DejaVu: Declarative Pattern Matching over
Live and Archived Streams of Events *

Nihal Dindar, Baris Giig, Patrick Lau, Asli Ozal, Merve Soner, Nesime Tatbul
Systems Group, Department of Computer Science, ETH Zurich, Switzerland
{dindarn, baris, laup, aoezal, msoner}@student.ethz.ch, tatbul@inf.ethz.ch

ABSTRACT

DejaVu is an event processing system that integrates @iokar
pattern matching over live and archived streams of eventsof
a novel system architecture. We propose to demonstratesthask
pects of the DejaVu query language and architecture usiogitiv
ferent application scenarios, namely a smart RFID librystem
and a financial market data analysis application. The detraiit
will illustrate how DejaVu can uniformly handle one-timegrtin-
uous, and hybrid pattern matching queries over live andieedh
stream stores, using highly interactive visual monitoriagls in-
cluding one that is based on the Second Life virtual world.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems -gquery processing, relational databases; H.3.4
[Information Storage and Retrieval]: Systems and Softwarer-
rent awareness systems; H.4 [Information Systems Applications]:
Miscellaneous

General Terms. Design

Queries

DejaVu —
o
e oL
e Siroal 2
i =1
Streams Store < B
— o Query
Archived Stream | — | B| =3 Processing -Detected
Store % Engine Events
2
Traditional = |8
Store =
3
o
— —> dala

-=-> control

Figure 1. DejaVu System Architecture

terns are the ones that repeat in time, creating a sensejafvde
Furthermore, we believe that functionality-wise, pattaratching
over live and stored streams have a lot in common; and thexefo

Keywords: data streams, complex event processing, pattern match-"eusing language and processing constructs for both sosniar

ing, MySQL, RFID, Second Life

1. INTRODUCTION

the right approach to take. On the other hand, performarstess
and optimization possibilities are rather different foesle scenar-
ios. Hence, our goal in DejaVu is to develop a coherent system
that unifies interface and functionality, but allows for flae cus-

Pattern matching over data sequences has recently becoaye a k tomization of implementation and optimization methodoastive

requirement due to the increasing number of complex evemt pr
cessing (CEP) applications. Well-known CEP applicatiorcduide
financial market data analysis, RFID-based asset trackipgra-
tional business intelligence, and network intrusion dédec In all
of these applications, it is important to be able to detectgex
patterns over live as well as archived streams of events.

The existing CEP engines (e.g., [5], [6]) mostly focus orhhig
performance pattern matching over live event streams. hEuit
more, coming up with the right language primitives for defui

and historical data sequences. To realize this goal, weogmp
novel approach that builds on and significantly extendsatioial
database engine architecture, by following a recent piafos an
SQL-based declarative pattern matching language stafti@jd

In this demonstration proposal, we first present an architet
overview of our DejaVu system. Then we summarize the applica
tion scenarios that we have been building on top of DejaVudeino
to showcase its main features. Finally, we discuss thesssggard-
ing the logistic setup of the proposed demonstration stemnar

these patterns has been a key concern and each system has pro-

posed its own custom pattern matching language. In spitkeeif t
different syntax, these languages in fact have several comuon-
cepts that are deemed essential for CEP, such as regulassiqs
with selection predicates.

In DejaVu, we have a different focus and approach than thet-exi
ing CEP systems. First of all, we believe that seamless riatiem
of pattern matching functionality over live and stored exstreams
behind a common declarative interface is crucial. This mby en-
ables arbitrary event correlations within or across ddfertime do-
mains, but also paves the way for making predictions abdutdu
event occurrences, since an important class of interestiegt pat-

>kThis work has been supported by the following grants: SwiS&NMCCR MICS
5005-67322, Swiss NSF ProDoc PDFMP2-122971/1, ETH magdhinds, and a gift
from Siemens.

Copyright is held by the author/owner(s).
S GMOD’ 09, June 29-July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

2. DEJAVU SYSTEM OVERVIEW

We have built DejaVu on top of the MySQL open-source database
system [8]. As such, we follow the basic architectural steeleof
MySQL, while making new extensions for adding support far-ru
ning different forms of pattern matching queries (one-ticmntin-
uous, and hybrid) as necessary.

Figure 1 illustrates a high-level architecture of DejaVunedof
the key architectural features of MySQL that we exploit im da-
sign is its pluggable storage engine API. Through this ARg can
plug custom storage engines to work seamlessly with the MySQ
query processing engine. In addition to the traditionahtiehal
store provided by MySQL, which we occasionally need for ¢abl
lookups, we have also created two new types of storage esigine

e Live Stream Storage: This is an in-memory store that accepts
push-based inputs. It essentially acts like a queue, prayid
live events into the query processing engine as they arfike.

(a) SmartRFLib on Second Life (b) Book theft event

Figure2: Smart RFID Library application scenario

query processor can access the live stream store eithetlin pu and people, we would like to detect important library evensh
mode or push-mode. We have added the latter option in our as book check-ins, check-outs, illegal check-outs (eefgrence
design to enable an adaptive switch between these two modesbooks or quota violation), and thefts. A similar library se€o
in order to flexibly cope with unpredictable bursts in inpozd was also used by the HiFi Project before, where the main focus
inside the storage engine. In other words, under high lo&d, w was rather on the RFID event acquisition problem using e it
switch to pull mode and let the storage handle the problem. architecture and a much simpler event language than our&({®]

e Archived Stream Storage: Live input events can also be fully ~ thermore, we have also built a virtual library at the ETH itslon

or selectively materialized into an archive store. Architere Second Life calledmartRFLib [2] (see Figure 2(a)). Through this

respects the pre-defined order of the events, and only allows Virtual library, we can interactively visualize the detettevents in

updates in the form of appends. It is also designed to provide real time. As such, our system also con'nects Fhe real WOeqBV

features such as data compression and efficient accessdmetho detected via an RFID sensor network with their represestiaton

for historical pattern matching queries. Furthermorecsithe the virtual world of Second Life. .)

archive is a persistent store, it can support the live stockeal- We will use this application scenario to demonstrate cartirs

ing with bursts and failures. pattern matching queries over the DejaVu live stream stioréhe
actual demonstration, we will show queries for all the casmpl
events listed above. Here we only show the query for the book
theft event as an example. Given a live stream of book reading
Books(Tstamp, Readerld, Tagld) from the readers, the bbeft t
event can be expressed as follows:

In addition to creating two new storage engines, we have also
made an important extension to the MySQL query processoreMo
specifically, we have introduced a finite state machine (FBM)
plementation to drive the evaluation of the pattern maghjneries,
where the FSM runs as an integral part of the MySQL query plan.

On the language front, we have extended the MySQL language =~ SELECT notify_theft(tstanp, book_tag, book_name)
FROM Books MATCH_RECOGNI ZE(

parser with theMATCH_RECOGNI ZE clause [10]. In the stan- PARTI TI ON BY Tagl d

dard SQL syntax, this clause follows a table name in FROM MEASURES B. Tstanp AS tstanp,

part and enables the match of the specified pattern on thiat tab B. Tagl d AS $°°:<at a%s book
Thus, the original language proposal assumes that pattetche ONE ROW PR K/R?.E(-Taghd) ook_name,
ing queries will be applied over contiguous rows in a given re AFTER MATCH SKI P PAST LAST ROW

lational table. In DejaVu, we follow a similar syntax, butcaV Lﬁggﬁ&% MATCH

the MATCH_RECOGNI ZE clguse to be attached to both arphlved DEFI NE A AS (A Readerld = ' Shelf')
stream tables as well as live stream tables. In fact, weprdéer B AS (B.Readerld = "Exit')

that in the latter case, thdATCH RECOGNI ZE clause defines a)

“semantic window” over the live stream. This interpretatis in
perfect agreement with the traditional SQL syntax for tiraed
count-based windows [4], [3]. We will show various featuoéshe
MATCH_RECOGNI ZE clause with examples in the next section. 3.2 App #2: Financial Market Data Analysis
Finally, we have added new DDL statements and corresponding o,y second application is from the financial services domale
metadata into the MySQL catalogs to define continuous gsiarid took a real financial dataset from NYSE TAQ (Trade and Quote)
tables of new store types. For continuous queries, we hatsto a j1aha5e [1] and loaded this dataset into our archivechststare.
add new mechanisms into the MySQL engine for query life®ycl \ye can also replay the same data as a continuous stream hhroug
management and continuous result reporting. our live stream store. Furthermore, we defined a set of common
financial pattern matching queries (e.g., [7]).

Figure 2(b) shows how the resulting theft alert is visualize
Second Life (exit gates turn red + an alarm sounds).

3. DEMONSTRATION DETAILS We will use this application scenario to demonstrate ometi
In this section, we first describe two application scenaribat and hybrid pattern matching queries over the DejaVu archamed
will demonstrate different features of our system. Then wefly live stream stores. Here we give one example for each. Ldtited-
discuss issues related to the logistic setup of our denetittr Stock(Tstamp, Symbol, Price) be an archived stream talolé &e-
. . Stock(Tstamp, Symbol, Price) be a live stream table. THeviahg
31 App #1: Smart RFID Libr ary query is a simple day trader query that looks for a “tick-siggat-

Ouir first application is from the RFID-based asset tracking d tern (i.e., a fall in price, followed by a rise in price thatmtdiigher
main. We consider a library with books and users, each tagged up than the beginning price) for each company symbol over the
with RFID labels. Based on continuous RFID readings fromkisoo historical NYSE market events in ArchivedStock:

—C

[a][al[a e

mimimEER

~

OOOHHOLO

(a) DejaVu FSM Visualizer and Debugger

Price

0 Symbol = A

U

ALITOTAN TEICEAN 111901 A 1L0MA 11224240 112341 AN 1NAOAL 110NN 11204 M0 11 29A0 NZ4AN 11DSAN
VAT02AM LR AN THIBDAU 1EIGRA I121BAN 112009AN 11230540 112839M0 11286340 1120000 112034A) 11 DITAN 113013

Timestamp

(b) “Tick patterns” detected over NYSE TAQ archive

Figure 3: Financial Market Data Analysis application scenario

SELECT synbol, initial_price, min_price,
FROM Ar chi vedSt ock MATCH_RECOGNI ZE(
PARTI TI ON BY Synbol
MEASURES A. Synbol AS synbol ,
A Price ASinitial_price,
M N(B. Price) AS nmin_price,
LAST(D. Price) AS max_price
ONE ROW PER MATCH
AFTER MATCH SKI P PAST LAST ROW
MAXI MAL MATCH
PATTERN(A B+ C+ D+)
DEFI NE /* A matches any row x*/
B AS (B.Price<A Price AND B. Pri ce<=PREV(B. Price))
C AS (C. Price>=PREV(C.Price) AND C. Price<=A. Price)
D AS (D. Price>PREV(D. Price) AND D.Price>A. Price)

max_price

)

Figure 3(a) shows a run-time snapshot of this query on oer-nt
active FSM visualizer and debugger tool, while Figure 3{mves
how we visualize the result patterns on a graph.

The following query is a hybrid version of the day trader quer

We replay a portion of the TAQ data as a live stream. Whenever a

fall in price is detected on this live stream, we would likédok for

historical tick patterns where the fall was followed by anrgase
that went up higher than the beginning price of the fall. Thaldgs

to identify the stocks that could bring profits in the neaufet

SELECT min_tstanp_|, synbol I, min_price_l,
initial _price_a, mn_price_a, max_price_a
FROM Li veSt ock MATCH RECOGNI ZE(
PARTI TI ON BY Synbol
MEASURES A. Synbol AS synbol _I,
M N(B. Tstanp) AS min_tstanmp_|,
M N(B. Price) AS min_price_|
ONE ROW PER MATCH
AFTER MATCH SKI P PAST LAST ROW
| NCREMENTAL MATCH
PATTERN (A B+)
DEFI NE /* A natches any row */
B AS (B.Price<A Price AND B. Pri ce<=PREV(B. Price))
), ArchivedStock MATCH RECOGNI ZE(
PARTI TI ON BY Synbol
MEASURES A. Synbol AS synbol _a,
A Price ASinitial_price_a,
M N(B. Price) AS nmin_price_a,
LAST(D. Price) AS nmax_price_a
ONE ROW PER MATCH
AFTER MATCH SKI P PAST LAST ROW
MAXI MAL MATCH
PATTERN (A B+ G+ D+)
DEFI NE /* A matches any row */
B AS (B.Price<A Price AND B. Pri ce<=PREV(B. Price))
C AS (C. Price>=PREV(C. Price) AND C. Price<=A.Price)
D AS (D. Price>PREV(D. Price) AND D.Price>A. Price)
)
WHERE synbol _| = synbol _a;

3.3 Logistic Setup

In our demonstration, the DejaVu server runs on a Linux lppto
For the first application scenario, we will use three RFIDdexa,
placed at different locations in the demonstration room. alé®
have a two-reader version of the same demonstration in dase-p
cal space becomes an issue. A second laptop acts as thedias®e st
for the RFID readings. Finally, a third laptop acts as therdliin-
terface, on which we also run the Second Life (SL) client.eNtbiat
the SL interface requires internet connectivity to comrnoate with
the SL servers. In case of poor or no connectivity at the destnan
tion venue, we can still display the output event logs (weakse
planning to make in advance a video of the full demonstratiien
cluding the SL part) as a precaution). The demonstratiomeacd
can interact with SmartRFLib by using the RFID tags that wi wi
make available for them with which they can then create clieck
check-out, and theft events themselves. They can also pily w
our SL interface by registering their own avatars or by using
of our pre-defined avatars. For the second application siceria-
ternet connectivity is not needed. The audience can irttevil
DejaVu by defining their own financial pattern matching qesyi
watching or debugging the FSM execution on the visualized a
finally seeing the results plotted on a graph.

Acknowledgments. We thank Cgri Balkesen, Gautier Boder, Flo-
rian Keusch, Katinka Kromwijk, and Ali Sengl for their dabu-
tions to an earlier version of SmartRFLib, and Michele Dedrai
and Julien Vocat for their help with Second Life.

4. REFERENCES

[1] NYSE Data Solutionsht t p: / / www. nyxdat a. conmf nysedat a/ .

[2] Second Lifehttp://ww. secondlife.con .

[3] StreamSQLhtt p://www. streansql.org/.

[4] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Queawduage:
Semantic Foundations and Query ExecutdhDB Journal, 15(2), 2006.

[5] A.Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharmd,\i. White.
Cayuga: A General Purpose Event Monitoring SystenCIIR Conference,
Asilomar, CA, January 2007.

[6] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg, andXaderson. SASE:
Complex Event Processing over Streams (DemoLIMR Conference,
Asilomar, CA, January 2007.

[7]1 A.Lernerand D. Shasha. The Virtues and Challenges of Ad HStreams
Querying in Financel EEE Data Engineering Bulletin, 26(1), March 2003.

[8] S.PachevUnderstanding MySQL Internals. O’Reilly, 2007.

[9] S.Rizvi, S. R. Jeffery, S. Krishnamurthy, M. J. Frankik. Burkhart,

A. Edakkunni, and L. Liang. Events on the Edge (Demo)AGM SGMOD
Conference, Baltimore, MD, June 2005.

[10] F. Zemke, A. Witkowski, M. Cherniack, and L. Colby. Ratt Matching in
Sequences of Rows. Technical Report ANSI Standard Prophdgl2007.

