
DejaVu: Declarative Pattern Matching over
Live and Archived Streams of Events ∗

Nihal Dindar, Barış Güç, Patrick Lau, Aslı Özal, Merve Soner, Nesime Tatbul
Systems Group, Department of Computer Science, ETH Zurich, Switzerland

{dindarn, baris, laup, aoezal, msoner}@student.ethz.ch, tatbul@inf.ethz.ch

ABSTRACT
DejaVu is an event processing system that integrates declarative
pattern matching over live and archived streams of events ontop of
a novel system architecture. We propose to demonstrate the key as-
pects of the DejaVu query language and architecture using two dif-
ferent application scenarios, namely a smart RFID library system
and a financial market data analysis application. The demonstration
will illustrate how DejaVu can uniformly handle one-time, contin-
uous, and hybrid pattern matching queries over live and archived
stream stores, using highly interactive visual monitoringtools in-
cluding one that is based on the Second Life virtual world.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems –query processing, relational databases; H.3.4
[Information Storage and Retrieval]: Systems and Software– cur-
rent awareness systems; H.4 [Information Systems Applications]:
Miscellaneous

General Terms: Design

Keywords: data streams, complex event processing, pattern match-
ing, MySQL, RFID, Second Life

1. INTRODUCTION
Pattern matching over data sequences has recently become a key

requirement due to the increasing number of complex event pro-
cessing (CEP) applications. Well-known CEP applications include
financial market data analysis, RFID-based asset tracking,opera-
tional business intelligence, and network intrusion detection. In all
of these applications, it is important to be able to detect complex
patterns over live as well as archived streams of events.

The existing CEP engines (e.g., [5], [6]) mostly focus on high-
performance pattern matching over live event streams. Further-
more, coming up with the right language primitives for defining
these patterns has been a key concern and each system has pro-
posed its own custom pattern matching language. In spite of their
different syntax, these languages in fact have several common con-
cepts that are deemed essential for CEP, such as regular expressions
with selection predicates.

In DejaVu, we have a different focus and approach than the exist-
ing CEP systems. First of all, we believe that seamless integration
of pattern matching functionality over live and stored event streams
behind a common declarative interface is crucial. This not only en-
ables arbitrary event correlations within or across different time do-
mains, but also paves the way for making predictions about future
event occurrences, since an important class of interestingevent pat-

∗
This work has been supported by the following grants: Swiss NSF NCCR MICS

5005-67322, Swiss NSF ProDoc PDFMP2-122971/1, ETH matching funds, and a gift
from Siemens.

Copyright is held by the author/owner(s).
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

Figure 1: DejaVu System Architecture

terns are the ones that repeat in time, creating a sense of “deja vu”.
Furthermore, we believe that functionality-wise, patternmatching
over live and stored streams have a lot in common; and therefore,
reusing language and processing constructs for both scenarios is
the right approach to take. On the other hand, performance issues
and optimization possibilities are rather different for these scenar-
ios. Hence, our goal in DejaVu is to develop a coherent system
that unifies interface and functionality, but allows for flexible cus-
tomization of implementation and optimization methods across live
and historical data sequences. To realize this goal, we propose a
novel approach that builds on and significantly extends a relational
database engine architecture, by following a recent proposal for an
SQL-based declarative pattern matching language standard[10].

In this demonstration proposal, we first present an architectural
overview of our DejaVu system. Then we summarize the applica-
tion scenarios that we have been building on top of DejaVu in order
to showcase its main features. Finally, we discuss the issues regard-
ing the logistic setup of the proposed demonstration scenarios.

2. DEJAVU SYSTEM OVERVIEW
We have built DejaVu on top of the MySQL open-source database

system [8]. As such, we follow the basic architectural skeleton of
MySQL, while making new extensions for adding support for run-
ning different forms of pattern matching queries (one-time, contin-
uous, and hybrid) as necessary.

Figure 1 illustrates a high-level architecture of DejaVu. One of
the key architectural features of MySQL that we exploit in our de-
sign is its pluggable storage engine API. Through this API, one can
plug custom storage engines to work seamlessly with the MySQL
query processing engine. In addition to the traditional relational
store provided by MySQL, which we occasionally need for table
lookups, we have also created two new types of storage engines:

• Live Stream Storage: This is an in-memory store that accepts
push-based inputs. It essentially acts like a queue, providing
live events into the query processing engine as they arrive.The



(a) SmartRFLib on Second Life (b) Book theft event

Figure 2: Smart RFID Library application scenario

query processor can access the live stream store either in pull-
mode or push-mode. We have added the latter option in our
design to enable an adaptive switch between these two modes
in order to flexibly cope with unpredictable bursts in input load
inside the storage engine. In other words, under high load, we
switch to pull mode and let the storage handle the problem.

• Archived Stream Storage: Live input events can also be fully
or selectively materialized into an archive store. Archivestore
respects the pre-defined order of the events, and only allows
updates in the form of appends. It is also designed to provide
features such as data compression and efficient access methods
for historical pattern matching queries. Furthermore, since the
archive is a persistent store, it can support the live store in deal-
ing with bursts and failures.

In addition to creating two new storage engines, we have also
made an important extension to the MySQL query processor. More
specifically, we have introduced a finite state machine (FSM)im-
plementation to drive the evaluation of the pattern matching queries,
where the FSM runs as an integral part of the MySQL query plan.

On the language front, we have extended the MySQL language
parser with theMATCH_RECOGNIZE clause [10]. In the stan-
dard SQL syntax, this clause follows a table name in theFROM
part and enables the match of the specified pattern on that table.
Thus, the original language proposal assumes that pattern match-
ing queries will be applied over contiguous rows in a given re-
lational table. In DejaVu, we follow a similar syntax, but allow
the MATCH_RECOGNIZE clause to be attached to both archived
stream tables as well as live stream tables. In fact, we interpret
that in the latter case, theMATCH_RECOGNIZE clause defines a
“semantic window” over the live stream. This interpretation is in
perfect agreement with the traditional SQL syntax for time-and
count-based windows [4], [3]. We will show various featuresof the
MATCH_RECOGNIZE clause with examples in the next section.

Finally, we have added new DDL statements and corresponding
metadata into the MySQL catalogs to define continuous queries and
tables of new store types. For continuous queries, we had to also
add new mechanisms into the MySQL engine for query life-cycle
management and continuous result reporting.

3. DEMONSTRATION DETAILS
In this section, we first describe two application scenarios, that

will demonstrate different features of our system. Then we briefly
discuss issues related to the logistic setup of our demonstration.

3.1 App #1: Smart RFID Library
Our first application is from the RFID-based asset tracking do-

main. We consider a library with books and users, each tagged
with RFID labels. Based on continuous RFID readings from books

and people, we would like to detect important library eventssuch
as book check-ins, check-outs, illegal check-outs (e.g., reference
books or quota violation), and thefts. A similar library scenario
was also used by the HiFi Project before, where the main focus
was rather on the RFID event acquisition problem using a different
architecture and a much simpler event language than ours [9]. Fur-
thermore, we have also built a virtual library at the ETH Island on
Second Life calledSmartRFLib [2] (see Figure 2(a)). Through this
virtual library, we can interactively visualize the detected events in
real time. As such, our system also connects the real world events
detected via an RFID sensor network with their representations on
the virtual world of Second Life.

We will use this application scenario to demonstrate continuous
pattern matching queries over the DejaVu live stream store.In the
actual demonstration, we will show queries for all the complex
events listed above. Here we only show the query for the book
theft event as an example. Given a live stream of book readings
Books(Tstamp, ReaderId, TagId) from the readers, the book theft
event can be expressed as follows:

SELECT notify_theft(tstamp, book_tag, book_name)
FROM Books MATCH_RECOGNIZE(
PARTITION BY TagId
MEASURES B.Tstamp AS tstamp,

B.TagId AS book_tag,
get_name(B.TagId) AS book_name,

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
INCREMENTAL MATCH
PATTERN(A B)
DEFINE A AS (A.ReaderId = ’Shelf’)

B AS (B.ReaderId = ’Exit’)
);

Figure 2(b) shows how the resulting theft alert is visualized in
Second Life (exit gates turn red + an alarm sounds).

3.2 App #2: Financial Market Data Analysis
Our second application is from the financial services domain. We

took a real financial dataset from NYSE TAQ (Trade and Quote)
database [1] and loaded this dataset into our archived stream store.
We can also replay the same data as a continuous stream through
our live stream store. Furthermore, we defined a set of common
financial pattern matching queries (e.g., [7]).

We will use this application scenario to demonstrate one-time
and hybrid pattern matching queries over the DejaVu archived and
live stream stores. Here we give one example for each. Let Archived-
Stock(Tstamp, Symbol, Price) be an archived stream table and Live-
Stock(Tstamp, Symbol, Price) be a live stream table. The following
query is a simple day trader query that looks for a “tick-shape” pat-
tern (i.e., a fall in price, followed by a rise in price that went higher
up than the beginning price) for each company symbol over the
historical NYSE market events in ArchivedStock:



(a) DejaVu FSM Visualizer and Debugger (b) “Tick patterns” detected over NYSE TAQ archive

Figure 3: Financial Market Data Analysis application scenario

SELECT symbol, initial_price, min_price, max_price
FROM ArchivedStock MATCH_RECOGNIZE(

PARTITION BY Symbol
MEASURES A.Symbol AS symbol,

A.Price AS initial_price,
MIN(B.Price) AS min_price,
LAST(D.Price) AS max_price

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
MAXIMAL MATCH
PATTERN(A B+ C* D+)
DEFINE /* A matches any row */

B AS (B.Price<A.Price AND B.Price<=PREV(B.Price))
C AS (C.Price>=PREV(C.Price) AND C.Price<=A.Price)
D AS (D.Price>PREV(D.Price) AND D.Price>A.Price)

);

Figure 3(a) shows a run-time snapshot of this query on our inter-
active FSM visualizer and debugger tool, while Figure 3(b) shows
how we visualize the result patterns on a graph.

The following query is a hybrid version of the day trader query.
We replay a portion of the TAQ data as a live stream. Whenever a
fall in price is detected on this live stream, we would like tolook for
historical tick patterns where the fall was followed by an increase
that went up higher than the beginning price of the fall. The goal is
to identify the stocks that could bring profits in the near future.

SELECT min_tstamp_l, symbol_l, min_price_l,
initial_price_a, min_price_a, max_price_a

FROM LiveStock MATCH_RECOGNIZE(
PARTITION BY Symbol
MEASURES A.Symbol AS symbol_l,

MIN(B.Tstamp) AS min_tstamp_l,
MIN(B.Price) AS min_price_l

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
INCREMENTAL MATCH
PATTERN (A B+)
DEFINE /* A matches any row */

B AS (B.Price<A.Price AND B.Price<=PREV(B.Price))
), ArchivedStock MATCH_RECOGNIZE(
PARTITION BY Symbol
MEASURES A.Symbol AS symbol_a,

A.Price AS initial_price_a,
MIN(B.Price) AS min_price_a,
LAST(D.Price) AS max_price_a

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
MAXIMAL MATCH
PATTERN (A B+ C* D+)
DEFINE /* A matches any row */

B AS (B.Price<A.Price AND B.Price<=PREV(B.Price))
C AS (C.Price>=PREV(C.Price) AND C.Price<=A.Price)
D AS (D.Price>PREV(D.Price) AND D.Price>A.Price)

)
WHERE symbol_l = symbol_a;

3.3 Logistic Setup
In our demonstration, the DejaVu server runs on a Linux laptop.

For the first application scenario, we will use three RFID readers,
placed at different locations in the demonstration room. Wealso
have a two-reader version of the same demonstration in case physi-
cal space becomes an issue. A second laptop acts as the base station
for the RFID readings. Finally, a third laptop acts as the client in-
terface, on which we also run the Second Life (SL) client. Note that
the SL interface requires internet connectivity to communicate with
the SL servers. In case of poor or no connectivity at the demonstra-
tion venue, we can still display the output event logs (we arealso
planning to make in advance a video of the full demonstration(in-
cluding the SL part) as a precaution). The demonstration audience
can interact with SmartRFLib by using the RFID tags that we will
make available for them with which they can then create check-in,
check-out, and theft events themselves. They can also play with
our SL interface by registering their own avatars or by usingone
of our pre-defined avatars. For the second application scenario, in-
ternet connectivity is not needed. The audience can interact with
DejaVu by defining their own financial pattern matching queries,
watching or debugging the FSM execution on the visualizer, and
finally seeing the results plotted on a graph.

Acknowledgments. We thank Çăgrı Balkesen, Gautier Boder, Flo-
rian Keusch, Katinka Kromwijk, and Ali Şengül for their contribu-
tions to an earlier version of SmartRFLib, and Michele De Lorenzi
and Julien Vocat for their help with Second Life.

4. REFERENCES
[1] NYSE Data Solutions.http://www.nyxdata.com/nysedata/.
[2] Second Life.http://www.secondlife.com/.
[3] StreamSQL.http://www.streamsql.org/.
[4] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language:

Semantic Foundations and Query Execution.VLDB Journal, 15(2), 2006.
[5] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. White.

Cayuga: A General Purpose Event Monitoring System. InCIDR Conference,
Asilomar, CA, January 2007.

[6] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg, and G.Anderson. SASE:
Complex Event Processing over Streams (Demo). InCIDR Conference,
Asilomar, CA, January 2007.

[7] A. Lerner and D. Shasha. The Virtues and Challenges of Ad Hoc + Streams
Querying in Finance.IEEE Data Engineering Bulletin, 26(1), March 2003.

[8] S. Pachev.Understanding MySQL Internals. O’Reilly, 2007.
[9] S. Rizvi, S. R. Jeffery, S. Krishnamurthy, M. J. Franklin, N. Burkhart,

A. Edakkunni, and L. Liang. Events on the Edge (Demo). InACM SIGMOD
Conference, Baltimore, MD, June 2005.

[10] F. Zemke, A. Witkowski, M. Cherniack, and L. Colby. Pattern Matching in
Sequences of Rows. Technical Report ANSI Standard Proposal, July 2007.


