
Incremental DNA Sequence Analysis in the Cloud

Romeo Kienzler1, Rémy Bruggmann2, Anand Ranganathan3, Nesime Tatbul1

1 Department of Computer Science, ETH Zurich, Switzerland
romeok@student.ethz.ch, tatbul@inf.ethz.ch

2 Bioinformatics, Department of Biology, University of Bern, Switzerland
remy.bruggmann@biology.unibe.ch
3 IBM T.J. Watson Research Center, NY, USA

arangana@us.ibm.com

Abstract. In this paper, we propose to demonstrate a “stream-as-you-go” ap-
proach that minimizes the data transfer time of data- and compute-intensive sci-
entific applications deployed in the cloud, by making them incrementally pro-
cessable. We describe a system that implements this approach based on the IBM
InfoSphere Streams computing platform deployed over Amazon EC2. The func-
tionality, performance, and usability of the system will be demonstrated through
two DNA sequence analysis applications.

1 Introduction

In many areas of science, huge amounts of data is being generated at rates that outrun
the ability of researchers to store, transmit, and analyze it. For example, in DNA se-
quence analysis, complex workflows need to be efficiently executed over digital DNA
fragments that are now being generated much faster and cheaper owing to the re-
cently invented Next Generation Sequencing (NGS) methods [17]. For such data- and
compute-intensive scientific applications, researchers are increasingly turning to cloud
computing as a scalable and cost-effective solution. In this case, raw input data that is
generated by special scientific devices (e.g., NGS machines) outside the cloud must first
be shipped into the cloud. However, due to limited bandwidth between the client and
the cloud, transferring large data sets into the cloud can introduce significant latencies
and may even become a bottleneck that hinders the scalability advantage of the cloud.

In our recent work, we have proposed an incremental data access and processing
approach for data- and compute-intensive cloud applications that can hide data transfer
latencies while maintaining linear scalability [7], [8]. In our approach, data is accessed
in a “stream-as-you-go” fashion instead of in whole batches, making a stream-based
data management architecture a suitable base for implementation. In this demonstration,
we propose to show the functionality, performance, and usability of our approach in
action through two practical applications of DNA sequence analysis:

1. Read alignment: This application involves a very basic and common process in
DNA sequence analysis workflows: aligning digital DNA fragments, called reads,
against a reference genome. In the demo, we will show how a well-known read
aligner package (SHRiMP [13]) as part of a more complex workflow can be trans-
parently replaced with our stream-as-you-go version to incrementally run in the



cloud, both producing early results as well as significantly reducing the total pro-
cessing time of the whole workflow.

2. SNP detection: This application additionally involves detecting SNPs (Single Nu-
cleotide Polymorphisms [3]) as reads are being aligned against a reference genome.
Different from the first demo, we will show how a complete workflow can be re-
placed with our stream-as-you-go version and can be pushed into the cloud through
an easy-to-use client interface. In this demo, we will use Bowtie [10] (instead
of SHRiMP) as the read alignment package and SOAPsnp [12] as the SNP de-
tection package, making our approach directly comparable to the state of the art
performance-wise (i.e., the MapReduce-based approach of Crossbow [9]). Thus,
we will also report on our performance improvements.

In the rest of this paper, we describe in more detail, our stream-as-you-go approach
and the applications that will be used to demonstrate its key features.

2 The Stream-as-you-go Approach

Our key idea to address the data upload latency of scientific applications deployed in
the cloud is to enable useful data processing as soon as the first piece of the data set hits
the cloud rather than waiting until the arrival of the whole data set. This way, the data
transfer latency can be hidden by overlapping it with data processing time. To realize
this idea, we propose to use a stream-based data management platform. Our main mo-
tivation to do so is to exploit the incremental and in-memory data processing model of
Stream Processing Engines (SPEs) (in our specific implementation, the IBM InfoSphere
Streams engine [2]). More specifically, we bring (parts of) existing scientific workflows
(algorithms/software) into the cloud in a way that they can work with their input data
in an incremental fashion. One generic way of realizing this is to use command line
tools provided by most of these software. They commonly read and write to standard
Unix pipes, which we can exploit by building custom streaming operators that wrap the
relevant Unix processes. Then the SPE essentially acts as the middleware to handle all
system-level requirements such as inter-process communication, data partitioning and
dissemination, operator distribution, and dynamic scaling.

Figure 1 illustrates our general approach. As seen, the main goal is to provide par-
titions of the source data to the analysis processes running in parallel on different slave
cloud nodes in a streaming fashion. This way, data transfer time can be hidden and
early results can be generated. Furthermore, incremental processing of streaming data
also allows in-memory processing, eliminating the latency of disk access.

3 The DNA Sequence Analysis Use Case

Determining the order of the nucleotide bases in DNA molecules and analyzing the
resulting sequences have become very essential in biological research and applications.
With the invention of the NGS methods in 2004 [17], higher amounts of genetic data
can be read in much less time and at lower cost [7], which has led to the generation of
very large datasets to be efficiently analyzed. The output of NGS machines are random



Fig. 1. The stream-as-you-go approach

DNA fragments (reads) of short length. Therefore, they must first be aligned into a
complete sequence by mapping them back to a reference genome [11]. The alignment
can also highlight the differences against the reference. Such a difference is called a
polymorphism. The polymorphism of a single DNA letter is called Single Nucleotide
Polymorphism (SNP). SNPs are important to identify, since they are recognized as the
main cause of human genetic variability [5]. As such, read alignment and SNP detection
are two common, computationally-intensive applications in this domain.

Researchers have recently started using cloud infrastructures for various DNA se-
quence analysis applications. The current state of the art in massively parallel analysis
of large genomic data sets is mainly based on using MapReduce [6] or other similar
frameworks [15]. Prominent examples include CloudBurst [14] and CloudAligner [16]
for read alignment, and Crossbow [9] for the complete SNP detection process. Despite
providing basic scalability, all these solutions suffer from the data transfer latency, since
the cloud frameworks that they are based on are primarily designed for batch process-
ing of data stored in a distributed file system in the cloud. In the following, we describe
how read alignment and SNP detection can be modeled and implemented using our
stream-as-you-go approach, which overcomes this bottleneck.

3.1 Read Alignment a la Stream-as-you-go

Figure 2 shows our stream-as-you-go implementation of the read alignment applica-
tion. The complete workflow consists of an input data format conversion process, the
SHRiMP read aligner process, and an output data format conversion process. Only the
SHRiMP part of the workflow is replaced with a stream-as-you-go version deployed



Fig. 2. Stream-as-you-go implementation of read alignment

in the cloud, while the original data conversion processes continue to run at the client
node. The client application sends compressed read data to the cloud. After being un-
compressed, data gets submitted to a Streams application which first splits it across
the available cluster nodes. Split reads are then aligned in parallel using the SHRiMP
read aligner package. The output from each SHRiMP instance which are incrementally
generated on each processing node in parallel are finally merged, compressed, and sent
back to client, where they are uncompressed before the final format conversion. Further
details about this implementation can be found in our earlier publication [7].

3.2 SNP Detection a la Stream-as-you-go

Fig. 3. Stream-as-you-go implementation of SNP detection

Figure 3 shows our stream-as-you-go implementation of the SNP detection appli-
cation. The client application sends compressed read data to the cloud. After being
uncompressed, data gets submitted to a Streams application which first splits it across
the available cluster nodes. Split reads are then aligned in parallel using the Bowtie read
aligner package. The output from each Bowtie instance is further partitioned by genome
position to be then sorted using a distributed in-memory insertion sort algorithm. Af-
ter some data conversion steps, the sorted data is fed into the SOAPsnp SNP detection
package for SNP calling. Results which are incrementally generated on each processing
node in parallel are finally merged and sent back to the client over a TCP connection.
Further details about this implementation can be found in our earlier publication [8],
where we also show almost an order of magnitude reduction in total processing time
compared to the state of the art (MapReduce-based Crossbow [9]).



Fig. 4. Tablet-based visualization of aligned reads in comparison to the reference genome

4 Demonstration Details

In order to demonstrate the key features of our stream-as-you-go approach, we will
use the two application scenarios whose implementations are described in the previous
section.

In the read alignment demo, a partial workflow (i.e., the SHRiMP part) will be
converted into an incremental version and will be transparently pushed to the cloud. We
will contrast the speed of a local run of the whole workflow against its cloud-enabled
counterpart. We will show that, besides a significant speedup, nothing else changes. The
process as well as the results stay the same.

For illustration purposes, we will sniff the traffic between the client and the cloud.
On the outgoing link, we will see the raw read data, whereas on the incoming link,
already processed results will be seen. Data sets will be visualized and explained using
the Tablet assembly viewer software [4]. For example, Figure 4 displays the results of
an experiment, in which 30000 reads of Streptococcus suis (an important pathogen of
pigs) have been aligned against its reference genome. This read data set is taken from
the CloudBurst project [14].

In the SNP detection demo, a complete workflow will be converted into a Streams-
based incremental version to be deployed in the cloud. We will show an easy-to-use
graphical user interface, which allows researchers to run a complete SNP calling process
on cloud resources without worrying about the details (Figure 5). The interface allows
to select the source and the target data files (for reads and the reference genome) as
well as the predefined data analysis process to be used. They can also configure their
cloud cluster by selecting the number of nodes to be used based on a corresponding
time and price estimation. Once the analysis completes, we will display the detected
SNPs. We are planning to use the “E. Coli Small Example” dataset provided at the



Fig. 5. Easy-to-use cloud deployment interface

Crossbow website [1]. The read file in this dataset is taken from an E. Coli experiment
and contains 8922730 reads with a total size of 1.4 GB. The process aligns these reads
against the E. Coli reference genome (NC 008253.1) containing 5594158 base pairs
with a total size of 5.4 MB.

Acknowledgements. This work has been supported in part by an IBM faculty award.

References
1. Crossbow, http://bowtie-bio.sourceforge.net/crossbow/
2. IBM InfoSphere Streams, http://www.ibm.com/software/data/infosphere/streams/
3. SNP, http://en.wikipedia.org/wiki/Single-nucleotide polymorphism
4. Tablet Assembly Viewer, http://bioinf.scri.ac.uk/tablet
5. Collins, F.S., Guyer, M., Chakravarti, A.: Variations on a Theme: Cataloging Human DNA

Sequence Variation. Science 278(5343) (1997)
6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

OSDI Conference (2004)
7. Kienzler, R., Bruggmann, R., Ranganathan, A., Tatbul, N.: Large-scale DNA Sequence Anal-

ysis in the Cloud: A Stream-based Approach. In: Euro-Par VHPC Workshop (2011)
8. Kienzler, R., Bruggmann, R., Ranganathan, A., Tatbul, N.: Stream As You Go: The Case for

Incremental Data Access and Processing in the Cloud. In: ICDE DMC Workshop (2012)
9. Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.L.: Searching for SNPs with Cloud

Computing. Genome Biology 10(11) (2009)
10. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and Memory-efficient Alignment

of Short DNA Sequences to the Human Genome. Genome Biology 10(3) (2009)
11. Li, H., Homer, N.: A Survey of Sequence Alignment Algorithms for Next Generation Se-

quencing. Briefings in Bioinformatics 11(5) (2010)
12. Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., Wang, J.: SNP Detection for

Massively Parallel Whole-Genome Resequencing. Genome Research 19(6) (2009)
13. Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., Brudno, M.: SHRiMP: Ac-

curate Mapping of Short Color-space Reads. PLoS Computational Biology 5(5) (2009)
14. Schatz, M.C.: CloudBurst: Highly Sensitive Read Mapping with MapReduce. Bioinformat-

ics 25(11) (2009)
15. Taylor, R.: An Overview of the Hadoop/MapReduce/HBase Framework and its Current Ap-

plications in Bioinformatics. BMC Bioinformatics 11(Suppl 12) (2010)
16. Tung, N., Weisong, S., Douglas, R.: CloudAligner: A Fast and Full-featured MapReduce-

based Tool for Sequence Mapping. BMC Research Notes 4 (2011)
17. Voelkerding, K.V., Dames, S.A., Durtschi, J.D.: Next Generation Sequencing: From Basic

Research to Diagnostics. Clinical Chemistry 55(4) (2009)


