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Definition
Data stream management systems may be subject to

higher input rates than they can immediately process

with their available system resources (e.g., CPU, mem-

ory). When input rates exceed the resource capacity,

the system becomes overloaded and the query answers

are delayed. Load shedding is a technique to remove

excess load from the system in order to keep query

processing up with the input arrival rates. As a result of

load shedding, the system delivers approximate query

answers with reduced latency.

Historical Background
Load shedding is a term that originally comes from

electric power management, where it refers to the

process of intentionally cutting off the electric current

on certain lines when the demand for electricity

exceeds the available supply, in order to save the elec-

tric grid from collapsing. The same term has also been

used in computer networking to refer to a certain form

of congestion control approach, where a network rout-

er drops packets when its buffers fill up. More recently,

load shedding has been proposed as a way to deal with

overload in data stream processing systems [4].

Foundations
The goal of load shedding is to make sure that limited

system resources operate below their capacity levels

in case of unpredictable bursts in data arrival rates.

This is achieved by selectively discarding some of the

data items, thereby reducing the load at the expense of

producing an approximate query answer. The main

challenge in this problem is to minimize the loss in

answer accuracy.

Assume a set of continuous queries Q, represented

as a query plan of operators, where some of these

operators may be shared among multiple queries. A

set of inputs I feed these queries with streaming data,

exerting a total load of Load(Q(I)) on a particular

system resource with capacity C. A load shedding

scheme must address the following key questions:

1. When to shed load? Conceptually, load needs to be

shed whenever Load(Q(I)) > C.
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2. Where to shed load? Load can be discarded at any

point in the query plan. Dropping load at earlier

points avoids wasting work; however, because of

shared operators in the query plan, an early drop

might adversely affect the accuracy of too many

query answers.

3. Howmuch load to shed? Just enoughof the load at the

chosen point(s) in the query planmust be shed so that

the total resource demand gets below the available

capacity with minimal total loss in accuracy.

4. Which data items must be discarded? The data

items to be discarded should be chosen based on

the approximation model and the properties of the

operators in the query plan.

Furthermore, any load shedding scheme must have

low run-time overhead in order not to further stress

the limited system resources.

Various approaches have been proposed as solutions

to the above listed issues. These approaches differ in

their assumptions along several dimensions, including:

1. The limited resource under consideration (e.g.,

CPU, memory, communication bandwidth),

2. The way to reduce load (e.g., drop data, create

summaries),

3. The approximation model/objective (e.g., maxi-

mum subset, minimum relative error, maximum

throughput),

4. The query operator(s) under consideration (e.g.,

sliding window aggregates, windowed joins),

5. The data arrival model (e.g., stochastic models,

temporal models),

6. The control loop (open vs. closed)

7. The system architecture (centralized vs. distributed).

Within the scope of the Aurora Project, Tatbul et al.

have proposed a solution framework for load shedding

which focuses on CPU as the main scarce resource, and

discarding tuples by inserting special drop operators

into the running query plan as the load reduction

method [14]. The goal in this work is to minimize

utility loss in query answers in terms of two alternative

QoS (Quality of Service) dimensions: (i) percent tuple

delivery, using a random drop, or (ii) output values

delivered, using a semantic drop. A random drop dis-

cards tuples based on a drop probability, whereas a

semantic drop does so based on a predicate on the

tuple content. The earlier the load is reduced in a

query plan, the larger is the saving in processing

resources. However, shedding load early in a shared

query plan may hurt the accuracy for multiple queries.

To address this conflict, it is shown that load reduction

should be applied either on the input streams, or on

streams that immediately follow a shared operator in

the query plan. Furthermore, these potential drop

locations are ranked in terms of a metric, called loss/

gain ratio. The drop location that causes the smallest

QoS utility loss for the corresponding CPU processing

power gained in return per unit drop of data, is pre-

ferred over the other drop locations with larger ratios.

This way, the overall loss in QoS utility is minimized.

For low run-time overhead, this work has proposed to

pre-compute a set of load shedding plans based on

system statistics, and insatiate these plans at run time

based on the observed input rates. The proposed

framework has also been extended to handle load

shedding on windowed aggregation queries [15]. The

key idea is to use a third type of drop operator, called a

window drop, which semi-probabilistically discards load

in units of windows instead of on a per-tuple basis. This

way, window integrity can be preserved throughput a

query plan, and query answers are guaranteed to be

subsets of the original answers. An alternative to the

window drop approachwas earlier proposed by Babcock

et al. [3]. This work also targets load shedding on aggre-

gation queries under CPU constraints, but uses a differ-

ent approximation model where the goal is to minimize

the maximum relative error across all queries. Drops are

applied on a per-tuple basis, leading to query answers

with errors in their values. Window statistics and well-

known statistical bounds such as the Hoeffding inequal-

ity are used to control these errors for a certain set of

aggregate functions, including sum, count, and average.

A close alternate to dropping tuples under CPU limita-

tions is the selective processing approach proposed by

Gedik et al. [8]. This work selectively processes tuples in

the stream windows for join operators, in order to max-

imize the output rate or semantic utility of the query

results, in the presence of variations in input rates as well

as time correlations between two join inputs.

Load shedding can also be used to deal with mem-

ory limitations. Das et al. have focused on this problem

for stream joins, where the maximum subset measure

is used as the approximation metric [7]. This work

assumes a frequency-based data arrival model and

proposes two practical heuristics: (i) PROB, which

drops tuples from an input stream which had the

smallest frequency of occurrence on the opposite
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stream in the past (assuming that those tuples are the

least likely to produce join results also in the future);

(ii) LIFE, which drops tuples from an input stream

whose product of frequency of occurrence on the op-

posite stream and remaining window lifetime is the

smallest (i.e., the goal is to avoid investing on soon to

be expired tuples). Within the scope of the STREAM

Project, Srivastava and Widom have proposed an alter-

native load shedding approach for windowed stream

joins in memory-limited environments [12]. This

work is based on an age-based data arrival model,

where it is assumed that the rate at which a tuple

produces join results is solely determined by its age,

specified as an age curve. To deal with memory short-

age, tuples of a certain age are selectively discarded

from the join window to make room for others,

which have higher expectation of producing matches.

The goal here is again to maximize the size of the join

result set. A secondary concern in this work is to be

able to produce a random sample from the join in case

that the join is followed by an aggregate. In this case,

the final output will not be a subset of the exact answer,

and the overall goal is then to minimize the relative

error, in line with the work of Babcock et al. [3].

Jain et al. have proposed a load shedding approach

to reduce the network bandwidth usage [9]. This

approach is based on Kalman Filters which can be

used to model data streams as processes with states

that evolve over time. As new tuples arrive at a source

site, it is checked if the current model installed at the

remote server site can still answer the query within

given precision bounds. If so, there is no need to

send the new tuple to the server, i.e., it can be dis-

carded. Otherwise, the server model has to be updated,

hence the new tuple is transmitted. Adaptivity is

achieved by adjusting model parameters to changing

load characteristics.

Stream load can also be reduced based on creating

summaries of data instead of discarding data. This

idea was pursued by two different lines of work within

the scope of the TelegraphCQ Project: (i) Reiss and

Hellerstein have proposed a load shedding technique

called data triage, where excess data is not dropped, but

stored in synopsis data structures [11]. At the end of a

well-defined query window, the stored synopses are

processed through a shadow query plan to compute

an approximate result on the summarized portion of

the data. Finally, exact and approximate results are

merged into one composite result for that query

window. This works using an error model based on

Minkowski distance. (ii) Chandrasekaran and Franklin

have focused on hybrid queries that process live data

streams in correlation with historical data archived on

disk [5]. In this case, disk becomes the bottleneck

resource. To keep processing of disk data up with

processing of live data, disk data is organized into

multiple resolutions of reduced summaries. Depend-

ing on the live data rates, the system picks the right

resolution summary to use in query processing. This is

a form of load shedding that tries to cut down from

disk access cost using data summaries.

The NiagaraCQ Project has taken an integrated

approach where load shedding is seen as an extension

to continuous query optimization. Kang et al. use a

unit-time-based cost model where total cost of join

processing is broken into two components, one for

each join direction [10]. The optimal index and join

algorithm combination for each direction is deter-

mined so as to maximize query throughput. Under

CPU and memory limitations, the optimizer deter-

mines the ideal rate for each input and accordingly

places a random drop to control the input rates. Ayad

and Naughton use a similar analytical cost model, but

extend it to plans with multiple joins [2]. It is shown

that if computational resources are enough, then all

join plans have the same throughput, however, they

may substantially differ in their resource utilization.

If all of these plans are infeasible (i.e., lead to CPU

overload), then load must be shed via random drops.

The focus is on picking the right join plan, the loca-

tions on the plan to insert the drops, and the amount

of drops. An interesting result shown in this work is

that the optimal join plan (i.e., with the lowest utiliza-

tion) when resources are sufficient is not necessarily

the optimal plan (i.e., with the highest throughput)

when resources are insufficient.

All of the above described approaches assume that

stream processing is performed on a single server. The

overload problem can also arise in distributed stream

processing systems where queries are distributed onto

multiple servers. In a distributed environment, there is

load dependency among the nodes that are assigned to

run pieces of the same query. As a result, shedding load

at an upstream node affects the load levels at its down-

stream nodes, and the load shedding actions at all

nodes along a query plan will collectively determine

the quality degradation at the query end-points. With-

in the scope of the Borealis Project, Tatbul et al. have
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modeled this problem as a linear optimization prob-

lem, and proposed two alternative solutions: (i) a cen-

tralized approach, where a coordinator node produces

globally optimal plans with the help of an LP solver,

and the rest of the nodes adopt their share of these

global plans; (ii) a distributed approach, where nodes

exchange metadata information (represented in the

form of a feasible input table (FIT) which shows

input rate combinations that are feasible for a given

node) with their neighbors, and each node produces its

own plan based on the available metadata [13]. Both of

these solutions are based on the idea of pre-computing

the load shedding plans in advance and storing them in a

quadtree-based plan index. It is shown that the FIT-

based plan generation is more efficient than its solver-

based counterpart. Furthermore, the distributed solu-

tion is expected to bemore responsive in dynamic envir-

onments due to its ability to incrementally update

previously computed load shedding plans, reducing the

amount of run-time communication needed among the

nodes.

These approaches are all open-loop solutions in that

the system load is periodically monitored and the load

shedding algorithms are triggered as necessary. There

has also been recent work that applies control-theoretic

concepts to finer-grained adaptive load shedding on

data streams [1,16]. These approaches are based on

constructing a feedback loop that continually monitors

the high-frequency variations in system parameters and

makes the necessary adjustments in the load controllers

accordingly. Such closed-loop approaches are shown to

be more adaptive for input workloads with higher fre-

quency fluctuations in stream data rates.

Load shedding finds use also in resource-intensive

data streammining applications. As argued by Chi et al.

[6], in common data mining tasks such as classification

and clustering of multiple data streams, the impact of

load shedding on performance is not known a priori as

the mining quality often depends on specific feature

values observed in the stream in a non-monotonic way.

This requires feature value prediction and adaptation.

The Loadstar scheme uses a Markov model to predict

the distribution of future feature values whose para-

meters are adaptively updated in time in order to max-

imize the classification quality under CPU constraints

[6]. The high-level idea in this work is to allocate more

resources to data streams that carry more uncertainty

while shedding the ones whose class labels are more

certain for the upcoming time window.

Key Applications
Load shedding can be used in all data-intensive streaming

applications for which low latency answers can be more

critical than full answer accuracy. These include sensor-

based monitoring (e.g., habitat monitoring, bio-medical

monitoring, weather monitoring, road traffic monitor-

ing), RFID-based asset tracking, GPS-based location

tracking, video-based security monitoring, and network

traffic monitoring.

Future Directions
Load shedding in data stream management systems

is currently an active area of research. A significant

body of research results has been produced in this

area since circa 2002. The future directions include

development of new load shedding schemes for other

sets of assumptions along the dimensions listed above.

There is also a need to integrate the complementary

and alternative solution schemes under a single frame-

work, which could automatically select the right set of

techniques for a broad range of system resources, based

on the characteristics of the received workload as well

as the application-specific quality of service criteria.

Cross-references
▶Adaptive Stream Processing

▶Approximate Query Processing

▶Architectures and Prototypes

▶Continuous Query

▶Data Sampling

▶Data Sketch/Synopsis

▶Data Stream

▶Data Quality Dimensions

▶Data Quality Models

▶Data Reduction

▶ Stream Mining

▶ Stream-Oriented Query Languages and Operators

▶ Stream Processing

▶ Stream Sampling

▶Wavelets on Streams

▶Window-Based Query Processing

▶Windows
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Synonyms
Metadata encoding and transmission standard; Library

of congress METS

Definition
The Library of Congress (LOC) Metadata Encod-

ing and Transmission Standard (METS) is an XML

(Extensible Markup Language) based format used for

encoding metadata. The metadata is used to markup

digital library objects in a repository or for exchange

across repositories. METS is a Digital Library Federa-

tion initiative that is a successor to the Making of

America II project (MOA2).

Key Points
The MOA2 project attempted to provide encoding for-

mats for descriptive, administrative, and structural

metadata for text and image-based documents. (http://

www.loc.gov/standards/mets/METSOverview.v2.html)

The Digital Library Federation (DLF) sponsored the

project and the National Endowment for the Huma-

nities funded it. MOA2 involved discussions led by

the University of California, Berkeley with participa-

nts from New York Public Library and the libraries

of Cornell, Penn State, and Stanford universities.

The project produced a Document Type Definition

(DTD) that specifies a vocabulary and syntax for encod-

ing digital objects. (http://www.lib.berkeley.edu/digi-

coll/bestpractices/mets_history.html) The library

community realized that the MOA2 DTD was too re-

strictive, because, MOA2 did not provide some basic

functionality required for multimedia objects like video

and audio. METS arose from efforts to address these

problems in MOA2.

Digital objects and the metadata needed to describe

them are different from the metadata required for

documents. Digital objects require structural meta-

data that indicates how the components of the object

are glued together and technical metadata that specifies

how the digital object was produced. For example, if

a digital object contains image and text files, the struc-

tural metadata indicates the hierarchical structure

of these objects and files. Furthermore, without these

metadata, the authenticity of a digital object could

be in doubt. METs allows specifications of the struc-

tural technical metadata, as well as metadata required

for internal management and administration.

A METS document consists of seven sections:

 METS header: describes the document itself and

publishes information about the creator, editor, etc.

 Descriptive metadata: both external, i.e., residing

outside the document and internal.
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