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Abstract— In this position paper, we motivate the need for
streaming data integration in three main forms including across
multiple streaming data sources, over multiple stream processing
engine instances, and between stream processing engines and
traditional database systems. We argue that this need presents
a broad range of challenges and opportunities for new research.
We provide an overview of the young state of the art in this area
and further discuss a selected set of concrete research topics
that are currently under investigation within the scope of our
MaxStream federated stream processing project at ETH Zurich.

I. INTRODUCTION

Stream processing systems were born nearly a decade ago,
due to the need for low-latency processing of large volumes
of highly dynamic, time-sensitive continuous streams of data
from sensor-based monitoring devices and alike [1], [2], [3].
“Store-and-Pull” model of traditional data processing systems
was simply not suitable for the high performance needs of the
streaming applications, where data was much more dynamic
than queries and had to be processed on the fly. Consequently,
this change of roles between data and queries led to an upside
down architecture, and thus, to Stream Processing Engines
(SPEs).

Today, SPEs are turning into mature systems and the spec-
trum of applications that they serve is also widening. As part
of this process, we increasingly see the need for using SPEs
in combination with a variety of systems and data sources,
and sometimes for porting existing applications to run on or
with SPEs. However, SPEs still have a long way to go to
become established in similar ways as the traditional database
systems have become today. For SPEs to realize their full
potential and to see stronger adoption, first and foremost,
they require critical support for integration in several forms,
including across streaming data sources, SPE-SPE, and SPE-
DBMS.

First, as in classical data integration, continuous queries
on data streams may involve combined processing over a
number of streaming data sources. These sources may have
different data models (e.g., relational-like or XML-based) and
communication interfaces (e.g., HTTP or ODBC). To facilitate
the integration of data from these sources, SPEs offer a
collection of common adapters as well as SDKs for developing
custom adapters. A similar facility is also provided for the
output streams generated by the SPEs to enable the flow of
outputs to other external systems that may be present down
in the processing pipeline. For instance, leading SPE vendors
such as Coral8 and StreamBase currently provide around 20
input/output adapters for connecting to messaging systems,

networks, financial market data feeds, various visualization
and dash-boarding tools [4], [5]. Adapter-based integration is
relatively straightforward as long as the source data can be
correctly represented in the data model of the SPE, and vice
versa; albeit involving some manual work and inflexibility.
Furthermore, unlike in the traditional setting, streaming data
is usually not stored in advance to be pulled only when needed;
but it is continuously streamed through the network (i.e.,
data is not locked in and owned by the SPE). Consequently,
the input sources can be unpredictable and unreliable; the
network may introduce delays, losses, disorder into the stream.
These imperfections will have to be dealt with during the
integration of these data sources at the SPE. On the other hand,
adapters should also be very light-weight so as not to become
a bottleneck by slowing down the rate at which data can get
in and out of the SPE. The last but not the least, integrating
streaming sources may also involve a semantic component,
when schemas of inputs from different sources have to be
mapped to one another and possibly to the input schemas of
the already running continuous queries.

Second, there is also a need to integrate multiple SPE
instances. These can be identical instances, in which case
we have a homogeneous setting which requires using dis-
tributed and parallel stream processing techniques (e.g., [6]).
These techniques have proven to be effective for increased
scalability, high availability, and bringing computation closer
to the streaming data sources which might be scattered over
the network. However, more work is needed in the light of
the more loosely-coupled and elastic setting of the newly
emerging cloud computing environments. Another potential
scenario which has not been equally explored so far is the
case of integrating heterogeneous SPE instances. The main
motivation for such a scenario would be to be able to exploit
specialized capabilities, models, and strengths of a number
of different SPEs, which would fit very well with the highly
heterogeneous nature of the current stream processing land-
scape. Furthermore, this scenario may also arise in large-scale
business intelligence applications in extended enterprises with
multiple locations and companies (e.g., SAP Live Enterprise
[7]). This kind of a scenario is not uncommon in new business
structures with out-sourcing, acquisitions, and mergers as well
as applications such as supply-chain management, where each
participant in the chain might be running its own local SPE of
choice and their integration might be necessary for a higher
level monitoring of the business operations. The heterogeneous
case is much more challenging to handle than the homo-
geneous case, as it is concerned not only with performance



issues, but also with model and capability differences. It also
has brand new challenges compared to traditional database
integration because of the strong emphasis on the need for
functional integration along with data integration.

Third, there is a growing need for integrating SPEs with tra-
ditional database and data warehousing systems. For example,
traditional data processing systems play a key role in providing
contextual information for operational business intelligence
applications [8] and continuous analytics [9]. Today there
are a few architectural alternatives emerging to address this
need, but more research is needed to explore how much can
be accomplished with those approaches and to understand
their relative merits both in terms of performance as well as
persistence and querying capabilities.

An orthogonal consideration to the above listed integration
needs is the way the streaming landscape is evolving today.
As the application spectrum widens, SPEs keep on adding new
features for increasing their competitive edge, which enlarges
the heterogeneity gap further and makes it even harder to
produce standards. This situation presents both opportunities
as well as challenges for integration: while techniques for
integrating heterogeneous SPEs can take over the burden of
application development, tuning, and maintenance from the
users of these systems, the integration process itself becomes
much more complex. It is also important to note though, that
this integration process will also likely help the field move
forward in reaching consensus and standards.

The need for these different forms of streaming data integra-
tion has recently been recognized by several academic groups
and commercial companies. Next we provide an overview of
the young state of the art in this area.

II. CURRENT STATE OF THE ART

The initial generation of SPEs such as Aurora/Borealis [10],
[6], STREAM [11], TelegraphCQ [12] focused on scalable
processing of continuous queries over streaming sources only,
so as to handle real-time inputs that usually consisted of homo-
geneous stream tuples (relational) with pre-defined schemas.
As such, integration was not their major concern. Nevertheless,
these early systems have provided a few basic ingredients, that
have recently started being utilized by the current generation
of academic and commercial stream processing systems as
foundations for various integration tasks. Let us discuss those
earlier systems first, and then examine more recent works
where integration has become a more explicit goal.

First of all, STREAM’s formal continuous query model
takes its basis from the well-understood relational model [13].
More specifically, STREAM’s Continuous Query Language
(CQL) is an extension to SQL:1999. First, it introduces
“stream” as a second data type in addition to “relation”.
Second, in addition to the “relation-to-relation” operations
of the relational algebra, CQL introduces “stream-to-relation”
operations for constructing windows on streams as well as
“relation-to-stream” operations to convert results of relational
operations back into the stream data type. Through these
mappings, one can essentially reuse most of the relational

algebra semantics in a rather straight-forward way. Finally,
CQL has also introduced the notion of time into the relational
model, which essentially adds the “time-driven” continuous
query execution semantics: time advances from t − 1 to t,
when all data items up to t− 1 have been processed. On the
other hand, the STREAM system itself does not build on a
relational engine, nor it explores the systems issues for use
cases that require integrated access to streams and relations.
Nevertheless, it provides a good formal model foundation for
such a system. And in fact, STREAM’s SQL-based language
model is being adopted by several commercial systems today,
such as StreamBase [14], Truviso [15], and Oracle CEP [16].

Aurora/Borealis provided “table operators” that allowed one
to execute SQL statements on Berkeley DB tables for each
new tuple that they receive on their input stream. With these
operators, one could perform selections, insertions, deletions,
and updates on a relational table upon the arrival of a new
stream tuple. This is also the model that today’s commercial
systems like Coral8 [17] and StreamBase [14] are using to
implement database access in their systems.

TelegraphCQ implemented its SPE as an extension to the
PostgreSQL relational engine [12]. In this regard, it provided
a potential platform for tighter integration between relations
and streams, and this direction was pursued even further
after TelegraphCQ was commercialized into Truviso [15], [9].
Truviso is a so-called “stream-relational” system that provides
an integrated query processing approach that runs SQL queries
continuously and incrementally over data before it gets stored
in the database. Truviso supports queries over tables, streams,
and their combinations, and as such, aims at efficiently serving
continuous analytics applications.

There are a few other recent systems that follow Tele-
graphCQ/Truviso’s design principle of building a streaming
engine out of a relational database engine, but in slightly
different ways.

DataCell extends the column-oriented MonetDB relational
database for stream processing [18]. Like STREAM’s new
“stream” data type, a new data type called “basket” is in-
troduced in addition to relational tables. Stream tuples are
accumulated in baskets and are accessed by continuous queries
in a periodic fashion. Baskets allow batch, out-of-order, and
shared processing. The general goal of this project is to explore
how much the existing relational technology can be exploited
for stream processing. As such, it has the potential to naturally
integrate SPE functionality with DBMS functionality as part
of its future work.

DejaVu provides declarative pattern matching techniques
over live and archived streams of events [19]. The project
has two major goals: to efficiently process regular expression-
based CEP queries, and to do this over both real-time as well
as historical streams. DejaVu extends the MySQL relational
database engine and exploits its pluggable storage engine
API. Both streaming and historical data sources can be easily
attached into a common query engine. As such, DejaVu sets an
interesting example for how we can architecturally integrate
streams with stores.



All of the techniques and systems summarized above fall
under SPE-DBMS integration. There is relatively a smaller
body of related work in integrating heterogeneous SPEs and
stream data sources, as we present next.

MaxStream is a federated stream processing system that
aims at seamlessly integrating multiple autonomous and het-
erogeneous SPEs together with traditional databases behind
a common SQL-based declarative query interface and a
common API, in a way to facilitate the incorporation of
new functionality and requirements [20], [8], [21]. As in
TelegraphCQ/Truviso, DataCell, and DejaVu, MaxStream also
builds on and extends a relational database engine infras-
tructure. However, different from the others, MaxStream is a
stream federator, not a full-fledged SPE. It has been designed
to serve as a lean, light-weight middleware layer between
the client applications and a bunch of underlying SPEs and
DBMSs. As such, the goal is to leverage the potentially het-
erogeneous models and capabilities of the underlying systems
rather than implementing a new stream processing engine.

Lastly, there are also a few newly emerging techniques and
systems for integrating heterogeneous stream data sources.

The MDQ (Mapping Data to Queries) technique maps
incoming data streams of potentially different formats and
schemas to the continuous queries that should process them
[22]. These queries may be written against schemas different
from the inputs’. MDQ uses a set of schema mapping rules
to efficiently decide at run time, which data items should be
mapped to which queries. This technique would be quite useful
to flexibly process data streams with heterogeneous schemas.

The ASPEN project is building a data integration plat-
form for combining data from a variety of sources including
databases, web, sensor networks, and other streaming data
sources [23], [24]. The platform will serve as a single data
access layer and will explore query optimization techniques
for federations of stream processors that might be specialized
for different types of sources and processing environments.

Despite the growing number of academic and commercial
work in streaming data integration as summarized above, we
are still at the very beginning and more work needs to be
done to investigate the rich opportunities that this research
area presents. Next, we will sketch a selection of important
research challenges that lie on the path ahead of us.

III. SELECTED RESEARCH CHALLENGES

A. Model Issues in SPE-SPE Integration

One important problem today is the lack of clean semantic
models for defining streams and continuous queries to process
them. There is no agreement even on the definition of basic
terms such as “stream” and “window”. Although CQL lays
a good initial foundation for defining a formal continuous
query model over streams and relations [13], it is one of the
many possible points in the space of semantic models available
out there. There are currently several tens of different SPEs
and they widely vary in their data and query models, APIs,
functionalities, and optimization capabilities. This heteroge-
neous and continuously evolving nature of today’s streaming

landscape not only introduces complexities in choosing the
right engine for a given application, but also makes application
development and maintenance hard. The need for standard-
ization has recently been acknowledged and a few initiatives
in this direction have been started [25], [26]. The former
was a proposal on a batch-driven model in order to unify
the tuple- and time-driven execution models of two specific
SPEs (StreamBase and Oracle CEP, respectively), while the
latter was a proposal for adding pattern matching constructs
to the SQL standard. However, the whole problem is much
more complex since a variety of subtle semantic differences
in the execution models of a representative set of SPEs must
be settled before a SQL standard can emerge.

While current SPEs differ highly in their continuous query
capabilities and in their language syntaxes to express those
capabilities, the implementation of a common capability can
also vary from one SPE to another, due to the differences
in these SPEs’ query execution models. Capability differences
are easier to manage since they expose themselves at the query
language syntax level (e.g., an SPE can either support value-
based windows or not), whereas execution model differences
can be quite puzzling, since they are implicit in the internal
implementation of each SPE and do not expose themselves
(and therefore cannot be controlled) at the language level. On
the other hand, it is important to be able to analyze and un-
derstand different systems’ capabilities and execution models
in comparison to one another, in reaching a formal model
that is general and flexible enough to capture and explain a
wide range of different behaviors that are commonplace for a
core set of streaming applications. In our ongoing work in this
area, we have been working on a formal model to analyze the
window execution semantics of a collection of SPEs [27]. Such
a model can be useful not only for analyzing the behaviors of
these SPEs, but also for building a uniform model for our
MaxStream federated stream processing system [20], as well
as for helping with future standardization efforts in this area.

B. Optimization Issues in SPE-SPE & SPE-DBMS Integration

In an integrated stream processing system, one of the most
important questions is how to optimize the processing of a
given set of continuous queries across multiple SPE instances
and databases. Both performance and capability differentiators
of these systems must be taken into account. The search space
and cost metrics suitable for such an optimization problem
need to be defined accordingly. In defining the search space,
we can consider several factors: Can a given query be split
across multiple SPEs or should it be processed on one SPE
in its entirety? If so, which SPE instance should be chosen?
This decision can also depend on the current loads of the
running SPEs as well as the actual workload running on those
SPEs, since continuous queries may have common processing
needs and present much opportunity for shared computation.
Furthermore, since queries are often times long-lived, during
the lifetime of a query, certain workload and data distribution
parameters may change. In this case, initial optimization
decisions about query decomposition and allocation may have



to be revised. Adapting query processing to changing run-time
conditions is more critical in a continuous query environment
than in traditional ones, and this applies to their integration
as well. In general, one can tackle optimization issues along
three orthogonal dimensions: (i) hybrid queries that involve
joins between streaming sources and database tables, (ii)
homogeneous SPE setups with dynamic workload, and (iii)
heterogeneous SPE setups with capability differences.

C. Transactional Issues in SPEs & SPE-DBMS Integration
Another interesting research question is how to integrate

traditional databases, for which clear notions of transactions
and transactional properties exist, with SPEs for which no
such notions have been properly defined to date. In SPEs,
transactional-like concepts have only found use in high avail-
ability and fault tolerance scenarios. These scenarios focused
on defining different degrees of recovery semantics for the
query outputs and techniques for reducing the recovery time
[28]. However, in integrated settings, other transactional prop-
erties (e.g., isolation rules) can also be important. For example,
how to schedule updates to a database table while it is
concurrently being joined with a continuous stream of tuples?
Defining such rules can be quite tricky due to a fundamental
difference in how one interacts with an SPE vs. with a DBMS:
the former is data-oriented whereas the latter is operation-
oriented. An integrated stream processing system must find the
right abstractions to bridge this difference. But before this can
be done, a robust theory for transactional stream processing
must be developed.

IV. WRAP-UP

In this paper, we tried to motivate the need for streaming
data integration in three main forms: streaming data source
integration, SPE-SPE integration, and SPE-DBMS integration.
Then we provided an overview of the related work in this
broad area. Finally, we briefly presented a selection of re-
search topics that we have been investigating as part of our
own ongoing research projects at ETH Zurich. We believe
that streaming data integration is a rich research area with
many open challenges as well as opportunities, for which the
previous work to date has only scratched the surface.
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