosen to include a second type of non transactional task� namely� NON TRANSACTIONAL
with CHECKPOINT� in our model by making the observation that certain non transactional tasks in
real life� take checkpoints so that when a failure occurs� an application program rolls the task back to
the last successful checkpoint�

These task types may have some attributes such as CRITICAL� NON VITAL and CRITICAL NON�
VITAL� Critical tasks can not be compensated and the failure of a non vital task is ignored �Dayal and
et�al� �		�� Chen and Dayal �		��� Besides these attributes� tasks can also have some properties like
retriable� compensable� and undoable� A retriable task restarts execution depending on some condition
when it fails� Compensation is used in undoing the visible e�ects of tasks after they are committed�
E�ects of an undoable task can be removed depending on some condition in case of failures� Some
of these properties are special to speci�c task types� Undo conditions and tasks are only de�ned for
non transactional tasks� because transactional tasks do not leave any e�ects when they abort� Only
�PC transactional tasks can be de�ned as critical� Note that the e�ects of critical tasks are visible to the
other tasks in the work�ow but the commitment of these tasks are delayed till the successful termination
of the work�ow� A task can be both critical and non vital at the same time� but can not be critical and
compensable� The example work�ow de�nition of a check�up process illustrates the use of these di�erent
types of tasks�

In MFDL� activities in a process are declared using ACTIVITY reserved word� This declaration allows
us to use activities sharing the same activity de�nition with di�erent attributes and properties in the
same work�ow process�

Guard
Handler

Guard
Handler

Guard
Handler

Guard
Handler

Guard
Handler

Worklist
Handler

Worklist
Handler

Worklist
HandlerTask Task Task

Workflow Specification Tool

Transactional
Task Handler Task Handler

Non-trans.

Work item

Scheduler

User UserUser

Task Handler Task Handler Task Handler
2PC trans. Assignment User Task Handler

Scheduler

Figure �� The simpli�ed architecture of METUFlow

� Distributed Scheduler of METUFlow

Work�ow scheduler is the core component of a work�ow management system� It instantiates processes
according to the process description and controls correct execution of activities interacting with users via
worklists and invoking applications as necessary�

A simpli�ed architecture of METUFlow system is given in Figure �� In METUFlow� �rst a work�ow is
speci�ed using a graphical work�ow speci�cation tool which generates the textual work�ow de�nition in
MFDL as explained in Section �� A process tree is then generated from this textual de�nition to determine
the control��ow in terms of guards on events like start� abort and commit� Guards are expressions
de�ned on events and occurrences of events are permitted only if their guards are true� Since METUFlow
execution environment is distributed on the basis of activities� each activity should know when to start�
abort or commit without consulting to a top�level central decision mechanism� For this purpose� a guard
handler is associated with each activity instance which contains the guard expressions for the events of
that activity instance�

During the construction of guards� the process tree of the work�ow which consists of nodes representing
processes� blocks and tasks is used� This tree explicitly shows the dependencies between the activities
of the work�ow� In Figure �� the process tree corresponding to MFDL example of Section � is given�
Each of the nodes is given a unique label to refer it in the execution phase� These activity labels make
it possible for each task instance to have its own uniquely identi�ed event symbols� The nodes shown
in dashed lines are the compensation activities for the corresponding nodes� The guards of events are
generated from the process tree in a straight forward way �Gokkoca et�al� �		
�� As an example� guard
expressions for start� commit and abort events of and parallel block �labeled � in Figure �� are given in
the following�

Start� examine�commit
It means that and parallel block can start only after examine commits�

Abort� blood�abort OR iterative�abort
When one of blood task or iterative block aborts� and parallel block aborts�

Commit� blood�commit AND iterative�commit
and parallel block can only commit if both blood task and iterative block commit�

Guard handlers generated for each of the activities evaluate the guard expressions like those given
above through the event occurrence messages they receive� For example� when examine task commits�
its guard handler noti�es the guard handler of and parallel block about the occurrence of this event and
the start guard of and parallel block evaluates to true�

There exists a task handler for each task instance which embodies a coarse description of the task
instance including only the states and transitions �i�e� events� that are signi�cant for coordination� The
task handler acts as an interface between the task instance and its guard handler� A guard handler

roent
8

register
2

examine
4

blood
6

check

0

and_parallel

delete
3

5
conditional

process

1

iterative cash
11

credit
12

10
contingency

9

7

Figure �� Process tree of the example MFDL

provides the message �ow between the task�s task handler and the other guard handlers in the system�
According to the message it receives from the guard handler� a task handler causes the events related
with that task to occur�

Each node in the process tree is implemented as a CORBA object with an interface for the guard
handler to receive and send messages� At compile time the guards are generated and stored locally with
the related objects� The objects to which the messages from this object are to be communicated are
also recorded� A guard handler maintains the current guard for the events of the activity and manages
communications� An event can happen only when its guard evaluates to true� If the guard for the
attempted event is true� it is allowed right away� If it is false� it is rejected� Otherwise� it is parked�
Parking an event means disabling its occurrence until its guard evaluates to true or false� When an event
happens� messages announcing its occurrence are sent to the guard handlers of other related activities�
Persistent queues are used to provide reliable message passing� When an event announcement arrives�
the receiving guard handler simpli�es its guard to incorporate this information� If the guard becomes
true� then the appropriate parked event is enabled�

� Task Handling in METUFlow

A task handler is created for each task instance� It acts as a bridge between the task and its guard
handler� The guard handler sends the information necessary for the execution of the task� like the name
of the task� parameters to the task handler and the task handler sends the information about the status
of the task to the guard handler� When a task starts� its status becomes Executing� If it can terminate
successfully� then its status is changed to Committed or Done depending on whether it is a transactional
or a non�transactional task� In case the task fails� its status becomes Abort or Failed�

Task handler is a CORBA object and has a generic interface which contains the following methods
to communicate with its associated guard handler�

� Init This method is used for passing initial data such as name of the task and initial parameters
to the task handler�

� Start This method is called by the guard handler when the start guard of the task evaluates to
true� This causes the task handler to invoke the actual task�

The task handlers for each di�erent type of tasks inherit from this interface and provide overloading
of these methods and�or further methods as necessary as explained in the following�

� Transactional task handler This type of task handler is coded for the transactional tasks� Even
if a transactional task terminates successfully� its task handler should wait for the commit or abort
message from the guard handler� For this purpose� in addition to the common methods described
above� this type of task handler provides two more methods namely� Commit and Abort to be called
by the guard handler when a task can commit or abort respectively�

� Non�transactional task handler This type of task handler handles tasks which are either non�
transactional or non�transactional with checkpoint� The di�erence between non�transactional and
non�transactional with checkpoint is that in the latter in case of a failure the application is rolled

{

 A new patient_id is generated for this patient

register_patient()

 TaskExecuting();

 /* This part of the code gets patient information from the user.

 Connect_to_Database();

 */

 Insert_Into_Database(patient_info,status);
 if(status == True){
 ReadyToCommit();
 if(GetStatus() == Commit) {
 Commit();

 Return(patient_id);
 TaskCommitted();

 }
 TaskAborted();

 Abort();

}
}

 TaskAborted();

} else {

 } else {

 Abort();

Task

Task

Handler

Guard

Handler

Commit(7) GetStatus(8)

TaskCommitted(9)Reply(10)

Start(1)

Reply(4)

IsCommitOk(6) ReadyToCommit(5)

Exec(2)

TaskExecuting(3)

Figure �� Communication among Guard Handler� Task Handler and Task

back to the latest checkpoint and not to the beginning� Since this does not a�ect the communication
between the task and task handler� only one type of task handler is de�ned for both of them�
Note that� non�transactional tasks terminate without waiting for any con�rmation from the guard
handler� They only inform the task handler about the status �Done or Failed��

� Two phase commit task handler This type of task handler is required for two phase commit
transactional tasks� The di�erence between this type of task and transactional tasks is that� the
former provides an additional status message� namely Prepared� Thus� this type of task handler
provides a method called Prepare to be called by the transaction manager�

� User task handler This type of task handler is coded for the user tasks� User tasks are handled
by work item scheduler and worklist handler �see Figure ��� The user task handler just stores the
name of the task and the other necessary information to the repository from where the work item
scheduler retrieves� The work item scheduler together with the worklist handlers informs the user
about the tasks that she�he is responsible for and sends the status of the task to the user task
handler�

� Assignment task handler This task handler does not cause any task to begin� but only a work�ow
relevant data assignment is done within the scope of a transaction�

In Work�ow Reference Model of the Work�ow Management Coalition �Hollingsworth �		��� the task
handlers are classi�ed according to having local or remote access� This classi�cation is due to the
assumption that the scheduler is centralized� Since scheduling is handled in a distributed manner in
METUFlow� there is no need for such a classi�cation�

The tasks may de�ne their status in a way that the task handler can not understand or the task may
not understand the messages coming from the task handler� Therefore� it becomes essential to interfere
the source code of existing tasks� If it is possible to make changes in the task� then additional calls are
added to the code of the task to convert the status information and error messages so that task handler
and task can understand each other� If this is not possible� then the existing task is encapsulated by a
code which provides the required conversion�

In Figure �� we provide the modi�ed code of the transactional task� register patient� taken from the
example given in Section � to illustrate the �rst strategy� The calls which are written in boldface are
added to the original code of the task� The meanings of these calls are as follows�

� TaskExecuting�� informs the task handler that it has started executing�

� ReadyToCommit�� informs the task handler that operation is terminated successfully�

� TaskAborted�� informs the task handler that the �nal status is Abort�

� TaskCommited�� informs the task handler that the �nal status is Commit�

� GetStatus�� checks the status message coming from the task handler�

In the �gure� the labels of the arrows show the message passing between the entities� The labels are
numbered according to the order in which the calls are made and the �gure describes the �ow of messages
for the scenario in which the task terminates successfully and its commit guard evaluates to true� When
the start guard of the task evaluates to true� the guard handler of the task calls Start method of the task
handler� This causes the task handler to start execution of the task� When the task starts executing� as
the �rst operation� task handler is informed by calling TaskExecuting call� The status of the task is
sent to the guard handler by the task handler in Reply method with the parameter Executing� Then the
normal �ow of the task begins� If patient information is written to the database successfully� the task
handler is sent ReadyToCommit call� The task handler informs the guard handler that the task is
ready to commit by calling its IsCommitOk method� If the commit guard of the task evaluates to true�
the guard handler informs task handler about this situation by calling its Commit method� Otherwise�
Abort method is called� Task checks whether the message sent is Abort or Commit by the GetStatus
call� If task handler sends Commit� then task commits actually and claims the �nal state as Commit� In
case of Abort message� task aborts and sends the �nal abort status� When �nal status is claimed by the
task� the task handler informs the guard handler about the �nal status by calling Reply method again�

� Conclusion

In this paper� a block structured speci�cation language� namely MFDL� and its scheduler implemented
in a distributed environment through a CORBA compliant ORB are presented� The block structured
procedural nature of MFDL provides both eciency in execution and ease in testing and debugging� The
task handling in the system is also discussed�

The future work includes incorporating correctness measures to guards� and providing ecient moni�
toring of the system�

References

Chen� Q�� and Dayal� U�� �A Transactional Nested Process Management System�� in Proceedings of the
��th International Conference on Data Engineering �ICDE�	��� New Orleans� February �		��

Dayal� U�� Hsu M�� and Ladin R�� �A Transactional Model for Long�running Activities�� in Proceed�
ings of the �
th International Conference on Very Large Data Bases �VLDB�	��� Barcelona �		��

Gokkoca� E�� Altinel� M�� Cingil� I�� Tatbul� N�� Koksal� P�� and Dogac� A� �Design and Implementa�

tion of a Distributed Work�ow Enactment Service�� In Proc� of Intl� Conf� on Cooperative Information
Systems �CoopIS �	
�� Charleston� USA� June �		
�

Hollingsworth� D�� �The Work�ow Reference Model�� Work�ow Management Coalition Speci�cation�
TC������� �Draft ����� �		��

Krishnakumar� N�� and Sheth� A�� �Managing Heterogeneous Multi�System Tasks to Support Enterprise�

Wide Operations�� Distributed and Parallel Databases� ������������� April �		��

Object Management Group� �The Common Object Request Broker� Architecture and Speci�cation�� OMG
Document Number 	������� December �		��

Sheth� A�� Georgakopoulos� D�� Joosten� S�� Rusinkiewicz� M�� Scacchi� W�� Wileden� J�� Wolf� A�� �Re�
port from the NSF Workshop and Process Automation in Information Systems�� http���lsdis�cs�uga�edu��
activities�NSF�work�ow� �		
�

Soley� R� M�� and Stone� C� M�� �Object Management Architecture Guide�� Third Edition� John Wi�
ley � Sons� �		��

