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ABSTRACT

GUARD GENERATION FOR A DISTRIBUTED WORKFLOW

ENACTMENT SERVICE

Tatbul, Nesime

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Asuman Do�ga�c

January 1998, 82 pages

Work
ows are activities involving the coordinated execution of multiple tasks

performed by di�erent processing entities. Since they execute mostly in dis-

tributed heterogeneous environments involving a variety of human and system

tasks, distributed scheduling of work
ows is essential. A distributed work
ow

enactment service contains several schedulers on di�erent nodes of a network

each executing parts of process instances. Such an architecture �ts naturally to

the distributed heterogeneous environments. Furthermore, distributed enactment

service provides failure resiliency and increased performance since a centralized

scheduler is a potential bottleneck.

In this thesis, a guard-based distributed work
ow enactment service is in-

troduced in which distributed scheduling of activities is achieved through guard

expressions. Guards are temporal expressions de�ned on events such that events

can happen only if their guards are true. This thesis presents how intertask

dependencies, i.e. the control 
ow between the tasks, can be incorporated into

simple temporal expressions and the guard generation algorithm that constructs

all the guards of a work
ow process from the work
ow speci�cation.
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�OZ

DA�GITIK B_IR _IS� AKIS�I HAREKETE GEC� _IRME SERV_IS_I _IC� _IN N�OBETC� _I

OLUS�TURULMASI

Tatbul, Nesime

Y�uksek Lisans, Bilgisayar M�uhendisli�gi B�ol�um�u

Tez Y�oneticisi: Prof. Dr. Asuman Do�ga�c

Ocak 1998, 82 sayfa

_I�s ak��slar� farkl� i�slem birimleri taraf�ndan yap�lan, �cok k�s�mdan olu�san i�slerin

koordineli �cal��smas�n� i�ceren faaliyetlerdir. C�o�gunlukla insan ve sistem taraf�ndan

yap�lan i�slerden olu�san da�g�t�k ve heterojen �cevrelerde �cal��st�klar�ndan, i�s ak��s-

lar�n�n da�g�t�k planlanmas� gereklidir. Da�g�t�k bir i�s ak��s� harekete ge�cirme servisi,

�sebekenin farkl� b�ol�umlerinde i�s ak��s� �orne�ginin par�calar�n� �cal��st�ran farkl� plan-

lay�c�lar i�cerir. B�oyle bir yap�, da�g�t�k ve heterojen ortamlara do�gal olarak uygun-

dur. Ayr�ca, da�g�t�k bir i�s ak��s� harekete ge�cirme servisi hataya kar�s� esneklik ve

artt�r�lm��s performans sa�glar. C� �unk�u, merkezi planlay�c� potansiyel bir darbo�gaz

te�skil eder.

Bu tezde, faaliyetlerin da�g�t�k planlanmas�n�n n�obet�ci ifadeler taraf�ndan yap�l-

d��g� da�g�t�k bir i�s ak��s� harekete ge�cirme servisi �one s�ur�ulmektedir. N�obet�ciler

olaylar �uzerine tan�mlanm��s ifadelerdir. Olaylar sadece n�obet�ci ifadeleri do�gru ise

ger�cekle�sebilirler. Bu tez, i�sler aras�ndaki ba�g�ml�l�klar�n (i�sler aras�ndaki kontrol

ak��s�n�n) nas�l basit zaman belirten n�obet�ci ifadelere d�on�u�st�ur�uld�u�g�un�u ve i�s ak��s�

tan�m�ndan yola �c�k�larak bir i�s ak��s� i�sleminin b�ut�un n�obet�ci ifadelerini olu�sturan
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bir algoritmay� sunmaktad�r.

Anahtar Kelimeler: i�s ak��s�, i�s ak��s� y�onetim sistemi, i�s ak��s� tan�mlama dili, i�slem,

i�slem a�gac�, blok, faaliyet, i�s, i�sleraras� ba�g�ml�l�k, n�obet�ci, n�obet�ci olu�sturulmas�,

n�obet�ci y�oneticisi, CORBA, da�g�t�k harekete ge�cirme servisi, ACTA Formalizmi

vi



To My Parents

vii



ACKNOWLEDGMENTS

I am grateful to many individuals for the cooperation, support and the encour-

agement they gave me while preparing this thesis. At top of all, I am honored

to present my special thanks to my supervisor Prof. Dr. Asuman Do�ga�c without

whose continuous guidance and encouragement this work could have never been

possible.

I would like to thank to my partner Esin G�okkoca for her sincere and un-

forgettable cooperation and help. I would also like to thank to other mem-

bers of METUFlow project for their friendship and support; P�nar K�oksal, P�nar

Karag�oz, Sena Nural Arp�nar and Budak Arp�nar.

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

�OZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Enabling Technologies and Standards . . . . . . . . . . . 5

2.1.1 OMG and CORBA Technology . . . . . . . . . . 6

2.1.2 WfMC and Work
ow Reference Model . . . . . . 10

2.2 Work
ow Management Systems . . . . . . . . . . . . . . . 12

2.2.1 ConTract . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 METEOR . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 INCAs: INformation CArriers . . . . . . . . . . 17

2.2.4 Exotica and FlowMark . . . . . . . . . . . . . . 18

2.2.5 OpenPM and AdminFlow . . . . . . . . . . . . . 20

2.3 Previous Work on Work
ow Enactment Service . . . . . . 21

3 METUFlow ARCHITECTURE . . . . . . . . . . . . . . . . . . . 27

3.1 The Process Model and The METUFlow De�nition Lan-
guage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Worklist Management in METUFlow . . . . . . . . . . . . 35

ix



3.3 History Management in METUFlow . . . . . . . . . . . . 37

3.4 OTS-based Transaction Manager . . . . . . . . . . . . . . 38

4 GUARD GENERATION . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Incorporation of Intertask Dependencies into Guards . . . 41

4.2 Guard Generation . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Guard Handling . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Task Handling . . . . . . . . . . . . . . . . . . . . . . . . 55

5 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Tools and Facilities . . . . . . . . . . . . . . . . . . . . . 57

5.2 The Program Structure . . . . . . . . . . . . . . . . . . . 57

5.3 The Data Structures . . . . . . . . . . . . . . . . . . . . . 58

5.4 The Guard Generation Algorithm . . . . . . . . . . . . . 62

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . 71

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A BNF OF METUFlow WORKFLOW DEFINITION LANGUAGE 77

x



LIST OF TABLES

3.1 Event attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Guards corresponding to the dependency set . . . . . . . . . . . . 47
4.2 Guards of the example work
ow de�nition . . . . . . . . . . . . . 50
4.3 Guard templates for the for each block . . . . . . . . . . . . . . . 52
4.4 Guard expressions for the for each block . . . . . . . . . . . . . . 52

5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



LIST OF FIGURES

2.1 OMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 CORBA internal structure . . . . . . . . . . . . . . . . . . . . . . 9
2.3 WfMC's Work
ow Reference Model . . . . . . . . . . . . . . . . . 11

3.1 The simpli�ed architecture of METUFlow . . . . . . . . . . . . . 28
3.2 Typical task structures . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Worklist manager in METUFlow . . . . . . . . . . . . . . . . . . 36
3.4 The major components and interfaces of the OTS . . . . . . . . . 39

4.1 Guard generation process . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Process tree of the manufacturing example . . . . . . . . . . . . . 49
4.3 For each process tree at compile-time . . . . . . . . . . . . . . . . 51
4.4 For each process tree at run-time . . . . . . . . . . . . . . . . . . 52

5.1 An example guard expression tree . . . . . . . . . . . . . . . . . . 60

xii



CHAPTER 1

INTRODUCTION

A work
ow can be de�ned as a collection of processing steps (also termed as

tasks or activities) organized to accomplish some business process. A task can

be performed by one or more software systems, or, by a person or a team, or a

combination of these. In addition to the collection of tasks, a work
ow de�nes

the order of task invocation or condition(s) under which tasks must be invoked,

i.e. control 
ow, and data 
ow between these tasks.

Work
ow management is the automated coordination, control and communi-

cation of work as is required to satisfy work
ow processes. Work
ow Management

System (WFMS) is a system that completely de�nes, manages and executes work-


ows through the execution of software whose order of execution is driven by a

computer representation of the work
ow logic [19]. Work
ow management sys-

tems aim at automating business processes to provide 
exibility to cope with on

going business changes. Furthermore, WFMSs coordinate and streamline com-

plex business processes within large organizations to achieve improvements in

critical, contemporary measures of performances, such as cost, quality, service

and speed.

There are a number of commercial work
ow products in the market today. In

spite of their initial success, these systems are far from meeting the demands of

today's complex organizations. Current work
ow systems are complex to install,

use and maintain, have only limited resilience to failures, have poor scalability
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and are in
exible to cope with the multitude of di�erent application environments

where they are being deployed. Furthermore, existing WFMSs fail to satisfy the

user expectations in several respects including the following: handling of hetero-

geneity and interoperability, providing support for advanced transaction models,

run-time 
exibility, role-oriented 
exible worklist management and history track-

ing, supporting mobile users and advanced security mechanisms.

Work
ow systems mostly execute in distributed, autonomous and heteroge-

neous environments involving a variety of human and system tasks which are very

common in enterprises of even moderate complexity. To provide the coordinated

execution of tasks in a work
ow running in such an environment, a distributed

scheduling mechanism is essential which will handle the instantiation of tasks

according to the conditions that determine the control 
ow between the tasks.

Control 
ow in work
ows is determined by the dependencies between tasks. The

core component of a WFMS is the work
ow enactment service which is responsi-

ble for the scheduling of tasks. Work
ow enactment service instantiates processes

according to the process description and controls correct execution of activities

interacting with users and other components of the system as necessary.

Distributed scheduling of work
ows has been addressed in [1, 3, 37]. In [1],

a distributed work
ow system is proposed based on persistent message queues

where the authors assume that the processes are well-formed, i.e., they do not have

cycles or dependencies that may compromise their execution. The authors further

assume that the data 
ow follows the ordering imposed by the control 
ow to avoid

race conditions. [3] proposes INCAs for distributed work
ow management. In

this model, each execution of a process is associated with an INformation CArrier

(INCA), which is an object that contains all the necessary information for the

execution as well as propagation of the object among the relevant processing

nodes. [37] brings a more feasible solution which we used as the basis of our

distributed scheduling mechanism. According to [37], the main activity of a

work
ow is organization and coordination of tasks which might be dependent on

each other by their states. Since state changes of the tasks are represented as event

generations, state dependencies can be de�ned through event ordering. Therefore,
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controlling the occurrences of events provides the coordination of the tasks. To

make distributed execution of work
ow computations possible, occurrences of

events are not controlled in a central scheduler. Instead, each event is made

responsible for controlling its execution to decide on the right time to occur.

Guards, which are logical expressions de�ned on events, are used for this purpose.

Occurrences of events are permitted only if their guards are true.

To achieve such a coordinated execution between the activities, the intertask

dependencies should be clearly introduced into the work
ow system. We designed

a block-structured work
ow speci�cation language in which block constructs are

used to express intertask dependencies. After a work
ow is speci�ed using this

language, it is parsed into guard expressions to reveal the dependency information

in the block constructs. Then we create a guard handler for each of the activities

in the work
ow. A guard handler is a functional unit of the scheduler that

contains the guard expressions for the signi�cant events (like start, commit or

abort) of the activity the guard handler belongs to [17]. The evaluation and the

management of guard expressions are accomplished by the guard handler so that

scheduling of the activities in the system is provided.

In this thesis, we describe the guard generation for a distributed work
ow

enactment service in which the distributed scheduling of the activities are achieved

through the use of guard expressions. Our enactment service is based on the work

presented in [37]. In order to con�ne the theory presented in [37] to a manageable

practical implementation, we started by designing a block-structured procedural

work
ow speci�cation language. In this way it becomes possible to express the

work
ow speci�cation with a well-de�ned set of dependencies. We show that these

dependencies produce simple guard expressions which in turn makes it possible

to give a simple algorithm to generate the guards from the speci�cation language.

The block structured nature of the speci�cation language makes it also pos-

sible to locate and handle the deadlocks and race conditions without the need

for preprocessing the speci�cation. Furthermore, in our work
ow speci�cation

language, because of its well-de�ned semantics, the references to the future are

known at compile time and can thus be easily handled by a special software

3



module (a modi�ed 2PC protocol implementation).

The thesis is organized as follows: Chapter 2 summarizes the related work

about the work
ow management systems. The architecture of METUFlow is pro-

vided in Chapter 3. METUFlow is a distributed work
ow management system

prototype implemented in the light of our research. In Chapter 4, how intertask

dependencies are incorporated into guards, how these guards are generated from

the work
ow speci�cation and how they are further used during execution are

explained. Chapter 5 explains the implementation of the guard generation algo-

rithm describing the tools and data structures used. Finally, Chapter 6 concludes

the thesis discussing the future work. The Backus-Naur Form of the work
ow

de�nition language is also provided in the Appendices.
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CHAPTER 2

RELATED WORK

Our primary aim in designing the METUFlow Work
ow Management System was

to handle the problems of the current work
ow management systems like the lack

of mechanisms to meet the need for distributed scheduling and distributed exe-

cution, heterogeneity and interoperability. In this chapter, �rst the technologies

and standards that we exploited to realize our goal are summarized in Section 2.1,

namely CORBA (Common Object Request Broker Architecture) and the Work-


ow Management Coalition's Reference Model. Some existing work
ow models

are brie
y reviewed in Section 2.2. Finally, in Section 2.3, previous work on

work
ow scheduling which includes an approach that we have taken as reference

is discussed.

2.1 Enabling Technologies and Standards

Work
ows are composite activities that typically involve a variety of computa-

tional and human tasks and span multiple systems. Work
ows arise naturally in

heterogenous environments consisting of a variety of databases and information

systems. In a heterogeneous environment, applications autonomously developed

at di�erent sites in di�erent languages on di�erent hardware and software plat-

forms need to share information and invoke each other's services. It is common

that work
ow systems access heterogeneous resources and interoperate with other

5



work
ow systems. If a work
ow system tries to overcome heterogeneity problem,

which can take the form of communication level, platform level or semantic level

heterogeneity, within its own architecture, the system becomes very complex and

in
exible. Therefore, it is more e�cient to base a WFMS framework on a stan-

dard middleware that hides some levels of heterogeneity in the environment. The

object technology and the distributed computing technology are the enabling

technologies to provide necessary communication infrastructure for this purpose.

Two well-known distributed object technologies are Object Management Group's

CORBA and Microsoft's DCOM. The architecture of METUFlow system is based

on OMG's CORBA. This architecture and the facilities that it can provide to cre-

ate an interoperable work
ow system are described in section 2.1.1.

In addition to the CORBA technology, a partial solution to semantic inter-

operability problem speci�c to WFMSs can be obtained by complying to the

standards being developed by Work
ow Management Coalition (WfMC). WfMC,

which aims at standardizing the terminology and interoperability between work-


ow products, de�nes a Work
ow Reference Model which is summarized in Sec-

tion 2.1.2.

2.1.1 OMG and CORBA Technology

Earlier client/server architectures such as RPC do not have an object-oriented

model. Also a client needs to know the location of the server and how to ac-

cess the services. A client code must be changed whenever it needs to use new

services. Convergence of object-oriented programming paradigm and distributed

computing technology has resulted in distributed object systems [28].

Object Management Group (OMG) is a consortium of object technology ven-

dors, specifying the architecture for an interoperable system in which the compo-

nents communicate with each other through a location transparent common mid-

dleware. OMG has de�ned Object Management Architecture (OMA), a standard

architecture that joins distributed computing and object-oriented programming

technologies [38]. The OMA object model supports encapsulation, abstraction

and polymorphism through its object-oriented approach. OMA has four basic

6
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Figure 2.1: OMA Model

components. (1) Object Request Broker is the object interconnection middle-

ware in which clients are insulated from the mechanisms used to communicate

with server objects. (2) Common Object Services (COSS) are components with

IDL-speci�ed interfaces which extend the capabilities of the ORB. They are com-

plementary standards for integrating distributed objects. (3) Common Facilities

are optional IDL-de�ned components that are useful in many application do-

mains and which are made available through OMA-compliant object interfaces.

(4) Application Objects are speci�c to end-user applications. To participate in

ORB-mediated exchanges, they must be de�ned using IDL (Interface De�nition

Language).

Object Services, Common Facilities and Application Objects all intercommu-

nicate using the Object Request Broker. The OMA reference model is shown in

Figure 2.1.

Object Request Broker (ORB) is the middleware bus that lets clients invoke

methods on remote objects either statically or dynamically. Clients send requests

to the ORB asking for certain services to be performed by whichever server can

ful�ll those tasks. The structure of CORBA is shown in Figure 2.2. In CORBA,

clients and servers only know the interfaces of the components. The only means

of communication is the requests from clients and their responses from servers.

In this way a distributed, heterogeneous environment becomes virtually local and

7



homogeneous to the client. The changes in object implementation, or in object

relocation has no e�ect on the clients. Clients and servers are insulated from each

other by freeing them from having low-level knowledge about what programming

interface each supports.

CORBA Interfaces are de�ned in IDL, independent of any programming lan-

guage. Components specify in IDL the types of services that they provide, includ-

ing the methods they export and their parameters, attributes, error handlers and

inheritance relationships with other components. IDL becomes the contract that

binds clients to server components. In order to use or implement an interface,

the interface must be translated into corresponding elements of a programming

language. The translation mapping is done by the IDL compilers. These compil-

ers are developed by the software vendors which support the CORBA standards.

Compiling an IDL code produces client stubs and server skeletons. A client stub

maps IDL operation de�nitions into procedural routines that are called to invoke

a request. The server skeleton makes it possible for the ORB and an Object

Adapter to translate the client request to a speci�c method on the server. In

contrast to the client stubs, the dynamic invocation interface is unique for all

object interfaces. The information about the operations invoked and types of

the parameters can be obtained dynamically from the Interface Repository. On

the server side, either skeletons or dynamic server interface are used to receive

invocations on objects through the ORB and an Object Adapter. For each object

implementation a separate implementation skeleton is generated and bound to

the implementation code. IDL generated implementation skeleton provides the

interface from ORB to the objects.

IDL is object-oriented, allowing abstraction of interface representations, poly-

morphic messaging, and inheritance of interfaces. IDL is similar to C++ lan-

guage, but it is not a programming language, and does not support any opera-

tions, implementations, control structures and loops. It only de�nes the interface

of the distributed object that is to be shared by clients and servers. Following is

an example IDL de�nition.
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exception DenyApproval f

unsigned long reason;

g;

interface Employee f

attribute string employee info;

void promote(in char new job);

void transfer(in short new dept);

g;

interface Manager : Employee f

void approve transfer (

in Employee employee obj,

in short current department,

in short new department

)

raises DenyApproval;

g;

9



In this example interfaces for two objects, Employee andManager are de�ned.

Employee object has got an attribute that represents information about an em-

ployee. Two methods are de�ned for an employee: promote to a new job and

transfer to a new department. Manager is an employee which has got all the

attributes and methods of an employee, therefore it can inherit the interface of

employee object. Manager has additionally a method for approving the transfers

of employees. The manager can give some reasons in the DenyApproval exception

if s/he does not approve the transfer of an employee. The exceptions of an inter-

face are raised in the implementation of the server. The exceptions are catched

by the clients of the interface during run-time. The IDL code shall be compiled

by a CORBA compiler which generates client stubs and server skeletons.

2.1.2 WfMC and Work
ow Reference Model

Most of the available work
ow management products have some common func-

tionalities and characteristics because they aim at the same functional target.

Until recently there has been no common standard for these products to make

them interoperate with each other. In order to provide the communication and

interoperation of work
ows across di�erent vendor products, a standard work
ow

speci�cation is necessary. Work
ow Management Coalition (WfMC), founded in

1993, is a non-pro�t, international organization of work
ow vendors and analysts.

Their objectives include standardization of the terminology and interoperability

between work
ow products.

A partial solution to semantic interoperability problem speci�c to work
ow

systems can be obtained by complying to the standards being developed by

WfMC. WfMC de�nes a Work
ow Reference Model [19] and interface descrip-

tions between the basic components of the Reference Model. Figure 2.3 illustrates

the major components and interfaces within work
ow architecture of the model.

The core component in the Reference Model is the Work
ow Enactment Ser-

vice which is responsible for creation, management and execution of work
ow

process instances according to process de�nition produced by process de�nition

tools. The work
ow enactment software consists of one or more work
ow engines,
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ow Reference Model

which are responsible for managing all, or part of the execution of individual pro-

cess instances. It interprets a process de�nition coming from the de�nition tool

and coordinates the execution of work
ow client applications for human tasks and

invoked applications for computerized tasks. This may be set up as a centralized

system with a single work
ow engine responsible for managing all process execu-

tion or as a distributed system in which several engines cooperate, each managing

part of the overall execution.

Process De�nition Tools are used to analyse, model, describe and document a

business process. The outcome of this process modeling and design activity is a

process de�nition which can be interpreted at run time by the work
ow engine(s)

within the enactment service.

Work
ow Client Applications involve the activities which require interaction

with the human resources. In the work
ow model, interaction occurs between

the client application and a particular work
ow engine through a well-de�ned

interface embracing the concept of a worklist - the queue of work items assigned to

a particular user by the work
ow engine. Invoked Applications are the programs

invoked by the work
ow management system.
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Administration and Monitoring Tools are used to track work
ow process

events during work
ow process execution.

In order to achieve interoperability among various WFMS implementations,

WfMC has de�ned �ve standard interfaces between the components. These inter-

faces are designated as Work
ow APIs and interchange formats. These interfaces

are :

Interface 1: Process De�nition Tools Interface The purpose of this inter-

face is to integrate process de�nitions generated by di�erent process de�ni-

tion tools, or to use a de�nition generated for a work
ow system in another

system.

Interface 2: Work
ow Client Applications Interface Users of a work
ow

system utilize several di�erent types of client applications such as editors,

CAD/CAM tools, WWW browsers. This interface provides integration of

these applications in order to participate in a work
ow system.

Interface 3: Invoked Applications Interface WFMSs are expected to work

with already existing software components such as legacy systems and

DBMS applications.

Interface 4: Other Work
ow Enactment Services Interface It may be n-

ecessary for di�erent enactment services to interoperate because a process

in one enactment service may invoke a process in another.

Interface 5: Administration and Monitoring Tools Interface An admin-

istration and monitoring tool may be a separately developed system, or it

may be necessary to centrally monitor di�erent work
ow systems.

2.2 Work
ow Management Systems

The main task of a work
ow management system is to schedule the execution

of activities. In scheduling these activities, the WFMS determines what to exe-

cute next, locates the tools associated with each activity, transfers information
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from activity to activity, assigns activities to users, checks the timeliness of the

execution, monitors the overall progress and determines when the process has

been completed successfully. The following sections describe some of the existing

WFMSs.

2.2.1 ConTract

One of the �rst and most advanced work
ow research projects is the ConTract

project [40]. The focus of this project has been to extend transaction-oriented

run-time mechanisms for fault tolerant work
ow execution in a distributed envi-

ronment.

The ConTract model tries to provide the formal basis for de�ning and control-

ling long-lived, complex computations, just like transactions control short com-

putations. It is inspired by the mechanisms for managing 
ow that are provided

by some TP-monitors, like queues and context-databases [10].

The basic idea of the ConTract model is to build large applications from short

ACID transactions and to provide an application independent system service,

which exercises control over them. As a main contribution, ConTracts provide

the computation as a whole with the reliability and correctness properties. The

ConTract Model extends the traditional transaction concepts to form a general-

ized control mechanism for long-lived activities. A large distributed application

is being divided into a set of related processing steps which have appropriate

consistency and reliability qualities for their execution.

A ConTract can be de�ned as consistent and fault tolerant execution of an

arbitrary sequence of prede�ned actions (called steps) according to an explicitly

speci�ed control 
ow description (called script). In other words, a ConTract is a

program that has control 
ow like any programming environment, has persistent

local variables, accesses shared objects with application oriented synchronization

mechanisms and has precise error semantics.

In ConTract programming model, the coding of steps is separated from de�n-

ing an application's control 
ow script. Steps are coded without considering im-

plementation details like managing asynchronous or parallel computations, com-
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munication, resource distribution, synchronization and failure recovery.

Control 
ow between related steps can be modeled by the usual elements:

sequence, branch, loop, and parallel constructors. PARFOREACH(query) state-

ment executes its query in parallel. A sample ConTract script can be like:

CONTRACT Business_Trip_Reservations

CONTROL_FLOW_SCRIPT

S1: Travel_Data_Input(in_context: ;out_context: date, from, to);

PARFOREACH (airline: EXECSQL select airline from ... ENDSQL)

S2: Check_Flight_Schedule(in_context: airline, date, from, to;

out_context: flight_no, ticket_price);

END_PARFOREACH

...

END_CONTROL_FLOW_SCRIPT

...

END_CONTRACT

Each of the Sn states is a step whose implementation can be coded in a

programming language.

Each ConTract step is implemented by embedding it into a traditional ACID

transaction, preserving only local consistency for the manipulated objects. Due

to not being a transaction, a whole ConTract is not an ACID unit of work.

The ConTract script programmer can de�ne atomic units of work consisting

of more than one step by grouping them into sets. Furthermore, the transaction

programmer may specify events depending on the result of steps and/or transac-

tions. Grouping of a set of steps into one atomic unit of work is modeled by the

following example:

TRANSACTIONS

T1 ( S1, S2 )

T2 ( S3, S4 )

END_TRANSACTIONS

Dependency between the execution results of di�erent steps can also be mod-

eled:

DEPENDENCY (T1 abort -> begin T1)

ConTract introduces concept of context elements, which are ConTract-local

variables . These variables are kept in stable transactional storage and are only
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accessible from the ConTract in which they are de�ned. Only a step of a Con-

Tract can read or modify the value of context elements. Since the steps are

running under the protection of a transaction, their modi�cations of the context

are protected by this transaction. To support the examination of history, context

elements are stored in an update-free way, in which a new version is generated

upon a change to the variable.

APRICOTS (A PRototype Implementation of a COnTract System) [32] is an

implementation of the ConTract model to show feasibility of its mechanism.

2.2.2 METEOR

METEOR (Managing End To End ORganization) [22] is a work
ow language

and model based on an extension of the Bellcore work
ow model [30]. Its work-


ow execution model is driven by intertask dependency rules that are expressed in

speci�cally designed script language. METEOR allows work
ow de�nition at two

levels of abstraction, by using two di�erent languages: the Work
ow Speci�ca-

tion Language (WFSL), describing work
ow structure and data exchange among

tasks, and the Task Speci�cation Language (TSL), describing the details of the

tasks.

WFSL is used to specify the work
ows, including all task types and classes in a

work
ow, all intertask dependencies, application level failure recovery and error

handling issues. WFSL is a declarative rule-based language that mainly deals

with task structure, typed input and outputs for each task, and preconditions for

every controllable transition. The designer may de�ne task types, describing task

structures, and task classes, that are of a speci�c type and have typed input and

outputs. Three task structures in this model are transactional, non-transactional,

and open 2PC task structures. Each task has got controllable transitions that can

be enabled by the work
ow controller, and non-controllable transitions that are

enabled by the task's processing entity. There are also compound tasks which can

be composed of simple tasks and/or other compound tasks.

One of the key objectives of TSL is the minimal rewriting of existing tasks.

TSL provides a wrapper for code describing interaction with an interface to pro-
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cessing entity and essentially comprises a set of macros that can be embedded in

a host language. The main functionality of the TSL macros is to indicate points

in the task execution at which the work
ow controller can be informed about the

current logical state of the task. This functionality allows the work
ow to deal

with legacy applications without changing their code. Description of a simple

transactional task can be :

simpleTaskType SIMPLE_TRANSACTIONAL

{

CONTROLLABLE start(initial, executing) input ;

NON_CONTROLLABLE abort (executing, aborted) output ;

NON_CONTROLLABLE commit (executing, committed) output ;

}

simpleTaskType denotes that the de�nition does not relate a compound task;

and also two non-controllable transitions produce output.

Each WFSL rule has two components: a control part and an optional data

transfer part. Every next step of the work
ow is determined by an evaluation of

the relevant rules when an event occurs.

Intertask dependencies [2] determine how the tasks in the work
ow are co-

ordinated for execution. Two general types of dependencies in METEOR are

state dependencies and value dependencies. State dependencies describe how a

controllable transition of a task depends on the current observable states of other

tasks. A state dependency example takes the following form:

[L1, done] ENABLES [L2, start]

This indicates that the start transition of L2 can be enabled only after L1 has

entered the done state. This approach is similar to the transitions in ECA (Event-

Condition-Action) rules, however ECA rules use events on the left hand in con-

trast to states in this case. Each state can be the result of one or more events

being happened. An example of a rule including state and value dependencies is:

[L1, done] & (success(L1.output) = TRUE) ENABLES [L2, start]

success is a �lter function which determines whether L1 has logically completed

successfully. WFSL allows to associate output of a task with input of others. The

speci�cation:
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L1.output ! L2.input;

indicates that output of L1 must be used as input of L2.

2.2.3 INCAs: INformation CArriers

INCA model [3] proposes a work
ow system with autonomous processing stations

that are distributed, partially automated and partially connected to the network

of other processing stations. The work
ow control and execution is carried out

as interactions between INCAs and processing stations. There is no central con-

trolling mechanism and processing stations can be dynamically modi�ed.

In this model, an INCA is associated with each work
ow and contains infor-

mation about private data and history of the activity and a set of rules. The set

of rules de�nes the control and the data 
ow between the steps of the activity.

Nesting of work
ows is possible by assuming that each processing stations may

itself be a complex work
ow that has to be carried out as an INCA computation.

The INCA rules permit multiple children of the INCA computation to execute

concurrently.

Compensating actions and Sagas [16] are used to ensure the failure atomicity

of INCAs. The following rules are examples of using compensating actions in

INCA rules:

On abort of step[i]

Do execute inverse of step[i-1]

On commit of step[i]

Do execute step[i+1]

The following two rules are associated with the compensating step of step[i]:

On abort of compensating step of step[i]

Do execute compensating step of step[i]

On abort of compensating step of step[i]

Do execute compensating step of step[i-1]

Durability of the computations can be achieved by making each successfully

terminated step of the computation persistent and recoverable.

The implementation of the INCA model uses an INCA shell that is respon-

sible for encapsulating an existing process station's software with a layer that
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contains the minimum functionality necessary to support INCA computations.

An INCA shell is composed of an agent and a rule management system. The

agent is responsible for dealing with persistence of data, rules and execution re-

sults; context binding and step execution of the processing stations and directing

the INCA rules to the appropriate destinations. The rule management system

processes the rules brought by the INCA. INCA model adopts the ECA rules as

the language. The events corresponding to INCA rules could be either simple

events like state changes of the procedure, or composite events consisting of other

simple events.

2.2.4 Exotica and FlowMark

Exotica Research Project [23, 1] being carried out at the IBM Almaden Research

Center brings together industrial trends and research issues in the work
ow area.

It has got focus on a commercial product called FlowMark [14].

Exotica project has got six major research areas: failure resilience in dis-

tributed WFMSs, compensation and navigation in work
ow networks, high avail-

ability through replication, mobile computing, distributed coordination and ad-

vanced transaction models.

The system, Exotica/FMQM [1], FlowMark on Message Queue Manager, is

a distributed work
ow system in which a set of autonomous nodes cooperate to

complete the execution of a process. Each node functions independently of the

rest of the system, the only interaction between nodes is through persistent mes-

sages informing that the execution of a step of the process has been completed.

In this system, the sequence of events is as follows: a user �rst creates a process.

The process is compiled in the process de�nition node. After compilation, the

process is divided in several parts and each part is distributed to an appropriate

node. The division of the process into parts will be based on the users associated

with the di�erent nodes and the roles associated with the di�erent activities in

the process. Upon receiving its part of the process, a node creates a process

table to store this information and starts a process thread to handle the exe-

cution of instances of such process. Finally, the process thread creates a queue
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for communicating with other nodes all information relevant to instances of the

process.

The FlowMark work
ow model is a representation of a process, comprising

a process diagram and the settings that de�ne the logic behind the components

of the diagram. Listed below are the main components of a FlowMark work
ow

model:

Process: A sequence of activities that must be completed to accomplish a task.

Activity: A step within a process that represents a piece of work that the as-

signed person can complete by starting a program or another process.

Block: Grouping of several activities and nested blocks to reduce complexity

and looping through a series of activities.

Control 
ow: Determines the sequence in which activities are executed.

Connector: Links activities in a work
ow model to de�ne the sequence of ac-

tivities and the transmission of data between activities.

Data container: Allocated storage for the input and output data of the process

and of the activities and blocks within it.

Data structure: An ordered list of variables with a name and a data type.

Condition: The means by which the 
ow of control in a process can be speci�ed.

Program: A computer-based application program that supports the work to be

done in an activity.

Server: A server can be speci�ed for each subprocess, so that a process can be

distributed among several servers.

Sta�: Each activity in a process is assigned to one or more sta� members.

FlowMark provides a graphical de�nition tool that can be used to model a

work
ow, by including the above components. There are symbols for activities

and blocks, and a process can contain many of these blocks and activities.
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The information given in a graphical form can be exported to a textual form.

This de�nition contains declarations for data structures, programs, servers and

sta�. The process de�nition gives some information about the process and how

the work
ow is supposed to execute.

2.2.5 OpenPM and AdminFlow

The OpenPM prototype was designed by HP as an open, enterprise capable,

object-oriented work
ow system to manage business activities supporting com-

plex enterprise process in a distributed heterogeneous computing environment

[33]. It is a middleware service that represents a substantial evolution from �rst

generation work
ow technologies and forms the base of HP AdminFlow product.

OpenPM provides a generic framework and a complete set of services for

business process 
ow management with emphasis on performance, scalability,

availability and system robustness. Basically, it provides:

� an open system adhering to CORBA-based communication infrastructure

and providing WfMC standard interface.

� high performance due to optimized database access and commitment.

� e�ective management due to OpenView-based system management envi-

ronment.

� a total solution for business re-engineering including a complete set of busi-

ness application and application development tools.

The core component of the OpenPM architecture is the OpenPM engine which

supports �ve interfaces for business process de�ning, business process execution,

business process monitoring, resource and policy management, and business ob-

ject management. A business process is de�ned via the process de�nition inter-

face. An instance of the business process can be started, stopped, or intervened

via the process execution interface. Status information of each process instance,

con�guration and load information of the entire system can be queried via the

process monitoring interface. The resource and policy management interface is
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used to allocate, at run time, execution resource to a task according to the poli-

cies de�ned by the organization and availability of resources. The execution of

business activities is performed via the business object management interface.

In OpenPM, a business process is represented as a directed graph comprising

a set of nodes connected by arcs. There are two kinds of nodes: work nodes and

rule nodes, as well as two kinds of arcs: forward arcs and reset arcs. Work nodes

represent activities to be performed external to the OpenPM engine. Rule nodes

represent processing internal to the OpenPM engine. This processing includes

decisions of what nodes should next execute, the generation or reception of events,

and simple data manipulation. A rule language is used to program the rule node

decision. Forward arcs represent the normal execution 
ow of process activities

and reset arcs are used to support repetitions or explore alternatives in a business

process.

The OpenPM engine launches business process instances in response to user

requests. For each instance, OpenPM engine steps through the nodes according

to the order speci�ed in its business process de�nition. The engine interacts with

business activities supported by various kinds of implementations ranging from

manual handling by human to automated application execution by computer.

Based on CORBA technology, in OpenPM, an abstraction, called business object,

is built to encapsulate whatever the piece of work each process activity has to

accomplish.

2.3 Previous Work on Work
ow Enactment Service

Previous work on scheduling of work
ow tasks mostly concentrates on the trans-

actional behavior of the work
ow management systems. For this purpose several

extended transaction models have been proposed in the literature [13, 31, 34]. As

a general approach, their transaction model semantics are directly embedded to

the enactment service. However, they either su�er from the formal de�nition of

execution model or they do not provide distributed scheduling of tasks. This re-

sults in lack of interoperability among WFMSs, inadequate performance for some

business processes, lack of support for correctness and reliability and �nally, weak
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tool support for analysis, testing, and debugging work
ows.

In general, three methods have been used for the implementation of work
ow

enactment service :

� State and activity chart based approach

� Knowledge Base (ECA Rules) approach

� Petri-Net based approach

An example of the state and activity chart based approach is described in the

Mentor project [35, 41, 42]. It uses the formalism of state and activity charts and a

commercial tool, Statemate, for work
ow speci�cation. A method is proposed for

transforming a centralized state chart speci�cation into a form that is amenable to

a distributed execution and to incorporate the necessary synchronization between

di�erent processing entities. Although a concrete formalism is introduced to the

work
ow speci�cation in this project, transformation process requires a human

intervention and does not guarantee the most e�cient distributed execution.

In Meteor [22] task structures are used for the representation of the execution

behavior of the tasks. Each task structure has an initial state, and on the start

transition moves to the executing state. Two types of tasks are speci�ed: Simple

tasks and compound tasks. A simple task is a physical unit of work that executes

at a processing entity. Compound tasks are logical units of work that are not

executed against processing entities, but mean to specify co-ordination and data


ow requirements between sub-tasks. A work
ow can itself be speci�ed by as

a compound task. Meteor execution engine uses Event-Condition-Action (ECA)

rules for de�ning the preconditions for each controllable transition in each task.

Speci�cation of a work
ow is a very complex process in Meteor and it lacks the

formal de�nition of execution engine. In addition, scheduler is not distributed.

Petri-Nets is a model representation, often in mathematical terms, of the

important features of the object or system under study. The execution of a Petri-

Net is controlled by the number and distribution of tokens in the net. Tokens

reside in the places and control execution of the transitions in the net. A Petri-

Net executes by �ring transitions. A transition �res by removing tokens its input
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places and creating new tokens which are distributed to its output places. Petri-

Nets are indeed an important formalism in which to express computations and

can be applied to work
ows [43]. However, they are too complex and include

redundant characterizations for the speci�cation of the work
ows.

[10] describes an execution model, based on an extended nested transaction

model, to govern the concurrency and recovery properties of transactions with

triggered ECA rules. The model supports arbitrary events, not just database up-

dates. However, this approach does not address any solution for the distributed

computing and it is not practical. As a continuing research of [10], [11] proposes a

new model namely ATM, which is a transactional model of activities that is based

on an extended nested transaction model. This extended model provides greater


exibility in specifying the scope of execution of a nested transaction. Critical

activity concept has been introduced in this work. Execution model allows the

activities to consist recursively of steps that may be subactivities or transactions.

The model de�nes precisely the semantics of activities. Although our work
ow

de�nition model seems to be very similar to this approach, we do not base our

system to ECA rules and a di�erent transaction model is utilized. [4] further ex-

tends these works by proposing an extensive transaction model and a technique

for handling failures. This transaction model has in-process open nesting for ex-

tending closed/open nesting to accommodate applications that require improved

process-wide concurrency without sacri�cing top level atomicity. In this model

a process consists of hierarchically structured activities. An activity represents

a logical piece of work that contributes to a process. In addition, a formalism

to the nested activity modeling is introduced. Although their failure handling

approach is very e�ective, its implementation is not possible with the current

database products.

The ConTract Model [29, 40] tries to provide the formal basis for de�ning and

controlling long-lived, complex computations, just like transactions control short

computations. The basic idea is to build large applications from short ACID

transactions and to provide an application independent system service, which

exercises control over them. As a main contribution, ConTracts provide the
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computation as a whole with reliability and correctness properties. A ConTract

is de�ned as a consistent and fault tolerant execution of an arbitrary sequence of

prede�ned actions (called steps) according to an explicitly speci�ed control 
ow

description (called scripts). The design rationale behind ConTract model is the

objective to capture system failures by the system and to present the user or

application programmer with an arbitrarily reliable execution platform.

[15] demonstrates a general purpose programming language that is extended

to serve work
ow management requirements. This paper proposes that there is

no need to develop yet another language for the work
ow speci�cation. Work
ow

language requirements are speci�ed and an extension to C language is explained.

Communication variables are used to provide concurrency and information ex-

change between processes. Since a communication variable can be assigned a

value only once, implementation of such a system may result into prohibitive

amount of communication variables. Moreover, this paper does neither address

the problems related to architectural design of WFMSs nor provide any formal

foundation to the work
ow activity scheduling.

ACTA Formalism [5, 6, 7, 8] is the �rst serious attempt to provide a for-

mal framework for the transaction models. ACTA allows the speci�cation of

the e�ects of transactions on other transactions and also their e�ects on objects.

Inter-transaction dependencies form the basis for the former while the visibility of

and con
icts between operations on objects form the basis for the latter. ACTA

captures the extended functionality of a transaction model (1) by allowing the

speci�cation of signi�cant events beyond commit and abort, (2) by allowing the

speci�cation of arbitrary transaction structures in terms of dependencies involv-

ing any signi�cant events, (3) by supporting �ner grain visibility for objects in

the database by associating a view and a con
ict set with each transaction and

the notion of delegation, (4) and by facilitating object-speci�c and transaction-

speci�c semantic-based concurrency control. This framework is also utilized in

our approach to separate scheduler and the transaction model semantics. There-

fore, our work
ow scheduler approach is transaction model independent.

[2] constructs �nite automata for dependencies. It uses pathset search to avoid
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generating product automata, but the individual automata can be quite large.

Therefore, complex dependencies can not be expressed or processed easily with

this approach. Moreover, it is centralized.

In general, these approaches are criticized for their inadequate power of repre-

senting the business modeling, their complexity, their implementation di�culty,

in
exibility and unavailability to the distributed execution. Recently a new ap-

proach called Event-Based Approach is proposed by [36, 37]. The approach taken

in [36, 37] for distributed scheduling of work
ow executions is based on the fol-

lowing observations and mechanisms: The main activity of a work
ow is orga-

nization and coordination of tasks which might be dependent on each other by

their states. For example start of one task may depend on the commitment of an-

other task. Since state changes of the tasks are represented as event generations,

state dependencies can be de�ned through event ordering. Therefore, controlling

the occurrences of events provides the coordination of the tasks. In other words,

intertask dependencies are represented by the event dependencies. To make dis-

tributed execution of work
ow computations possible, occurrences of events are

not controlled in a central scheduler. Instead, each event is made responsible for

controlling its execution to decide on the right time to occur. Required infor-

mation for this operation is obtained from the dependency expressions after a

re�nement process which is termed as guard compilation. Guards are temporal

expressions de�ned on events and occurrences of events are permitted only if their

guards are true. When an event happens, messages announcing its occurrence are

sent to other related events so that the e�ects of the occurrence of that event are

re
ected to the whole system. Tasks are interfaced to the system through agents.

An agent embodies a coarse description of the task, including states and transi-

tions. In addition, an actor is instantiated for each event. The actor for an event

maintains its current guard and manages communication of necessary messages.

Guards of events are determined by generating all possible computations relevant

to each dependency. These computations are checked whether they satisfy the

given dependency. Then guards considering only one dependency are constructed

by using only the acceptable computations. Finally guards due to work
ow are
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obtained by combining the guards due to dependencies. In evaluating a guard,

the intrinsic attributes of events must be taken into account. The following event

attributes are de�ned in [37]: (a) Normal events that are delayable and rejectable

(e.g. commit), (b) Inevitable events that are delayable and nonrejectable, (c)

Immediate events that are nondelayable and nonrejectable (e.g. abort), and (d)

Triggerable events that are forcible (e.g. start).

The following points have been noti�ed with this approach:

1. In [2], guard generation process is said to run into combinatorial explosion.

The proposed process �rst determines all possible paths for a given depen-

dency. There are n! number of paths for a dependency involving n events.

Later in [37], it is proposed that by relaxing the past and the future, the

guards can be generated symbolically without the need for determining all

possible paths.

2. The execution mechanism is based on message exchange between actors

since guards on events require noti�cation messages to assimilate the event

executions. This in turn might arise potential race conditions and dead-

locks. For example there could be two events waiting for the occurrence

of each other, resulting in a deadlock. It is therefore essential to prepro-

cess the guards so as to detect and resolve the potential deadlocks through

promissory messages [37].

3. The guards may contain events that refer to the future, however in ac-

tual execution we do not have the luxury of looking into the future. In

[37], various heuristics are suggested, yet the completeness of the suggested

heuristics is left as a future work.
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CHAPTER 3

METUFlow ARCHITECTURE

METUFlow is a distributed work
ow management system prototype being

developed at METU [12]. A simpli�ed architecture of METUFlow system is

given in Figure 3.1. In METUFlow, �rst a work
ow is speci�ed using a graph-

ical work
ow speci�cation tool which generates the textual work
ow de�nition

in MFDL (METUFlow De�nition Language) as will be explained in Section 3.1.

The core component of a work
ow management system is the work
ow scheduler

which instantiates work
ows according to the work
ow speci�cation and controls

correct execution of activities interacting with users via worklists and invoking

applications as necessary. In METUFlow, the functionality of the scheduler is

distributed to a number of guard handlers which contain the guard expressions

for the signi�cant events of the activity instances as explained in Chapter 4. Also,

there exists a task handler which acts as an interface between the activity instance

and its guard handler. Details of task handling in METUFlow are discussed in

[20]. In a work
ow management system, there may be activities in which human

interactions are necessary. In METUFlow, work item scheduler manages such

interactions. It is responsible for progressing work requiring user attention and

interacts with the scheduler through user task handler as shown in Figure 3.1.

Work item scheduler uses the authorization service to determine the authorized

roles and users. The detailed architecture of work item scheduler is provided

in Section 3.2. History manager (see Section 3.3) provides the mechanisms for
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Figure 3.1: The simpli�ed architecture of METUFlow

storing and querying the history of both ongoing and past processes. It com-

municates with the scheduler through a reliable message queue to keep track of

the execution of processes. The communication infrastructure of METUFlow is

CORBA. CORBA does not provide for reliable message passing, that is, when

ORB crashes, all of the transient messages are lost. For this reason, we have im-

plemented a reliable message passing mechanism which uses Object Transaction

Service (OTS) based transaction manager (see Section 3.4) to commit distributed

transactions. Note that reliable message passing is necessary among all the com-

ponents of METUFlow such as between guard handlers and task handlers as

indicated in Figure 3.1. To use CORBA, a CORBA interface must be de�ned for

each of the distributed components in CORBA IDL.

3.1 The Process Model and The METUFlow De�nition

Language

We have found out that introducing block structures and thus con�ning the inter

task dependencies to a well-structured form provides great ease and e�ciency in

28



guard generation process [39]. Thus a work
ow process is de�ned as a collection

of blocks, tasks and other subprocesses. A task is the simplest unit of execution.

Processes and tasks have input and output parameters corresponding to work
ow

relevant data to communicate with other processes and tasks. We use the term

activity to refer to a block, a task or a (sub)process. Blocks di�er from tasks and

processes in that they are conceptual activities which are present only to specify

the ordering and the dependencies between activities.

We have de�ned eight types of blocks, namely, serial, and parallel, or parallel,

xor parallel, contingency, conditional, iterative and for each blocks [12, 17, 39].

The following de�nitions describe the semantics of the block types, compensation

activity and undo task where A stands for an activity (block, task or process)

and B for a block.

Serial Block B = (A1;A2;A3; :::::;An): Start of a serial block B causes A1 to

start. Commitment of A1 causes start of A2 and commitment of A2 causes

start of A3, and so on. Commitment of An causes commitment of B. If one

of the activities aborts, the block aborts. If the block aborts, its committed

activities should be compensated in the reverse order.

And Parallel Block B = (A1 & A2 & ..... & An): Start of an and parallel block

B causes start of all of the activities in the block in parallel. B commits

only if all of the activities commit. If one of the activities aborts, the block

aborts. If the block aborts, its committed activities should be compensated

in parallel.

Or Parallel Block B = (A1jA2j:::::jAn): Start of an or parallel block B causes

start of all of the activities in the block in parallel. At least one of the

activities should commit for B to commit but B can not commit until all

of the activities terminate. B aborts if all the activities abort. If B aborts,

its committed activities should be compensated in parallel.

Xor Parallel Block B = (A1jjA2jj:::::jjAn): Start of an xor parallel block B

causes start of all tasks in the block in parallel. B commits if one of the
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activities commits, and commitment of one activity causes other activities

to abort. If all of the activities abort, the block aborts.

Contingency Block B = (A1; A2; :::::An): Start of a contingency block B causes

start of A1. Abort of A1 causes start of A2 and abort of A2 causes start of

A3,and so on. Commitment of any activity causes commitment of B. If the

last activity An aborts, the block aborts.

Conditional Block B = (condition, A1; A2): Conditional block B has two ac-

tivities and a condition. If the condition is true when B starts, then the

�rst activity starts. Otherwise, the other activity starts. The commitment

of the block is dependent on the commitment of the chosen activity. If the

chosen activity aborts, then B aborts.

Iterative Block B = (condition; A1;A2; :::::;An): The iterative block B is sim-

ilar to serial block, but start of iterative block depends on the given con-

dition as in a while loop and execution continues until either the condition

becomes false or any of the activities aborts. If B starts and the condition

is true, then A1 starts and continues like serial block. If An commits, then

the condition is reevaluated. If it is false, then B commits. If it is true,

then A1 starts executing again. If one of the activities aborts at any one

of the iterations, B aborts. If B aborts, its committed activities for all the

iterations should be compensated in the reverse order.

For Each Block B = (list; par type; B1): Everything inside a for each block is

considered as a serial block named B1. The list is an array variable on each

element of which this serial block will be applied in a parallel way speci�ed

with the par type parameter. Start of a for each block causes the start

of B1 for each element of the list in parallel. Commit of B is dependent

on the value of the par type. Par type can be and parallel, or parallel or

xor parallel. For example, if par type is and parallel, then B commits only

if all started B1 blocks have committed and B aborts if one of the started B1

blocks has aborted. This means that after B1 is generated for each element
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of the list, B behaves like one of the parallel block types according to the

value of the par type. The purpose lying behind this block is to provide

e�ciency by executing the same actions on individual items in a list in a

parallel fashion.

Compensation Activity A = Ac, where Ac is the compensation activity of A.

The compensation activity Ac of A starts if A has committed and should

be cancelled due to failures of other activities in the process like the abort

of some antecedent activity. If both an activity and its subactivities have

compensation, only the compensation of the activity is used.

Undo Task T = Tu, where Tu is the undo task of task T. The undo task Tu of

T starts if T fails.

We have implemented a speci�cation language based on these structures,

called METUFlow De�nition Language (MFDL), within the scope of the METU-

Flow project. In MFDL, the tasks involved in a business process, the execution

and data dependencies between these tasks are provided. The WfMC has iden-

ti�ed a set of six primitives to describe 
ows and hence construct a work
ow

speci�cation [19]. With these primitives, it is possible to model any work
ow

that is likely to occur. These primitives are: sequential, AND-split, AND-join,

OR-split, OR-join and repeatable task. These primitives are all supported by

MFDL through its block types. Of the above block types, serial block imple-

ments the sequential primitive. And parallel block models the AND-split and

AND-join primitives. AND-split, OR- join pair is modelled by or parallel block.

Conditional block corresponds to OR-split and OR-join primitives. Finally, re-

peatable task primitive is supported by the iterative block. For each block can

be represented as one of the parallel block types. But, here the number of blocks

executing in parallel can only be decided at run-time instead of compile-time.

The following is an example of a work
ow de�ned in MFDL:

DEFINE_PROCESS manufacture()

{

VAR int product_no, quantity, order_no, customer_id;

VAR date due_date;
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VAR part_list part_no_list;

VAR index_list i;

get_order (OUT product_no, OUT quantity, OUT due_date,

OUT order_no, OUT customer_id);

enter_order (IN product_no, IN quantity, IN due_date,

IN order_no)

COMPENSATED_BY delete_order (IN order_no);

check_bill_of_material (IN product_no, OUT part_no_list);

FOR_EACH (part_no_list, PAR_AND)

{

check_stock (IN part_no_list[INDEX].part_no,

IN part_no_list[INDEX].part_quantity,

OUT part_no_list[INDEX].status,

OUT part_no_list[INDEX].raw_mat_no,

OUT part_no_list[INDEX].raw_mat_quant,

OUT part_no_list[INDEX].part_quant_to_prod);

IF (part_no_list[INDEX].status == 0) THEN // No_Stock

vendor_order (IN part_no_list[INDEX].raw_mat_no,

IN part_no_list[INDEX].raw_mat_quant);

withdraw_from_stock (IN part_no_list[INDEX].raw_mat_no,

IN part_no_list[INDEX].raw_mat_quant)

COMPENSATED_BY add_to_stock

(IN part_no_list[INDEX].raw_mat_no,

IN part_no_list[INDEX].raw_mat_quant);

get_process_plan (IN part_no_list[INDEX].part_no,

OUT part_no_list[INDEX].process_plan,

OUT part_no_list[INDEX].no_of_steps);

i[INDEX] = 0;

WHILE (i[INDEX] < part_no_list[INDEX].no_of_steps) DO

{

produce (IN part_no_list[INDEX].cell_id,

IN part_no_list[INDEX].part_quant_to_prod,

IN order_no,

IN part_no_list[INDEX].raw_mat_no,

IN part_no_list[INDEX].raw_mat_quant);

i[INDEX] = i[INDEX] + 1;

}

}

assemble_product (IN product_no);

}

The above example is a simpli�ed work
ow of a manufacturing process carried

out in a manufacturing company. First, a customer orders a product by the

get order task. Then, the order information is entered to the database. Bill of
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material is checked to determine which parts are required to produce the ordered

product. For each part in the bill of material, check stock task is initiated to check

stock database for the availability of the raw materials to manufacture that part.

If any of the raw materials is missing in the stock, it is ordered from the vendors

by the vendor order task. Then, required raw materials to produce the part are

withdrawn from the stock. The process plan is read from the database for the

part in discussion. The raw materials are processed into the part by following the

steps in the process plan using the produce subprocess. After all these activities

are done in an and parallel fashion for all of the parts, then the individual parts

are assembled into the ordered product by the assemble product subprocess. The

reason why we use a for each block is to speed up the process by executing the

same operations for each of the parts in parallel.

MFDL provides constructs for naming work
ow relevant data types, associ-

ating an identi�er with a type. Basic types in MFDL are 
oating point, integer,

character, string and object. In addition to these simple types, MFDL provides

two constructed types: structure and array. CORBA supports the basic types

but not structure and array types. Therefore, we handled the complex types

separately.

In MFDL, we have used �ve types of tasks. These are TRANSACTIONAL,

NON TRANSACTIONAL, NON TRANSACTIONAL with CHECKPOINT,

USER and 2PC TRANSACTIONAL activities. USER activities are in fact NON-

TRANSACTIONAL activities. They are speci�ed separately in order to be used

by the worklist manager which handles the user-involved activities. The states

and transitions between these states for each of the activity types are demon-

strated in Figure 3.2. The signi�cant events in our model are start, commit and

abort. The event attributes of these tasks are shown in Table 3.1.

Note that the abort event of a 2PC transactional task after the coordinator

has taken a decision is normal whereas it is immediate before the coordinator has

taken a decision. Triggerable and normal events are controllable because they

can be triggered, rejected or delayed while immediate events are uncontrollable.

We have chosen to include a second type of non transactional activity, namely,
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Table 3.1: Event attributes

activity types start abort/fail commit/done

transactional triggerable immediate normal
2PC transactional triggerable normal,immediate normal
non transactional triggerable immediate immediate

non transactional with checkpoint triggerable immediate immediate

NON TRANSACTIONAL with CHECKPOINT, in our model by making the

observation that certain non transactional activities in real life, take checkpoints

so that when a failure occurs, an application program rolls the activity back to

the last successful checkpoint.

These activity types may have some attributes such as CRITICAL, NON VIT-

AL and CRITICAL NONVITAL. Critical activities can not be compensated and

the failure of a non vital activity is ignored [4, 11]. Besides these attributes, ac-

tivities can also have some properties like retriable, compensable, and undoable.

A retriable activity restarts execution depending on some condition when it fails.

Compensation is used in undoing the visible e�ects of activities after they are

committed. E�ects of an undoable activity can be removed depending on some

condition in case of failures. Some of these properties are special to speci�c activ-

ity types. Undo conditions and activities are only de�ned for non transactional

tasks, because transactional tasks do not leave any e�ects when they abort. Only

2PC transactional activities can be de�ned as critical. Note that the e�ects of

critical activities are visible to the other activities in the work
ow but the commit-

ment of these activities are delayed till the successful termination of the work
ow.
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An activity can be both critical and non vital at the same time, but can not be

critical and compensable.

In MFDL, activities in a process are declared using the reserved word ACTIV-

ITY. This declaration allows the sharing of an activity de�nition among many

work
ow processes with possibly di�erent attributes and properties for each in-

stance. Similarly, the variables are declared using the VAR reserved word.

The full Backus-Naur Form (BNF) form of MFDL is given in Appendix A.

3.2 Worklist Management in METUFlow

The worklist manager is a software component which manages the interaction

between work
ow participants and the scheduler.

In METUFlow, the worklists are distributed, that is, a worklist at a site

contains the work items to be accessed by the users at that site.

When a user activity is to be invoked by the scheduler, a user task handler

created for this purpose stores the request (work item) into a request list within

the scope of a transaction. Request list is a CORBA object and its implementa-

tion in a particular site depends on the persistent storage available in that site,

that is, this CORBA object is implemented on a DBMS if it is available, oth-

erwise it is implemented as a �le. Worklist manager, as depicted in Figure 3.3

consists of two components. The �rst one, work item scheduler, decides on the

assignment of work items to the worklists of the users in cooperation with the

authorization service. The �rst version of the authorization service implemented

contains the de�nitions of roles and their members, authorizations to execute

tasks and constraints controlling the execution of these authorizations. We plan

to improve this service by including periodic, temporal, event based distributed

constrained authorizations and authentication services. The work item scheduler

is also responsible for putting the reply back into the reply list, again, within

the scope of a transaction. That is, the reply list is a persistent CORBA object

whose implementation is realized through a DBMS or a �le depending on the

capabilities of the site concerned. The second component, worklist handler is

responsible for retrieving work items to be presented to the user for processing.
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A point to be noted over here is the following: CORBA provides location

transparency, in other words the users need not be aware of the location of the

objects to be created. However, CORBA does provide mechanisms to a�ect the

object creation site although the speci�cs depends on the ORB at hand. First by

default, an object is created at the local site if it is possible. Therefore, whenever

there is a request to create a work item scheduler, it is created at the same site

with the user task handler. In order to be able to create worklists at the same

host with the involved user (or role), a list is kept which stores the association

between the user-ids and host-ids. In METUFlow, lookup method of Orbix's

locator class [27] is used for this purpose.

Finally, in order to provide access to the worklists through World-Wide-Web,
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we have chosen to implement them in Java which made it easier to connect to a

CORBA compliant ORB, namely Orbix, through OrbixWeb.

3.3 History Management in METUFlow

Work
ow history management provides the mechanisms for storing and querying

the history of both ongoing and past processes. This serves two purposes: First,

during the execution of a work
ow, the need may arise for looking up some piece

of information in the process history, for example, to �gure out who else has

already been concerned with the work
ow at what time in what role. This kind of

information contributes to more transparency, 
exibility and overall work quality.

Second, aggregating and mining the histories of all work
ows over a longer time

period forms the basis for analyzing and assessing the e�ciency, accuracy and

the timeliness of the enterprise's business processes. Therefore, this information

provides the feedback for continuous business processes re-engineering. Given

that, much of the history information relates to the time dimension in that it

refers to turnaround times, deadlines, delays. over a long time horizon.

In consistency with its architecture, METUFlow history and work
ow relevant

data handling mechanism is based on CORBA. The history of each activity in-

stance is implemented as a CORBA object. To exploit the advantages brought by

the distributed execution of the work
ow scheduler, history management should

also be distributed. To make distributed history management possible, the per-

sistent store in which the history information is kept, should also be distributed

over the network.

The history of each activity instance is implemented as a CORBA object at

the same site at which the activity object itself is invoked. If a DBMS is available

at the concerned site, it is used as the persistent store, otherwise a binary �le is

used for this purpose. It is possible to have history objects created at the same

site where they are activated to prevent the communication cost with the activity

instance objects.

Each activity instance is responsible for its own history object and knows the

object identi�er of its parent activity instance. A child activity instance invokes a
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method to pass the object identi�er of its own history object to its parent object.

A parent activity instance object establishes the links between its own history

object and its child's history object. Note that in the eventual history tree of

the process instance obtained this way objects are linked through their object

identi�ers according to the process tree.

When it comes to querying history both for monitoring and for data mining

purposes, encapsulating these data as CORBA objects naturally yields to using

the Query Service Speci�cation of OMG.

The Query Service provides query operations on collection of objects. The

Query Service can be used to return collections of objects that may be:

� selected from source collections based on whether their member objects

satisfy a given predicate.

� produced by query evaluators based on the evaluation of a given predicate.

In summary, with a distributed history and work
ow relevant data handling mech-

anism, availability and scalability aspects of the system are increased.

3.4 OTS-based Transaction Manager

In METUFlow, distributed transaction management is realized through a transac-

tion manager that implements Object Transaction Service Speci�cation of OMG,

OTS [9, 25]. OTS Speci�cation describes a service that supports 
at and nested

transactions in a distributed heterogeneous environment. It de�nes interfaces

that allow multiple, distributed objects to cooperate, to provide atomicity of

transactions. These interfaces enable the objects either to commit or rollback all

the changes together in the presence of failure.

Figure 3.4 illustrates the major components and the interfaces de�ned by

OTS. In a typical scenario, a transactional client (transaction originator) cre-

ates a transaction obtaining a Control object from a Factory provided by ORB.

Transaction clients use the Current pseudo-object to begin a transaction, which

becomes associated with the transaction originator's thread. The Current inter-

face de�nes operations that allow a client of OTS to begin and end transactions
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Figure 3.4: The major components and interfaces of the OTS

and to obtain information about the current transaction. A simpli�ed version of

Current interface is illustrated below:

interface Current {

void begin();

void commit();

void rollback();

Status get_status();

string get_transaction_name();

...

}

ORB associates a transaction context with each Control object. A transac-

tion context contains all the necessary information to control and to coordinate

transactions. Transaction context is either explicitly passed as a parameter of

the requests, or implicitly propagated by ORB, among the related transactional

objects. The Control object is used in obtaining Terminator and Coordinator ob-

jects. Transactional client uses the Terminator to abort or to commit the trans-

action. Coordinator provides an interface for transactional objects to participate

in Two Phase Commit (2PC) protocol. Transactional client sends requests to

39



transactional objects. When a request is issued to a transactional object, the

transaction context associated with the invoking thread is automatically propa-

gated to the thread executing the method of target object. A transactional object

is the one that supports transaction primitives as de�ned by the standard. After

the computations involved in the transaction have been completed, the trans-

actional client uses the Current pseudo object to request that the changes be

committed. OTS commits the transaction using 2PC protocol wherein a series of

requests are issued to the registered resources. Thus, ORB provides the atomicity

of distributed transactions.

In addition to the above usage of OTS, in METUFlow OTS implementation,

a method is added to the Coordinator object to handle xor parallel block which

requires one and only one task to commit, for the commitment of the block.
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CHAPTER 4

GUARD GENERATION

In METUFlow, the execution environment is fully distributed. Since the system

is distributed on the basis of activities, each activity should know when its sig-

ni�cant events like start, abort and commit should occur without consulting to

a top-level central decision mechanism. For this purpose, we use temporal ex-

pressions which de�ne the conditions under which an event should occur, called

guards.

In this chapter, �rst how intertask dependencies are incorporated into guard

expressions are explained. Then, the guard generation process is described in

Section 4.2. After the guards are generated, their run time control is handled by

the guard handler, which is summarized in Section 4.3. Finally, in Section 4.4,

how execution of underlying tasks are handled is described.

4.1 Incorporation of Intertask Dependencies into Guards

At compile time of the process speci�cation, it is possible to construct the guards

for each of the activities by using the block structures which implicitly provide

the necessary intertask dependencies. We use the ACTA formalism with slight

modi�cations to express the semantics of the block structures1. ACTA is a frame-

work for formal speci�cation and analysis of transaction models that allows one

1 We treat fail/done event of non transactional activities as abort/commit of transactional
activities.
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to specify the e�ects of transactions on other transactions and also their e�ects on

objects [5]. Following are the ACTA dependencies [8] that exist in our work
ow

system:

Let ti and tj be two transactions.

� Commit Dependency(tj CD ti): if transaction ti commits, then tj com-

mits.

� Commit-on-Abort Dependency(tj CAD ti): if transaction ti aborts,

then tj commits.

� Abort Dependency(tj AD ti): if transaction ti aborts, then tj aborts.

� Abort-on-Commit Dependency(tj ACD ti): if transaction ti commits,

then tj aborts.

� Begin Dependency(tj BD ti): if transaction ti begins executing, then tj

starts.

� Begin-on-Commit Dependency(tj BCD ti): if transaction ti commits,

then tj begins executing.

� Begin-on-Abort Dependency(tj BAD ti): if transaction ti aborts, then

tj begins executing.

We have added conditional dependencies to the ACTA dependencies. These

dependencies have an additional argument which is "condition". For example,

we express conditional begin dependency as BD(C). If condition C is true, then

BD holds, else it does not hold.

Using these dependencies, we can formally restate semantics of block types,

undo task and compensation activity de�ned in the previous chapter as:

Semantics 1 B = (A1;A2;A3; :::::;An), where B is a serial block.

� A1 BD B

� Ai+1 BCD Ai , 1 �i<n
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� B CD An

� B AD Ai ,1 � i �n

Semantics 2 B = (A1 & A2 & ..... & An), where B is an and parallel block.

� Ai BD B ,1 � i �n

� B AD Ai ,1 � i �n

� 8i(B CD Ai)

Semantics 3 B = (A1jA2j:::::jAn), where B is an or parallel block.

� Ai BD B ,1 � i �n

� 9i (B CD Ai) ^ (8j((B CD Aj) _ (B CAD Aj))), j 6=i

� 8i(B AD Ai)

Semantics 4 B = (A1jjA2jj:::::jjAn), where B is an xor parallel block.

� Ai BD B ,1 � i �n

� 9i (B CD Ai) ^ (8j(Aj ACD Ai)), i6=j

� 8i(B AD Ai)

Semantics 5 B = (A1; A2; :::::An), where B is a contingency block.

� A1 BD B

� Ai+1 BAD Ai, 1 � i<n

� B CD Ai, 1 �i�n

� B AD An

Semantics 6 B = (condition(C),A1; A2), where B is a conditional block.

� A1 BD(C) B

� B CD(C) A1

� B CD(:C) A2

� B AD(C) A1

43



� B AD(:C) A2

Semantics 7 B = (condition(C);A1;A2; :::::;An), where B is an iterative block.

� A1 BD(C) B

� Ai+1 BCD Ai, 1 �i<n

� B CD(:C) An

� B AD Ai

Semantics 8 B = (list; par type; B1), where B is a for each block.

� par type = and parallel

{ B1 BD B, for each element of the list

{ B AD B1, for any element of the list

{ B CD B1, for all the elements of the list

� par type = or parallel

{ B1 BD B, for each element of the list

{ B AD B1, for all the elements of the list

{ B CD B1, for at least one element of the list

� par type = xor parallel

{ B1 BD B, for each element of the list

{ B AD B1, for all the elements of the list

{ B CD B1, for only one element of the list

Semantics 9 A = (Ac, AbortList(Ac)
2), where Ac is the compensation activity

of A.

� Ac BCD A

� Ac BAD AbortList(Ac)

Semantics 10 T = Tu, where Tu is the undo task of T.

2 AbortList(Ac) contains the list of activities whose abort cause the start of Ac.
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� Tu BAD T

ACTA formalism speci�es the transaction semantics of a model by presenting

transaction relations with prede�ned dependencies. However, these dependencies

are expressed at the abstract level and therefore we will use the following two

primitives [2, 21] to specify intertask dependencies as constraints on the occur-

rence and temporal order of events:

1. e1 ! e2: If e1 occurs, then e2 must also occur. There is no implied ordering

on the occurrence of e1 and e2.

2. e1 < e2: If e1 and e2 both occur, then e1 must precede e2.

The ACTA dependencies we use in specifying the block semantics are ex-

pressed in terms of these two primitives as follows:

� Commit Dependency(tj CD ti):

(Committj ! Committi) ^ (Committi < Committj )

� Commit-on-Abort Dependency(tj CAD ti):

(Aborttj ! Committi) ^ (Committi < Aborttj )

� Abort Dependency(tj AD ti):

(Aborttj ! Abortti) ^ (Abortti < Aborttj )

� Abort-on-Commit Dependency(tj ACD ti):

(Aborttj ! Committi) ^ (Committi < Aborttj )

� Begin Dependency(tj BD ti):

(Starttj ! Startti) ^ (Startti < Starttj )

� Begin-on-Commit Dependency(tj BCD ti):

(Starttj ! Committi) ^ (Committi < Starttj )

� Begin-on-Abort Dependency(tj BAD ti):

(Starttj ! Abortti) ^ (Abortti < Starttj )
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The guards of events corresponding to these two primitive dependencies are as

follows [2, 37]:

� For the constraint e < f, which corresponds to the dependency D< = �e _

�f _ e � f , the guards are:

G(e) = TRUE

G(f ) = 3�e _2e

Note that 2e means that e will always hold; 3e means that e will eventually

hold (thus 2e entails 3e). The � operator denotes sequencing in which its �rst

argument should precede the second. �e is the complement of event e denoting

non-occurrence of e. For the above dependency, at runtime e can occur at any

point in the history whereas f can occur only if e has occurred or it is guaranteed

that �e will occur.

� For the constraint f! e, which corresponds to the dependency D! = �f _e,

the guards of events are:

G(e) = TRUE

G(f ) = 3e

These guards state that e can occur at any time in the history; f can occur if e

has happened or will happen.

All the above discussion shows that we can capture intertask dependencies

that determine the 
ow of control in the work
ow system into guard expressions.

4.2 Guard Generation

We use the dependencies BD, BCD, BAD to compute start guards, AD, ACD

to generate abort guards and CD, CAD to compute commit guards of activities.

Note that all of these dependencies are in the form of an expression which con-

tains one subexpression with ! primitive and the other with < primitive with a

conjunction in between them such as (f ! e) ^ (e < f). We present the construc-

tion of guards of events e and f for this dependency in the following [37]:
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Table 4.1: Guards corresponding to the dependency set

dependency e f G(f) G(e)

A BD B B.start A.start B.start TRUE
A BCD B B.commit A.start B.commit TRUE
A BAD B B.abort A.start B.abort TRUE
A CD B B.commit A.commit B.commit TRUE
A CAD B B.abort A.commit B.abort TRUE
A AD B B.abort A.abort B.abort TRUE
A ACD B B.commit A.abort B.commit TRUE

G(e) = G(D!; e) ^ G(D<; e) = TRUE ^ TRUE = TRUE

G(f ) = G(D!; f ) ^ G(D<; f ) = 3e ^ (3�e _ 2e) = (3e ^3�e) _ (3e ^2e)

= F _ (3e ^2e) = 2e

Note that after simpli�cation, the guard of f turned out to be 2e. In other

words, the occurrence of event f only requires event e to have already happened.

This result facilitates the computation of the guards drastically. The guards of

events of the dependency set corresponding to our work
ow speci�cation lan-

guage are computed as presented in Table 4.1. Note that from this result, we

conclude that if we want to compute the guard related to an activity A1, we

must consider only "A1 ACTA Dep A2" type dependencies, not "A2 ACTA Dep

A1" type dependencies. The reason is that in the latter, the guard of any event

related with A1 is already TRUE from Table 4.1. We have omitted the 2 sign

since we do not have any other temporal symbol and we can treat A.e as "when

event e of activity A has occurred".

If we summarize, by starting from a block structured work
ow speci�cation

language, we obtain a well de�ned set of dependencies, all in the form (f ! e)

^ (e < f). This dependency produces straightforward guards for events. This

makes it possible to compute the guards directly from the process de�nition with

a simple algorithm. The complete guard generation process is outlined in Figure

4.1.

Knowing the dependencies implied by the block structures and the guards

corresponding to each of the dependencies in the dependency set given in Table
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Figure 4.1: Guard generation process

4.1, it becomes easier to construct the guards of the activities by parsing the wok-


ow de�nition. First, a process tree is generated from the work
ow speci�cation.

The process tree consists of nodes representing processes, blocks and tasks, and is

used only during compilation time, execution being completely distributed. Each

of the nodes is given a unique label to be referred in the execution phase. These

activity labels make it possible for each activity instance to have its own uniquely

identi�ed event symbols. The process tree shows the dependencies between the

activities of the work
ow. Using Table 4.1 and the block semantics, it is possible

to generate the guards of a process from its process tree. Figure 4.2 shows the

process tree of the manufacturing example given in the previous chapter. Apply-

ing the guard construction algorithm on this tree given in Chapter 5, we obtain

the guards listed in Table 4.2. It should be noted that in Table 4.2, some of

the guards are set to TRUE right away. This is because either the occurrences
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of these events do not depend on the occurrence of any other event or they are

immediate(nondelayable, nonrejectable) events.

For our example process, at compile time the guards, given in Table 4.2, are

generated and stored locally with the related CORBA objects that belong to each

of the activities in the process, except for the activities which are labeled as 6

through 17. The reason behind this is that the number of elements in the list

of the for each block is unknown at compile time. Therefore, the exact number

of serial block(6)s in for each block is unde�ned at compile time. Thus, objects

corresponding to the serial block node and its descendants are created at run

time by generating new guards and labels.

The purpose lying behind this special block structure is to provide e�ciency

by executing the same actions on individual items in a list in a parallel fashion .

Since the same actions will be carried out on the elements of the list and in an

independent way, it is a lot more e�cient to carry out these executions in parallel.

But, since the number of elements in the list can not be known at compile time,

the guard expressions for the activities in a for each block can not be constructed

statically. To handle this problem, we developed a mechanism in which we pre-

delete_order

3

check_stock

10

add_to_stock

assemble_prod

manufacture
0

get_order enter_order

1 2 4
FOR_EACH

5 18

6

7

IF

8 11 13
i = 0
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WHILE
15

SERIAL

9 12

vendor_order

check_bill_mat

withdraw get_pro_plan

produce

16

SERIAL

i = i + 1

17

Figure 4.2: Process tree of the manufacturing example
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Table 4.2: Guards of the example work
ow de�nition

label start guard commit guard abort guard

0 TRUE 18.commit 1.abort or 2.abort or 4.abort or
5.abort or 18.abort

1 0.start TRUE TRUE
2 1.commit TRUE TRUE
3 2.commit and

0.abort
TRUE TRUE

4 2.commit TRUE TRUE
5 4.commit 6.commit 6.abort
6 5.start 15.commit 7.abort or 8.abort or 11.abort or

13.abort or 14.abort or 15.abort
7 6.start TRUE TRUE
8 7.commit 9.commit 9.abort
9 8.start and status =

0
10.commit 10.abort

10 9.start TRUE TRUE
11 8.commit TRUE TRUE
12 11.commit and

6.abort
TRUE TRUE

13 11.commit TRUE TRUE
14 13.commit TRUE TRUE
15 14.commit 17.commit and i >

no of steps
17.abort or 16.abort

16 15.start and i <

no of steps
TRUE TRUE

17 16.commit TRUE TRUE
18 5.commit TRUE TRUE

pare guard templates for the activities in the for each block during compilation

and make use of these templates at run time to generate the actual guard ex-

pressions. In order to explain the method which handles guard modi�cations due

to for each construct, the following simpli�ed version of the for each block in the

manufacturing example is used:

FOR_EACH(part_no_list, PAR_AND)

{

check_stock (IN part_no_list[INDEX].part_no,

IN part_no_list[INDEX].part_quantity,

OUT part_no_list[INDEX].status,

OUT part_no_list[INDEX].nec_quantity);

IF (part_no_list[INDEX].status == 0) THEN

vendor_order(IN part_no_list[INDEX].part_no,

IN part_no_list[INDEX].nec_quantity);

}
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FOR_EACH
0

1
SERIAL

check_stock IF

SERIAL

vendor_order

2 3

4

5

Figure 4.3: For each process tree at compile-time

In this version, there are two tasks. Check stock checks the stock database

to �nd out if the quantity of a part in the stock is enough for production. Ven-

dor order is a user activity which is used to order a part from the vendor in case

the quantity of the part in the stock is not enough. These two tasks should be ap-

plied to all of the parts in the part no list in an and parallel fashion. That is, the

body of the for each block must be repeated for each element of the part no list

in parallel. To achieve this, we consider the body of the for each block as a serial

block. During execution time, there must be as many copies of this serial block as

the number of elements in the part no list. But each of these serial blocks must

execute with di�erent values of the part no, part quantity, status and nec quantity

variables. To provide this, the index of the part no list must be di�erent for each

of the serial blocks. We use the INDEX reserved word which can have di�erent

values at a time and each di�erent value of INDEX is kept in the associated guard

handlers.

The example block appears as Figure 4.3 in the process tree at compile time.

And the guard templates prepared for this block during compilation are as given

in Table 4.3.

At run-time, if the length of the part no list is 2, the process tree turns out

to be as in Figure 4.4. In fact, the process tree is only used at compile time. The
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Table 4.3: Guard templates for the for each block

label start guard commit guard abort guard

0 TRUE 1.commit 1.abort
1 0.start 3.commit 2.abort or 3.abort
2 1.start TRUE TRUE
3 2.commit 4.commit 4.abort
4 3.start and status = 0 5.commit 5.abort
5 4.start TRUE TRUE

FOR_EACH
0

SERIAL

check_stock IF

SERIAL

vendor_order

SERIAL

check_stock IF

SERIAL

vendor_order

4_1

5_1

2_0

1_0 1_1

2_1

4_0

5_0

3_13_0

Figure 4.4: For each process tree at run-time

Table 4.4: Guard expressions for the for each block

label start guard commit guard abort guard

0 TRUE 1 0.commit and 1 1.commit 1 0.abort or 1 1.abort
1 0 0.start 3 0.commit 2 0.abort or 3 0.abort
2 0 1 0.start TRUE TRUE
3 0 2 0.commit 4 0.commit 4 0.abort
4 0 3 0.start and status = 0 5 0.commit 5 0.abort
5 0 4 0.start TRUE TRUE
1 1 0.start 3 1.commit 2 1.abort or 3 1.abort
2 1 1 1.start TRUE TRUE
3 1 2 1.commit 4 1.commit 4 1.abort
4 1 3 1.start and status = 0 5 1.commit 5 1.abort
5 1 4 1.start TRUE TRUE
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tree in Figure 4.4 is drawn to clarify how for each block appears at run time. The

guard expressions corresponding to this tree are as in Table 4.4.

As can be seen from Figure 4.4, we give new labels to each node which is under

the for each node to provide uniqueness. If we compare Table 4.3 and Table 4.4,

we see that guards of the nodes that belong to the same activities in di�erent

branches of the block are similar except their labels. For example, the start guard

of node labeled 2 is 1.start in Table 4.3 whereas it is 1 0.start and 1 1.start in

Table 4.4. All we need to do is to change the labels of the nodes given in the

guard templates according to the number of elements in the part no list. But this

is not the case for the for each node itself labeled as 0. We have to change the

commit and abort guards of this node. This change can be done again according

to the length of the list and the guard template but also taking the type of the

parallelism into consideration.

Besides for each block, there is another block that requires special attention.

In xor parallel block, we should guarantee that one and only one of the activities

in the block body commits. To provide this, we have implemented a modi�ed

Two Phase Commitment Protocol. When xor parallel block starts, all of its

immediate children are registered to the coordinator object belonging to this

block. The coordinator keeps track of status of these children to ensure that only

one of them commit. In this case, the abort and commit guards need not be

constructed any more for the immediate child nodes of an xor parallel block.

4.3 Guard Handling

After the guards are constructed, an environment in which these guards are evalu-

ated through the event occurrence messages they receive is created. Our approach

associates a guard handler with each activity instance which contains the guard

expressions for the signi�cant events of that activity instance [18]. Also, there

exists a task handler for each activity instance which embodies a coarse descrip-

tion of the activity instance including only the states and transitions (i.e. events)

that are signi�cant for coordination. A guard handler provides the message 
ow

between the activity's task handler and the other guard handlers in the system
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[20, 39]. According to the message it receives from the guard handler, a task

handler causes the events related with that activity to occur. Each node in the

process tree is implemented as a CORBA object with an interface for the guard

handler to receive and send messages. A guard handler object consists of the

following parts:

occurred event queue for start contains occurrence messages of events which

a�ect the start guard of this guard handler.

occurred event queue for abort contains occurrence messages of events which

a�ect the abort guard of this guard handler.

occurred event queue for commit contains occurrence messages of events which

a�ect the commit guard of this guard handler.

start message list contains object identi�ers of guard handler objects which

should be informed about occurrence of the start event of the activity in-

stance controlled by this guard handler.

abort message list contains object identi�ers of guard handler objects which

should be informed about occurrence of the abort event of the activity

instance controlled by this guard handler.

commit message list contains object identi�ers of guard handler objects which

should be informed about occurrence of the commit event of the activity

instance controlled by this guard handler.

start guard is a temporal expression which de�nes the condition under which

the start event of the activity instance should occur if its start condition is

satis�ed.

abort guard is a temporal expression which de�nes the condition under which

the abort event of the activity instance should occur if its abort condition

is satis�ed.
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commit guard is a temporal expression which de�nes the condition under which

the commit event of the activity instance should occur if its commit condi-

tion is satis�ed.

start condition is a logical expression which de�nes the condition under which

the start event of the activity instance should occur if its start guard is

satis�ed.

abort condition is a logical expression which de�nes the condition under which

the abort event of the activity instance should occur if its abort guard is

satis�ed.

commit condition is a logical expression which de�nes the condition under

which the commit event of the activity instance should occur if its commit

guard is satis�ed.

At compile time the guards are generated and stored locally with the related

objects, except the activities in the for each block. The objects to which the

messages from each object are to be communicated are also recorded. A guard

handler maintains the current guards for the signi�cant events of the activity and

manages communications. When a task handler is ready to make a transition, it

attempts the corresponding event. Intuitively, an event can happen only when its

guard evaluates to true. If the guard for the attempted event is true, it is allowed

right away. If it is false, it is rejected. Otherwise, it is parked. Parking an event

means disabling its occurrence until its guard simpli�es to true or false. When an

event happens, messages announcing its occurrence are sent to the guard handlers

of other related activities. When an event announcement arrives, the receiving

guard handler simpli�es its guard to incorporate this information. If the guard

becomes true, then the appropriate parked event is enabled [17].

4.4 Task Handling

A task handler is created for each task instance. It acts as a bridge between the

task and its guard handler. The guard handler sends the information necessary
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for the execution of the task, like the name of the task, parameters to the task

handler and the task handler sends the information about the status of the task

to the guard handler. When a task starts, its status becomes Executing. If

it can terminate successfully, then its status is changed to Committed or Done

depending on whether it is a transactional or a non-transactional task. In case

the task fails, its status becomes Abort or Failed.

Task handler is a CORBA object and has a generic interface which contains

the following methods to communicate with its associated guard handler:

� Init method is used for passing initial data such as name of the task and

initial parameters to the task handler.

� Start method is called by the guard handler when the start guard of the

task evaluates to true. This causes the task handler to invoke the actual

task.

The tasks may de�ne their status in a way that the task handler can not

understand or the task may not understand the messages coming from the task

handler. Therefore, it becomes essential to interfere the source code of existing

tasks. If it is possible to make changes in the task, then additional calls are added

to the code of the task to convert the status information and error messages so

that task handler and task can understand each other. If this is not possible, then

the existing task is encapsulated by a code which provides the required conversion

[20].
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CHAPTER 5

IMPLEMENTATION

In this chapter implementation of the guard generation algorithm is explained.

First, the tools and facilities that are used for implementation are brie
y in-

troduced. Then, the program structure and the main data structures used are

described. Finally, the guard generation algorithm is given.

5.1 Tools and Facilities

A work
ow speci�cation written in MFDL has been parsed using the yacc com-

piler generator, and the lexical analysis has been performed using the lex lexical

analyzer from Sun Release 4.1. A CORBA compliant ORB product called Or-

bix 2.1 from IONA Technologies [26] is used as the communication infrastructure.

Orbix CORBA compiler produces C++ language mapping from the CORBA IDL

programs. These IDL de�nitions de�ne the interface of each of the METUFlow

components. Although no CORBA object is created for the guard generation

algorithm, the algorithm makes use of some of the other objects in the system by

calling some of their methods.

5.2 The Program Structure

To generate the guards of the activities in a work
ow speci�cation, �rst we have

to construct the process tree from this speci�cation. A program called mfdl.y
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parses the work
ow speci�cation using the yacc compiler generator according

to the rules of the language we have designed which is given in Appendix A.

During this parsing process, the process tree is also constructed. As explained

in Chapter 4, process tree consists of nodes, each containing information about

the activities of the work
ow. Towards the end of parsing, after all the nodes are

inserted into the process tree, the guard construction function is called, namely

construct guard. This function implements the algorithm given in Section 5.4.

It is a part of the C++ program called stree sym.cc. Besides implementing the

guard generation algorithm, this program also contains functions for �lling the

arguments, parameters, message lists, conditions, nodes of the process tree. All

the data type de�nitions are provided in a header �le called stree sym.h. At the

end of parsing, a function called StartExec is called which initiates the execution

of the parsed work
ow process. This function uses some methods of the Guard

Handler and the Task Handler objects. It �rst calls the create method of both of

the components to create the actual CORBA objects. It then calls the PutInfo

method of the Guard Handler so that the necessary information such as label,

guard expressions, conditional expressions, message lists, arguments obtained in

parsing are put into the related Guard Handler object.

5.3 The Data Structures

In this section, the de�nitions of the two main data structures for the nodes of

the process tree and the guard expressions are given.

� The Process Tree

The main process tree data structure is a structure called TREE. It consists

of mainly the node information, several pointers to parent, compensation,

undo and children nodes. Node information is kept in a structure called

NODE INFO. It includes identi�cation information about the node like

the label, name, task type and attributes, list of parameters, arguments,

conditions of the activity that the node represents. The details of the

process tree data structure are provided in the following:
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typedef struct NODE_INFO {

int label; // a unique label

int type; // activity type(block, process or task)

int type2; // task type(transactional, user, etc)

int type3; // task attribute(vital, critical, etc)

char name[50];

PARAMETER_LIST *prm;

ARGUMENT_LIST arg;

int retry_num; // how many retries

Node *retry_con; // retry condition

Node *cond; // the conditional expression

Expr *expr; // if the node is an assignment node

int WhileFlag; // a while block

int ForEachFlag; // a for_each block

int ForEachP; // the type of parallelism in

// for_each block

Common::ActivityType hnt; // history node type

} NODE_INFO; // information kept in the nodes of the

// process tree

typedef struct TREE {

NODE_INFO info;

TREE *parent; // pointer to parent node

TREE *comp; // pointer to compensation

TREE *undo; // pointer to undo

TREE *children[50]; // pointers to

// immediate children

int noofchild;

int flag; // normal, undo or compensation

} TREE; // the main process tree data structure

� The Guard Expressions

The main data structure to keep the guards, namely GuardInfo, contains

the guard expression, the conditions and message lists. Guard expression is

kept in Guard class. This class consists of mainly a pointer to Node struc-

ture and several methods to evaluate the guard expression. Node structure

represents an internal node in the guard expression tree. Nodes in this tree

may be either event, variable or internal nodes. Event nodes contain sta-

tus information about the signi�cant events of the activities like "A.start",

denoting start event of activity A. Variable nodes contain variable or con-

stant values. Internal nodes contain relational operators and connect any

two nodes in the tree. To illustrate the guard expression tree structure,
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AND

OR

B.abort B.commit

A.commit

Figure 5.1: An example guard expression tree

consider the following guard expression for the start event of activity C:

G(C.start) = A.commit AND (B.abort OR B.commit)

The tree in Figure 5.1 denotes that the start of activity C requires the com-

mitment of activity A and the termination of activity B (abort or commit).

The detailed guard expression data structure is given in the following:

enum GuardType {Start, Commit, Abort,Undefined};

enum ActStat {INITIAL,WAITING,NOTSTARTED,EXECUTING,COMMITTED,

ABORTED,PREPARED,DONE,FAILED,SUSPENDED,RESUMED};

// the execution status

enum OccVal {T,F,UNDEF}; // the occurrence value

typedef struct OccEvent {

Common::ActStat status;

EnactService::ActLabel Label;

EnactService::OccVal val;

OccEvent *back;

OccEvent *next;

} OccEvent; // occurred event list

typedef struct EventNode {

EnactService::ActLabel label;

Common::ActStat status;

EnactService::OccVal val;

Node *parent;

} EventNode; // node about an event

typedef struct VarNode {

int type; // value or variable
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char *name;

Common::ArgValue val;

ENode *parent; // pointer to parent

} VarNode; // node about a variable

typedef struct Node {

EnactService::RelOp op; // relational operator type

ChildType *children; // pointer to child

nodes

int NoOfChildren;

Node *parent; // pointer to parent

EnactService::OccVal val; // occurrence value

} Node; // internal node

typedef struct ChildType {

int Type; // internal or event node

union {

Node *n;

EventNode *en;

} UType;

} ChildType;

typedef struct EChildType {

int Type; // internal or variable node

union {

ENode *n;

VarNode *vn;

} UType;

} EChildType;

typedef struct ENode {

EnactService::RelOp op;

EChildType *children;

int NoOfChildren;

ENode *parent;

EnactService::OccVal val;

} ENode; // event node

typedef struct EventList {

EnactService::ActLabel label;

struct EventList *next;

} EventList; // event list

typedef struct Expression {

int type; // positive or negative

ENode *root;

EnactService::OccVal val;

} Expression; // expression about the occurrence

of an event
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class Guard {

public:

Node *root;

EnactService::OccVal val;

EventNode **EventNodeList;

int NoofEventNode;

EnactService::ActLabel label;

int AllDefined(Node *n);

int AllTrue(Node *n);

int OneTrue(Node *n);

int OneFalse(Node *n);

void EvaluateEventNodes(EnactService::ActLabel label,

Common::ActStat s,EnactService::OccVal val);

void evaluate(OccEvent oc);

void RecurEval(Node *n); // recursive evaluation

char *get_first_label();

}; // guard class

typedef struct GuardInfo {

Guard g;

Expression condition;

EventList *EffectList;

} GuardInfo; // the main guard structure containing

// the conditions and message lists as well

5.4 The Guard Generation Algorithm

In order to describe guard generation algorithm, the notations in Table 5.1 are

introduced.

To each node of the process tree other than compensation and undo nodes,

the following algorithm is applied:

Let t be a node in the process tree;

Construct_Guards(t)

begin

Construct_StartGuard(t)

Construct_AbortGuard(t)

Construct_CommitGuard(t)

if has_compensation(t) then

begin

Construct_Guards(t.comp)

end

if has_undo(t) then
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Table 5.1: Notations

t.comp compensation of node t

t.undo undo of node t

has compensation(t) tc is de�ned

has undo(t) tu is de�ned

is compensation(t) t is a compensation node

is undo(t) t is an undo node

is process(t) t is a process node

is serial(t) t is a serial node

is iterative(t) t is an iterative node

is and parallel(t) t is an and parallel node

is xor parallel(t) t is an xor parallel node

is or parallel(t) t is an or parallel node

is contingency(t) t is a contingency node

is conditional(t) t is a conditional node

CreateNode(op,n) creates an operation node with n children

CreateEventNode(t,event) creates a node denoting the occurrence of event for node t

LeftSibling(t) returns the child before node t

FirstChild(t) returns the �rst child of node t

is FirstChild(t) t is the �rst child of its parent

LastChild(t) returns the last child of node t

is LastChild(t) t is the last child of its parent

�nd index(t) returns n if t is the nth child of its parent

handle condition(t) constructs the condition tree for node t

Construct_Guards(t.undo)

for i = 0 to t.noofchildren do

Construct_Guards(t.child[i])

end

We represent a guard as a tree whose nodes constitute a logical exression as

explained in the previous section. Leaf nodes contain occurred event names and

internal nodes contain logical operations such as "and", "or". Initially, values of

the nodes are unde�ned. If a guard contains a condition, like x>y, it is represented

as a separate expression tree. At execution time, both of the trees are evaluated.

The algorithm presented here emphasizes the generation of guard expressions.

How condition tree is constructed is out of scope of this algorithm. We use the

following functions to construct the guard trees:

Construct_StartGuard(t)

begin
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if is_compensation(t)

begin

if !(is_iterative(t.parent.parent)) then

begin

if is_serial(t.parent.parent) then

begin

root = CreateNode(AND,3)

root.child[0] = CreateEventNode(t.parent, COMMITTED)

root.child[1] = CreateEventNode(t.parent.parent, ABORTED)

index = find_index(t.parent) + 1

root.child[2] = CreateNode(AND,

t.parent.parent.noofchildren - index)

for i = index to t.parent.parent.noofchildren do

if has_compensation(t.parent.parent.child[i]) then

begin

root.child[2].child[i] = CreateNode(OR,3)

root.child[2].child[i].child[0] = CreateEventNode

(t.parent.parent.child[i].comp, COMMITTED)

root.child[2].child[i].child[1] = CreateEventNode

(t.parent.parent.child[i], ABORTED)

root.child[2].child[i].child[2] = CreateEventNode

(t.parent.parent.child[i], NOTSTARTED)

end

end

else

begin

root = CreateNode(AND,2)

root.child[0] = CreateEventNode(t.parent, COMMITTED)

root.child[1] = CreateEventNode(t.parent.parent, ABORTED)

end

end

If the grandparent of a compensation node is di�erent than an iterative block, then

it can only start if its parent has committed and its grandparent has aborted. If the

grandparent is a serial block, then it should check with the right siblings of its parent

whether they have compensation or not. If they have, then either their compensation

should commit before the compensation node in discussion starts or need not start at

all.

else if is_iterative(t.parent.parent) then

begin

root = CreateNode(OR,2)

if is_LastChild(t.parent) then

begin

root.child[0] = CreateNode(OR,1)

root.child[0].child[0] = CreateEventNode

(FirstChild(t.parent.parent).comp, COMMITTED)

root.child[1] = CreateNode(AND,2)

root.child[1].child[0] = CreateEventNode(t.parent,

COMMITTED)
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root.child[1].child[1] = CreateNode(OR,1)

root.child[1].child[1].child[0] = CreateEventNode

(t.parent.parent, ABORTED)

end

else

begin

index = find_index(t.parent) + 1

for i = index to t.parent.parent.noofchildren do

if has_compensation(t.parent.parent.child[i]) then

begin

root.child[0] = CreateNode(OR,1)

root.child[0].child[0] = CreateEventNode

(t.parent.parent.child[i].comp)

end

root.child[1] = CreateNode(AND,3)

root.child[1].child[0] = CreateEventNode(t.parent,

COMMITTED)

root.child[1].child[1] = t.parent.parent, ABORTED)

index = find_index(t.parent) + 1

for i = index to t.parent.parent.noofchildren do

if has_compensation(t.parent.parent.child[i]) then

begin

root.child[1].child[2] = CreateNode(OR,3)

root.child[1].child[2].child[0] =

CreateEventNode(t.parent.parent.child[i].comp,

COMMITTED)

root.child[1].child[2].child[1] = CreateEventNode

(t.parent.parent.child[i], ABORTED)

root.child[1].child[2].child[2] = CreateEventNode

(t.parent.parent.child[i], NOTSTARTED)

end // if has_compensation

end // if is_LastChild

end // if is_iterative

If the grandparent of a compensation node is an iterative block, then the logic is the
same with the grandparent serial case except that the iterations done upto that point

should also be taken into account.

end // if is_compensation

if is_undo(t) then

begin

root = CreateNode(OR,1)

root.child[0] = CreateEventNode(t.parent, ABORTED)

handle_condition(t)

end

If the node is an undo node, then we should only check with the parent of that node. If

the parent has aborted, then undo node can start. Note that the undo condition should

also be satis�ed for undo node to start. This is achieved by placing the conditions into

guard handler constructs.
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else // t is neither compensation nor undo

begin

if !(is_process(t)) then

begin

if is_process(t.parent) OR is_serial(t.parent) OR

is_iterative(t.parent) then

begin

if is_FirstChild(t) then

begin

if is_process(t.parent) OR is_serial(t.parent) then

begin

root = CreateNode(OR,1)

root.child[0] = CreateEventNode(t.parent, EXECUTING)

end

else if is_iterative(t.parent) then

begin

root = CreateNode(OR,2)

root.child[0] = CreateEventNode(t.parent, EXECUTING)

root.child[1] = CreateEventNode(LastChild(t.parent),

COMMITTED)

handle_condition{t.parent)

end

end

else // not first child

begin

root = CreateNode(OR,1)

root.child[0] = CreateEventNode(t.LeftSibling,

COMMITTED)

end

end

If parent of t is process, serial block or iterative block, then we check if t is the �rst child

of its parent. If so, and parent is either process or serial block, the only condition for

t to start is that its parent has started execution. If the parent is iterative block, then

its �rst child can only start if it has started and the last child of it has committed from

the previous iteration. The condition of the while construct should also be taken into

account. If t is not the �rst child, then it starts after its left sibling has committed.

else if is_and_parallel(t.parent) OR

is_xor_parallel(t.parent) OR

is_or_parallel(t.parent) then

begin

root = CreateNode(OR,1)

root.child[0] = CreateEventNode(t.parent, EXECUTING)

end

For the children of parallel blocks, they can start right after their parent has started.

else if is_contingency(t.parent) then

begin

root = CreateNode(OR,1)

66



if is_FirstChild(t) then

root.child[0] = CreateEventNode(t.parent, EXECUTING)

else

root.child[0] = CreateEventNode(t.LeftSibling,

ABORTED)

end

For a child of a contingency block to start, either it should be the �rst child of its parent
and its parent is in execution or its left sibling has aborted.

else if is_conditional(t.parent) then

begin

root = CreateNode(OR,1)

root.child[0] = CreateEventNode(t.parent, EXECUTING)

handle_condition(t.parent)

end

For a child of a conditional block to start, its parent should be in execution. Besides,

the conditional expression of the if construct should be satis�ed.

end // !(is_process)

else //if is_process(t)

root = CreateNode(OR,0) // no start guard

end // if neither undo nor compensation

end // start guard generation ends

Construct_AbortGuard(t)

begin

if is_process(t) OR is_and_parallel(t) OR is_serial(t) OR

is_iterative(t) OR is_conditional(t) then

begin

root = CreateNode(OR,t.noofchildren)

for i = 0 to t.noofchildren do

root.child[i] = CreateEventNode(t.child[i], ABORTED)

end

Abort of an activity depends on the abort of any of its children if it is a process,

and parallel block, serial block, iterative block or a conditional block.

else if is_contingency(t) then

begin

root = CreateNode(OR,1)

root.child[0] = CreateEventNode(LastChild(t), ABORTED)

end

A contingency block aborts when its last child has aborted. (Abort of its last child implies

that none of its children could manage to commit.)

else if is_xor_parallel(t) OR is_or_parallel(t) then

begin

root = CreateNode(AND,t.noofchildren)

for i = 0 to t.noofchildren do
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root.child[i] = CreateEventNode(t.parent.child[i],

ABORTED)

end

Abort of an or parallel and xor parallel block depends on the abort of all of its children.

else if is_xor_parallel(t.parent) then

begin

root = CreateNode(OR, t.noofchildren - 1)

for i = 0 to t.noofchildren - 1 do

if t.parent.child[i] != t then

root.child[i] = CreateEventNode(t.parent.child[i],

COMMITTED)

end

If a node is a child of an xor parallel block, then it should abort when any of its siblings

has committed. (In fact this condition is handled by the modi�ed 2PC Protocol in our

system. Guard construction for this situation is symbolic.)

else

root = CreateNode(OR,0)

end // abort guard generation ends

Construct_CommitGuard(t)

begin

if is_process(t) OR is_serial(t) OR is_iterative(t) then

begin

root = CreateNode(OR,1)

root.child[0] = CreateEventNode(LastChild(t), COMMITTED)

if is_iterative(t) then

handle_condition(t)

end

A process or a serial block or an iterative block can commit whenever its last child

has committed. Note that the conditional expression in the while construct should be

checked before the iterative block commits. It should be false.

else if is_and_parallel(t) then

begin

root = CreateNode(AND,t.noofchildren)

for i = 0 to t.noofchildren do

root.child[i] = CreateEventNode(t.child[i],

COMMITTED)

end

An and parallel block can commit when all of its children have committed.

else if is_conditional(t) OR is_contingency(t) then

begin

if t.noofchildren == 1 AND is_conditional(t) then

begin

root = CreateNode(OR,2)
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root.child[0] = CreateEventNode(t.child[0],

NOTSTARTED)

root.child[1] = CreateNode(OR,t.noofchildren)

for i = 0 to t.noofchildren do

root.child[1].child[i] = CreateEventNode

(t.child[i], COMMITTED)

end

A conditional block without an else part can commit when either its child has never

started or has successfully committed.

else

begin

root = CreateNode(OR,t.noofchildren)

for i = 0 to t.noofchildren do

root.child[i] = CreateEventNode(t.child[i],

COMMITTED)

end

A contingency or a conditional block with an else part commits when any of its children

has committed.

end

else if is_xor_parallel(t) OR is_or_parallel(t) then

begin

root = CreateNode(AND,2)

root.child[0] = CreateNode(OR,t.noofchildren)

for i = 0 to t.noofchildren do

root.child[0].child[i] = CreateEventNode

(t.child[i], COMMITTED)

root.child[1] = CreateNode(AND,t.noofchildren)

for i = 0 to t.noofchildren do

root.child[1].child[i] = CreateNode(OR,2)

root.child[1].child[i].child[0] =

CreateEventNode(t.child[i], COMMITTED)

root.child[1].child[i].child[1] =

CreateEventNode(t.child[i], ABORTED)

end

If t is an xor parallel or an or paralllel block, then at least one of its children should

commit successfully and all of its children should terminate (abort or commit).

else

root = CreateNode(OR,0)

end

No case is de�ned for the construction of guards of a for each block. For each

block requires a run-time algorithm for the generation of guards of the nodes
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in it. The method we use for this purpose consists of the preparation of guard

templates at compile time and construction of actual guards at run-time using

these templates. We treat a for each block as if it were a serial block when we are

preparing the templates. Then afterwards at run-time, we read those templates

from a persistent storage (a database) to generate the actual guards. Generation

of actual guards for a for each block is handled by the guard handler as explained

in Section 4.2.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, a guard generation algorithm for a distributed work
ow enactment

service based on the work presented in [36, 37] is described. Main contributions

of the thesis are as follows:

� Work
ow enactment service is the core component of a work
ow manage-

ment system because it performs the scheduling of tasks in the work
ow.

Distributed nature of the environments in which work
ow systems execute

necessitates that scheduling of tasks should also be done in a distributed

fashion. The enactment service described in this thesis achieves distributed

scheduling through the use of simple temporal expressions called guards.

� Block-structured and procedural nature of the work
ow speci�cation lan-

guage made it possible to avoid the very general set of dependencies and

their related problems during distributed scheduling of process instances.

Since the set of dependencies are known beforehand, the generation of guard

expressions used for scheduling of the tasks is facilitated.

� Based on the block semantics expressed through ACTA Framework, a guard

generation algorithm which constructs the guards of a work
ow from its

speci�cation is presented. In [2], guard generation process is said to run

into combinatorial explosion, because all the possible paths for a given

dependency are determined. On the other hand, the complexity of our
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guard generation algorithm is n, where n is the number of nodes in the

process tree (number of activities in the work
ow).

� A block not only clearly de�nes the data and control dependencies among

tasks but also presents a well de�ned recovery semantics, i.e., when a block

aborts, the tasks that are to be compensated and the order in which they

are to be compensated are already provided by the block semantics. This

further enables the incorporation of recovery semantics into guards during

guard generation.

This thesis presents an easy and e�cient method which is used to generate the

guards of events. The method makes use of the compile-time dependency infor-

mation hidden in the block-structured work
ow process de�nition. However, not

always can all the dependencies be initially given at compile time. Sometimes the

need may arise to modify the work
ow after it has started execution. Dynamic

modi�cation of dependencies requires the generation or modi�cation of guards at

run time. In fact, the for each block construct introduced in this thesis is an ex-

ample case where guards are generated dynamically at run time. But, there may

be other cases for which new methods should be developed to calculate the guard

expressions while the work
ow is executing. Therefore, the future work includes

the identi�cation of such cases and the development of new solutions. In addi-

tion to run-time modi�cation of guard expressions, the future work also includes

the incorporation of temporal dependencies and concurrency control dependen-

cies into guards to give time dimension into MFDL and to control concurrency

requirements distributedly.
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APPENDIX A

BNF OF METUFlow WORKFLOW

DEFINITION LANGUAGE

In this appendix the Backus-Naur Form (BNF) representation of METUFlow

work
ow de�nition language is given. The tokens are represented with capital

letters.

<wfdl> ::= <type_defs> <actvty_defs> <process_defs>

<type_defs> ::=

| <type_defs> <type_def> ';'

<type_def> ::= TYPEDEF <wfrd_type> <id_name>

| TYPEDEF <wfrd_type> <id_name> '[' <number> ']'

<actvty_defs> ::=

| <actvty_defs> <actvty_defn> ';'

<actvty_defn> ::= <trans_actvty>

| <non_trans_actvty>

| <trans_2PC_actvty>

| <user_actvty>

| <subprocess>

<subprocess> ::= PROCESS <process_name> <parameters> <duration>

<priority> <type1>

<trans_actvty> ::= TRANS <actvty_name> <parameters> <duration>

<priority> <type1>

<actvty_name> ::= IDENTIFIER

<type1> ::=
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| TYPE NON_VITAL

<non_trans_actvty> ::= NON_TRANS <actvty_name> <parameters>

<duration> <priority> <type1>

<trans_2PC_actvty> ::= TRANS_2PC <actvty_name> <parameters>

<duration> <priority> <type1>

| TRANS_2PC <actvty_name> <parameters>

<duration> <priority> <type2>

<type2> ::= TYPE CRITICAL

| TYPE CRITICAL NON_VITAL

<user_actvty> ::= USER_ACTIVITY <actvty_name> <parameters>

<duration> <priority> <participants>

<retry> ::=

| RETRY <number> TIMES

| RETRY '(' IF <condition> ')' <number> TIMES

<compensation> ::=

| COMPENSATED_BY <actvty_or_process_req>

| COMPENSATED_BY '{' <expression> '}'

<undo> ::=

| UNDO_BY <actvty_or_process_req>

| UNDO_BY '(' IF <condition> ')'

<actvty_or_process_req>

<process_defs> ::= <process_defs> <process_defn>

| <process_defn>

<process_defn> ::= DEFINE_PROCESS <process_name> <parameters>

<duration> <priority>

'{'

<declaration_list>

<expression_list>

'}'

<process_name> ::= <id_name>

<parameters> ::= '(' ')'

| '(' <prms> ')'

<prms> ::= <prms> ',' <def_parlist>

| <def_parlist>

<def_parlist> ::= IN <wfrd_type> <def_id_name>

| OUT <wfrd_type> <def_id_name>

| INOUT <wfrd_type> <def_id_name>

<def_id_name> ::=

| <id_name>

<name_list> ::= <id_name>

| <name_list> ',' <id_name>
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<init_val> ::= <signed_number>

| <char>

| <string>

| <signed_float>

<var_name2> ::=

| <id_name>

<var_name> ::=

| <id_name>

| <id_name> '=' <init_val>

| <id_name> '[' <number> ']'

<var_list> ::= <var_name>

| <var_list> ',' <var_name>

<wfrd_type> ::= INT_TYPE

| FLOAT_TYPE

| STRING_TYPE

| CHAR_TYPE

| OBJ_TYPE

| struct_type

| user_defined

<user_defined> ::= <id_name>

<struct_type> ::= STRUCTURE <var_name2>

'{'

<var_dec_list>

'}'

<var_dec_list> ::= <var_dec_list> <var_dec> ';'

| <var_dec> ';'

<var_dec> ::= <wfrd_type> <var_list>

<duration> ::=

| DURATION <duration_expr>

<duration_expr> ::= <number> DAYS <hour_expr>

| <number> HOURS <min_expr>

| <number> MINUTES <sec_expr>

| <number> SECONDS

<hour_expr> ::=

| <number> HOURS <min_expr>

<min_expr> ::=

| <number> MINUTES <sec_expr>

<sec_expr> ::=

| <number> SECONDS

<priority> ::=

| PRIORITY <number>
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<participants> ::= PARTICIPANT <name_list>

<declaration_list> ::= <declaration_list> <declaration> ';'

| <declaration> ';'

<declaration> ::= <actvty_dec>

| <process_dec>

| VAR <wfrd_type> <var_list>

<actvty_dec> ::= EXT_ACTIVITY <actvty_name> <actvty_ins_name>

<duration> <priority> <property>

<actvty_ins_name> ::= <id_name>

<property> ::=

| TYPE NON_VITAL

| TYPE CRITICAL

| TYPE CRITICAL NON_VITAL

<process_dec> ::= EXT_PROCESS <process_name> <process_ins_name>

<duration> <priority>

<process_ins_name> ::= <id_name>

<expression_list> ::= <expression_list> <expression>

| <expression>

<expression> ::= <actvty_or_process_req> <retry> <undo>

<compensation> ';'

| <assignment>

| <block>

<actvty_or_process_req> ::= <id_name> '(' <call_prms> ')'

<call_prms> ::=

| <call_parlist>

<call_parlist> ::= <wfrd_expr>

| <call_parlist> ',' <wfrd_expr>

<assignment> ::= <field_expr> '=' <wfrd_expr> ';'

<wfrd_varname> ::= <id_name>

<wfrd_expr> ::= <char>

| <string>

| <signed_float>

| <wfrd_numeric_expr>

<wfrd_numeric_expr> ::= <wfrd_numeric_expr> <wfrd_op>

<wfrd_numeric_expression>

| <wfrd_numeric_expression>

<field_expr> ::= <wfrd_varname>

| <wfrd_varname> '[' INDEX ']'

80



| <wfrd_varname> '[' <wfrd_expr> ']'

| <field_expr> '.' <wfrd_varname>

| <field_expr> '.' <wfrd_varname> '[' INDEX ']'

| <field_expr> '.' <wfrd_varname>'['<wfrd_expr>']'

<wfrd_numeric_expression> ::= <field_expr>

| '-' <wfrd_varname>

| <signed_number>

| '(' <wfrd_numeric_expr> ')'

<wfrd_op> ::= '+'

| '-'

| '*'

| '/'

| '%'

<block> ::= <named_block>

| <iterative_block>

| <conditional_block>

| <for_each_block>

<for_each_block> ::= FOR_EACH <block_name>

'(' <field_expr> ',' <parallel> ')'

<implicit_serial_block> <compensation>

<parallel> ::= PAR_AND

| PAR_OR

| PAR_XOR

<named_block> ::= <block_type> <block_name>

'{' <expression_list> '}' <compensation> ';'

<block_type> ::= SERIAL

| PAR_AND

| PAR_OR

| PAR_XOR

| CONTINGENCY

<block_name> ::=

| <id_name>

<iterative_block> ::= WHILE <condition> DO

'{' <expression_list> '}' <compensation> ';'

<conditional_block> ::= IF <condition> THEN <implicit_serial_block>

<else_part>

<implicit_serial_block> ::= '{' <expression_list> '}' <compensation>

<else_part> ::= ';'

| ELSE <implicit_serial_block> ';'

<condition> ::= <condition> <logical_op> <comparison_expr>

| <comparison_expr>

<comparison_expr> ::= <comparison>
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| NOT <comparison>

<comparison> ::= <wfrd_expr> <comp_op> <wfrd_expr>

| '(' <condition> ')'

<comp_op> ::= '=='

| '!='

| '<='

| '>='

| '>'

| '<'

<logical_op> ::= AND

| OR

| XOR

<id_name> ::= IDENTIFIER

<number> ::= NUMBER

<signed_number> ::= NUMBER

| SIGNED_NUMBER

<float> ::= FLOAT

<signed_float> ::= FLOAT

| SIGNED_FLOAT

<char> ::= CHAR

<string> ::= YSTRING
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