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ABSTRACT
Integrating low-latency data streaming into data warehouse ar-
chitectures has become an important enhancement to support
modern data warehousing applications. In these architectures, het-
erogeneous workloads with data ingestion and analytical queries
must be executed with strict performance guarantees. Furthermore,
the data warehouse may consists of multiple different types of
storage engines (a.k.a., polystores or multi-stores). A paramount
problem is data placement; different workload scenarios call for
different data placement designs. Moreover, workload conditions
change frequently. In this paper, we provide evidence that a dy-
namic, workload-driven approach is needed for data placement in
polystores with low-latency data ingestion support. We study the
problem based on the characteristics of the TPC-DI benchmark in
the context of an abbreviated polystore that consists of S-Store and
Postgres.
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1 INTRODUCTION
In many modern applications such as the Internet of Things (IoT),
time-sensitive data generated by a large number of diverse sources
must be collected, stored, and analyzed in a reliable and scalable
manner. This is critical to supporting accurate and timely monitor-
ing, decision making, and control. Traditional data warehousing
architectures that have been based on separate subsystems for
managing operational (OLTP), data ingestion (ETL), and analytical
(OLAP) workloads in a loosely synchronized manner are no longer
sufficient to meet these needs. As a result, new approaches such
as data stream warehousing [14], near real-time warehousing [27],
lambda/kappa architectures [1, 2, 12], and HTAP systems [4] have
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recently emerged. While these approaches architecturally differ
from one another, low-latency data ingestion (a.k.a., streaming or
near real-time ETL) is seen as a critical component of the solution
in all of them.

In our recent work, we have designed and built one-of-a-kind
transactional stream processing system called S-Store [20]. S-Store is
a scalable main-memory system that supports hybrid OLTP+stream-
ing workloads with well-defined correctness guarantees including
ACID, ordered execution, and exactly-once processing [26]. While
S-Store can be used as a stand-alone system to support streaming
applications with shared mutable state [6], we have also shown,
within the context of the BigDAWG polystore system [11], how S-
Store can uniquely enhance OLAP-style data warehousing systems
with near real-time capabilities [21].

We believe that streaming ETL in particular stands out as the
killer app for S-Store [19]. More specifically, S-Store can easily be
programmed to continuously ingest configurable-size batches of
newly added or updated data from a multitude of sources, and ap-
ply the necessary cleaning and transformation operations on them
using its dataflow-based computational model. Furthermore, it pro-
vides the necessary scalable system infrastructure for processing
ETL dataflows with transactional guarantees. A crucial component
of this infrastructure is the database-style local in-memory storage.
S-Store’s storage facilities can be used for multiple different pur-
poses, including: (i) temporary staging of newly ingested batches
and any intermediate data derived from them as they are being
prepared for loading into the back-end data warehouse, (ii) caching
copies of older data fragments from the warehouse that will need
to be frequently looked up during ETL, (iii) serving as the primary
storage for data fragments which are subject to frequent updates. In
general, since our streaming ETL engine has all the capabilities of
an in-memory OLTP database, it can take over some of the respon-
sibility of the back-end warehouse. For example, it can be directly
queried to provide fast and consistent access to the freshest data.

Figure 1 shows a high-level overview of the streaming ETL archi-
tecture that we envision. All data newly collected from the sources
(time-ordered, append-only streams as well as arbitrary insertions
in general) and requests for in-place updates or deletions on older
data are ingested through a transactional streaming engine (S-Store).
The streaming engine in turn populates a back-end OLAP engine
with updates on a frequent basis, through a data migration com-
ponent. The migration component is bi-directional, i.e., data can
be copied or moved between the two engines transactionally, in
both directions. Meanwhile, all OLAP query requests to the system
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Figure 1: Architectural Overview

are received by a middleware layer that sits on top of the two en-
gines. This layer maintains a global system catalog, which keeps
track of all the data fragments and where they are currently stored.
Based on this information, it determines where to forward the query
requests for execution. Query results received from the engines
are then returned back to the user. We have built a working pro-
totype for this architecture based on Kafka [17] (data collection),
S-Store (streaming ETL engine), Postgres (OLAP engine), and Big-
DAWG (migration + middleware layer) [19]. This architecture raises
a number of interesting research issues in terms of cross-system
optimization.

In this paper, we study how different data placement strategies
perform in the presence of mixed (read and write) ETL workloads:
Given a data fragment (i.e., the lowest level of data granularity
- part of a relation), it can be stored in the streaming engine, in
the OLAP engine, or in both. While the main-memory streaming
engine can generally handle look-ups and updates faster, it has a
limited memory budget. In contrast, the OLAP engine has larger
storage capacity, but is slower to access. Furthermore, both engines
are subject to dynamically changing workloads which consist of
ingestion and query requests. Thus, given a mixed workload with
different types of data, operations, and performance needs, data
ingestion is affected greatly by the decisions of (i) which data frag-
ments to store in the streaming engine, and (ii) whether to copy
or move the data fragments between the database engines. As we
will illustrate based on preliminary experiments on the TPC-DI
benchmark [23], this decision can have significant impact on ETL
latency.

2 BACKGROUND
2.1 BigDAWG Polystore
When it comes to database systems, it is commonly believed that
“one-size no longer fits all" [25]. Specialized databases have become
the norm. Some systems are designed specifically for unique types
of data such as arrays or graphs [7, 9]. Others specialize in data for-
matting such that analytical queries can run extremely quickly [24].
Many workloads, however, require multiple of these specializations
to execute efficiently.

Intel’s BigDAWG represents a polystore of multiple disparate
database systems, each of which specializes in one type of data
(e.g., relational, array, streaming, etc.) [11]. BigDAWG provides

Figure 2: BigDAWG 1.0 Architecture

the user with querying and data migration across these systems,
essentially abstracting the individual systems into one unified front-
end from the user’s perspective. BigDAWG accomplishes this by
separating databases into several “islands of information", each
of which contains multiple systems that share a common query
language. For instance, relational databases such as Postgres and
MySQL are connected to "relational island," which is queried via
SQL statements (Figure 2).

While operations are delegated to the appropriate specialized
system, BigDAWG also contains the ability to run queries on one
engine which requires data from another engine. To facilitate this,
BigDAWG contains the ability to efficiently migrate data from one
engine to another. One specific scenario that data migration makes
possible is the ingestion of streaming data into an analytical data
warehouse. Such a scenario is best served by a data stream manage-
ment system performing data cleaning operations on the streaming
data before migrating the data to the OLAP engine, as discussed in
Section 1.

2.2 S-Store
S-Store is a streaming system that specializes in the correct man-
agement of shared, mutable state [20]. S-Store models its dataflow
graphs as a series of transactions, each of which has full ACID prop-
erties inherited from OLTP. S-Store also provides the ordering and
exactly-once guarantees of a modern streaming system, ensuring
correctness from the perspective of the dataflow graph.

S-Store is built on top of themain-memoryOLTP system, H-Store
[16]. Transactions are parameterized user-defined stored proce-
dures, each of which passes output data along a stream in a dataflow
graph to be used as the input parameters of the next downstream
stored procedure. Each transaction executes on an atomic batch of
tuples, the size of which is defined by the user. Batches are ordered
by their time of arrival, and that order is maintained throughout the
dataflow graph. Transactions in a dataflow graph typically execute
independently, meaning locks on shared state are released between
consecutive transactions in the graph.

3 THE DATA PLACEMENT PROBLEM
In our data warehousing setting, the workload consists of a mix
of ingest requests and query requests. These requests must be
served on a continuous basis with low latency and high throughput.
Ingest requests may generally consist of any changes to the data in
the warehouse including insertions, in-place updates, or deletions.
Feeds from streaming data sources (e.g., sensors, stock market) are
typically in the form of appends (i.e., only time-ordered insertions).
Ingest requests are primarily served by S-Store, whereas query
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requests can be served by both S-Store or Postgres depending on
the location of the needed data fragments.

S-Store transactionally processes ingest requests in small, atomic
batches of tuples in order to apply ETL transformations. The result-
ing data fragments are then asynchronously migrated from S-Store
to Postgres. This migration can be in the form of periodic pushes
from S-Store to Postgres, or on-demand pulls by Postgres. Since
S-Store has its own local storage, it can store a data fragment tem-
porarily until migration, or even thereafter if that fragment will
be needed by S-Store. While the natural direction of migration for
newly ingested data is from S-Store to Postgres, we also support
migrations in the opposite direction. It can be useful to bring older
data fragments back to S-Store, such as when an ETL transforma-
tion needs to look up older data for validating new data or when a
certain data fragment starts receiving a burst of in-place updates
on it.

In general, while a data fragment is being migrated from one
engine (source) to another (destination), there are two options with
respect to data placement:

(1) Move.Delete the migrated data fragment from the source en-
gine as part of the migration transaction (i.e., the destination
engine becomes the one and only location for the fragment).

(2) Copy.Continue to keep a copy of themigrated data fragment
at the source engine (i.e., the fragment gets replicated at the
destination engine).

These options can have advantages or disadvantages under dif-
ferent circumstances. The Move option keeps a single copy of a
data fragment in the system, which avoids redundant storage and,
more importantly, removes the need to maintain transactional con-
sistency across multiple copies in case of updates to the fragment.
However, data access may take more time if the desired fragment is
not available in local storage. On the other hand, the Copy option
incurs an overhead for storing and maintaining multiple replicas
of a data fragment in the system. This is largely due to the trans-
actional overhead of two-phase commit. However, efficient, local
data access to the fragment is guaranteed at all times.

While these are generic tradeoffs between Move and Copy for
any given pair of engines, there are additional considerations spe-
cific to our setting. More specifically, our front-end processor, S-
Store, and back-end warehouse, Postgres, differ in their system
characteristics. Being a main-memory system, S-Store can provide
fast data access, but has limited storage capacity. Furthermore, it is
optimized for short-lived, read and update transactions (e.g., no so-
phisticated techniques for large disk scans). Postgres is disk-based,
and can support large-scale, read-intensive OLAP workloads better
than S-Store.

In order to achieve high performance for a given mix of ingest
and query workload, data fragments must be placed carefully. Both
workload characteristics (e.g., frequency of reads vs. updates) as
well as the tradeoffs discussed above must be taken into account.
Furthermore, as the workload dynamically changes, placement
of data fragments should be adjusted accordingly. Next, we will
illustrate the problem using an example scenario taken from the
TPC-DI benchmark [23].

Figure 3: TPC-DI Trade Data Ingestion Dataflow

4 AN EXAMPLE: STREAMING TPC-DI
TPC-DI is a data integration benchmark for evaluating the perfor-
mance of traditional ETL tools [23]. It models a retail brokerage
firm that needs to extract and transform data from heterogeneous
data sources. The original benchmark does not involve streaming
data. However, some of the data sources are incremental in nature
and can be modeled as such. For example, Figure 3 shows the trade
data ingestion portion of the benchmark remodeled as a streaming
ETL scenario. In this dataflow, new trade tuples go through a series
of validation and transformation procedures before they can be
loaded into the DimTrade table of the warehouse.
A Case for Copy. One of those procedures (SP4) involves estab-
lishing foreign key dependencies with the DimAccount table. More
specifically, when new rows are defined within the DimTrade ta-
ble, reference must be made to the DimAccount table to assign the
SK_AccountID key along with a few other fields. In other words,
for each new batch of trade tuples to be ingested, the ETL dataflow
must perform a lookup operation in the DimAccount table. Assume
that an initial load for the DimAccount table has already been per-
formed via S-Store (the ETL engine) before the Trade dataflow starts
executing. In other words, DimAccount already resides in Postgres
(the OLAP engine). Unless a copy of the DimAccount fragments
were kept in S-Store after this initial load, SP4’s lookups would re-
quire migrating the relevant DimAccount fragments from Postgres
to S-Store. This in turn would incur high latency for the trade inges-
tion dataflow. In this scenario, keeping a local copy of DimAccount
fragments to be referenced by the trade dataflow in S-Store would
be a good data placement decision.
A Case for Move. Next, assume that S-Store occasionally ingests
update requests for the DimAccount table. For DimAccount frag-
ments that are replicated in S-Store, such updates must be trans-
actionally applied on both engines in order to ensure mutual con-
sistency. In this scenario, Move might be a more desirable data
placement strategy for frequently updated DimAccount fragments
than the Copy option. This way, S-Store would only have to locally
update a single copy for those fragments.
OLAP Queries. Now further assume that, while the above inges-
tion scenarios on DimTrade and DimAccount are taking place, a
query request on the DimTrade table arrives. The query requires
the system to scan the whole DimTrade table and calculate the total
and average difference between bid and trade price values for each
trade. Trade data is streaming into the system at high frequency and
is being ingested into Postgres through S-Store via periodic, push-
based migration. As such, the larger portion of DimTrade (which
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Figure 4: System Architecture

accounts for older trades) is stored in Postgres, while the smaller,
recently ingested portion is stored in S-Store. Therefore, this query
cannot be answered in its entirety on either Postgres or S-Store.
The query planner has multiple different options to ensure the most
complete (and thus, the freshest) answer to this query. For example,
Postgres can issue a pull request to migrate DimTrade fragments
from S-Store and then execute the OLAP query in Postgres, or the
middleware layer can execute the OLAP query on S-Store and Post-
gres in parallel and merge their results into the full answer. We
have analyzed some of these options in recent benchmark studies
[19, 21]. The main takeaway is that data placement can also have
significant impact on query performance. Therefore, the ETL work-
load must be considered in conjunction with the query workload
in making data placement decisions.

5 SYSTEM ARCHITECTURE
We have created a prototype for streaming data ingestion [19].
This prototype uses a combination of BigDAWG and S-Store, in
conjunction with Kafka (a publish-subscribe messaging system
[17]) and the relational database Postgres (Figure 4). New tuples
arrive from a variety of data sources and are queued in Kafka. These
tuples are batched and pushed to S-Store. As a streaming system
with ACID state management, S-Store is particularly well-suited for
streaming data ingestion workloads. Streaming data can be ingested
and transformed in a dataflow graph, with intermediate state being
maintained in a transactional manner.

For each stored procedure that requires access to data, S-Store
checks the data catalog in BigDAWG through a fragment selec-
tion module. Data catalog in BigDAWG maintains all information
about data fragments including the data placement. If the required
data fragment only exists in Postgres, the fragment selection mod-
ule will instruct the data migrator in BigDAWG to migrate the
fragment from Postgres to S-Store. Meanwhile, the fragment selec-
tion module is also responsible for deciding whether the migration
should be Move or Copy, and if the total size of the fragments
exceeds the storage limit of S-Store, which fragment(s) should be
evicted.

Once the final tuples have been created, they can then either be
stored directly in S-Store, or migrated to a data warehouse.

Figure 5: Experimental Setup (DimAccount in TPC-DI)

6 PRELIMINARY EXPERIMENTS
6.1 Setup
To evaluate the effect of Copying and Moving data in the presence
of multiple database systems, data must be distributed between
at least two engines. Our experiments simulate a streaming data
ingestion workload, and thus we use our streaming data ingestion
prototype described in Section 5. In the implementation, data can be
migrated between S-Store (the streaming ETL engine) and Postgres
(the OLAP engine), and queries can be run on either system.

We executed the experiments on an Intel® Xeon® machine with
64 virtual cores and 132GB memory. S-Store is co-located on the
same node as Postgres for ease of communication and migration.
We warmed up the S-Store cache for ten seconds before collecting
statistics.

To motivate the use of multiple systems in tandem, we imple-
mented a subset of TPC-DI as a streaming workload (Section 4).
Specifically, our experiments involve the ingestion of the DimTrade
and DimAccount tables from their respective flat files. Each of these
ingestion processes was modeled as its own dataflow graph con-
sisting of multiple SQL statements. These SQL statements perform
lookups on a variety of other tables to retrieve normalized foreign
keys before inserting the finished tuple into a final table (Figure 5).

In the case of DimAccount, incoming tuples represent in-place
updates to existing rows in the database. DimTrade tuples, on the
other hand, are always inserts, but require a lookup on the Dim-
Account table to generate a foreign key. S-Store is configured as
single-sited and single-partitioned. Since there are no distributed
transactions for this configuration, we chose to implement the
ingestion of DimTrade and the update of DimAccount each in one
stored procedure.

We generated heterogeneous workloads that contain changes to
both DimAccount and DimTrade. In each experiment, the workload
varies in terms of the percentage of operations that write or read
from DimAccount. We partition DimAccount into ten fragments
of equi-width. We notice that the ingestion of DimTrade from the
Trade.txt flat file only accesses five of the ten fragments. For the
update toDimAccount, we randomly generate a sequence of in-place
updates by selecting the account-id that falls into the five fragments
that are read during the ingestion of DimTrade. We then mix the
in-place updates with the data ingestion source from Trade.txt. We
measure the average latency of each operation (in-place update or
ingestion) for the heterogeneous workload.

For simplicity, most tables in this experiment are considered
to be cached in S-Store. The DimTrade table is considered to be
entirely located in S-Store. The DimAccount table, on the other



Towards Dynamic Data Placement
for Polystore Ingestion BIRTE ’17, August 28, 2017, Munich, Germany

0	

30	

60	

90	

0%	 10%	 20%	 30%	 40%	 50%	

Av
g.
	L
at
en

cy
	fo

r	D
im

Tr
ad

e	
In
ge
s7
on

	
(m

s)
	

%	of	DimAccount	in	S-Store	

Copy	

Move	

Figure 6: A Read-Only Workload (100% Read + 0% Write)

hand, is primarily located in Postgres. In the following experiments,
a percentage of DimAccount is either Copied or Moved to S-Store,
depending on the scenario. For all of the experiments, we measure
the average latency of each operation (ingestion or update) in the
workload that includes necessary data migrations.

6.2 Results
6.2.1 Read-intensive Workloads. As shown in Figure 5, the in-

gestion of DimTrade contains five operations, with OP4 retrieving
the account-id, broker-id and customer-id from table DimAccount.
Executing this lookup process locally in S-Store (i.e., Copying Dim-
Account from Postgres to S-Store) can generally improve the perfor-
mance, but S-Store only has limited storage space (or cache as we
call it in this paper). In this experiment, we study how the storage
limit of S-Store affects the performance for lookups (to table Dim-
Account) during data ingestion (of table DimTrade). The workload
we generate for this experiment contains only data ingestion to
DimTrade and no update to DimAccount, i.e., this workload contains
100% reads and 0% writes to DimAccount.

Figure 6 demonstrates the benefit of Copying tables to S-Store
when there are lookups in the ETL tasks. As we clarified in 6.1, the
y-axis represents the average latency of the ingestion, including
necessary data migrations. When the cache size in S-Store is 0, for
each lookup to DimAccount during the ingestion to DimTrade, the
fragment of DimAccount that contains the key (account-id) must be
migrated from Postgres to S-Store. Typically the migration incurs
prohibitive cost. When the cache size increases, the fragments that
have been migrated to S-Store can be stored locally for future
lookups during the ingestion, reducing the number of migrations.
We employed least recently used (LRU) to evict fragments from
S-Store when the size of Copied fragments exceeds the cache limit.
When S-Store has a large enough storage and is able to cache all the
fragments of DimAccount table that are required in the ingestion
of DimTrade (in this experiment, five out of the ten fragments are
accessed during the ingestion of DimTrade), the latency of the ETL
ingestion to DimTrade is minimized.

In this scenario, the average latency of the workload for Moving
is more expensive than Copying for most cache sizes. The reason
is that when the cache in S-Store is full, and a fragment required is
not in the cache, a new migration must be issued. Copy only has
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Figure 7: AWrite-IntensiveWorkload (1% Read + 99%Write)

to migrate the required fragment from Postgres to S-Store, while
Move has an additional step to migrate the evicted fragment from
S-Store back to Postgres.

6.2.2 Write-intensive Workloads. When migrating data from
Postgres to S-Store, Move implies that there is always only one
copy of the data in the database engines, while Copy implies that
there are two copies of the data in the system: one in S-Store, and
another in Postgres. The workload in this experiment contains 99%
in-place updates to DimAccount and 1% ingestions to DimTrade,
generated as described in Section 6.1. In order to guarantee the
transactional safety, the updates are executed synchronously in
S-Store and Postgres. When an update is issued to S-Store, if the
fragment of the data that this update accesses exists only in S-Store,
the update is executed and finished in S-Store. If the fragment of
the data exists in Postgres, S-Store will issue the update to Postgres
for execution and stalls until Postgres finishes the execution.

S-Store is built on top of H-Store, a system that is designed to
speed up transactionally safe updates, and hence for such oper-
ations, S-Store has a much lower latency compared to Postgres.
Figure 7 shows that when the cache size increases, more fragments
are migrated to S-Store, and since Move only keeps one copy of
a fragment in the system, Moved fragments exist only in S-Store.
Thus, there are no additional steps for updating the data in Post-
gres, which would increase the cost. Therefore, for a write-intensive
workload where updates are the majority, the average latency de-
creases quickly when the cache size increases if we choose to Move
the data between S-Store and Postgres.

On the contrary, Copy keeps the data in both S-Store and Post-
gres. As we have explained, the cost of updates in Postgres domi-
nates the synchronized update process, and thus the curve of the
average latency for Copy does not change much when the cache
size increases. We also notice that when the cache size is less than
10% of the size of the DimAccount table, Copy performs better than
Move. It is not difficult to see that in such cases, a large amount of
migrations are conducted because of cache misses (i.e., the required
fragment is not in the cache). For each cache miss, Copy only has to
migrate the required fragment from Postgres to S-Store (and delete
the evicted fragment from S-Store), while Move must execute two
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Figure 8: Heterogeneous Workloads

migrations, one for the required fragment from Postgres to S-Store,
another one for the evicted fragment from S-Store to Postgres.

6.2.3 Heterogeneous Workloads. We have seen that for read-
intensive workloads, Copy often has better average latency, and for
write-intensive workloads, Move usually has better average latency.
Here, we experiment with workloads that are heterogeneous. In
this experiment, we generate a series of workloads for which read
operations (ingestion to DimTrade) make up from 1% to 100% of the
total workload. We fix the cache size to 30% of DimAccount.

First, Figure 8 confirms our previous observation that when the
percentage of reads is relatively small (< 20%) where the work-
load is dominated by writes (transactional updates to DimAccount),
the latency for Move is lower than that for Copy, and when the
workload is dominated by reads (ETL lookups to DimAccount), the
latency for Copy is better than that for Move. Secondly, in our
experiments, the cost of reads is much cheaper than that of writes
(in-place updates); thus, for the Copy scenario, the average latency
of all reads and writes to DimAccount in the workload decreases as
the percentage of read in the workload increases. Thirdly, we notice
that the average latency for Move increases when the percentage
of read in the workload increases. This is because for cache misses
when the cache is full, Move is much more expensive than Copy, as
we have explained above. The additional migration cost for Move
offsets the benefit brought by cheaper read. The figure shows that
the curves for Copy and Move meet in a workload that contains
about 20% of read operations in this setting as a confluence of the
factors cited above.

6.2.4 Takeaway Messages. We notice that the migration cost
between database engines (S-Store and Postgres) is very expensive
compared to the cost of local reads and writes in a workload. The
migration cost is frequently not negligible during the execution
of a mixed workload. For instance, although local reads are much
cheaper than writes in S-Store in our settings, an ETL read may
incur a data migration from Postgres to S-Store, and it may increase
the average latency for data ingestion by up to two orders of mag-
nitude. This implies that for certain circumstances, migration cost
could be the dominating cost for a workload, and minimizing this
migration cost may be a good enough objective function for an

approximated optimized design. For other circumstances, consider-
ing only migration cost is probably not enough. For instance, for a
workload that contains only writes, it may make sense to migrate
the data from Postgres to S-Store, so the transactional writes are
executed faster in S-Store, even if it means paying the additional
cost for migrating data between the database engines.

7 RELATEDWORK
Data placementwas previously studied in traditional multi-database
systems, including federated and distributed databases. In federated
databases like Garlic [15], the focus is on unified, cost-based query-
ing over heterogeneous databases, each of which is autonomous in
their internal data placement and query processing policies. This
is in contrast to our polystore setting, where on-demand data mi-
gration across engines in the form of Move and Copy operations
can be utilized to optimize data placement. In distributed databases,
distribution design involves both fragmentation (i.e., how to divide
tables into partitions) and allocation (i.e., how to place fragments
onto nodes) [22]. For best results, the two should be tackled to-
gether, which makes the problem more complex. In our case, due
to volatile and mixed nature of streaming ETL+OLAP workloads,
we focus on a dynamic, workload-aware data placement solution.

There is extensive literature on physical database design tun-
ing, including online approaches that are sensitive to workload
changes ([5, 10]). The focus of these works has mainly been on
tuning indexes, materialized views, or partitions of a single data-
base system. More recently, new techniques have been proposed for
physical design tuning in multi-store systems. For example, MISO
determines where to store data in an HDFS-RDBMS hybrid storage
system based on materialized views [18]. Our work extends these
efforts further by considering data placement requirements of near
real-time ingestion in a polystore environment.

Caching has been used as an optimization technique in many
settings including databases. In IBM’s DBCache, data from back-end
database servers is replicated on front-end database servers in order
to enhance data access performance of dynamic web applications
[3]. Memcached is a distributed memory caching system to speed
up dynamic database-driven web services [13]. Anti-caching is
a technique to move colder data to disk in main-memory OLTP
databases [8]. Our Copy-based migration is similar to caching in
spirit, whereas ourMove-basedmigration resembles anti-caching in
that the system maintains a single copy of data with hot fragments
residing in main-memory S-Store and colder ones residing in disk-
based Postgres.

As we briefly mentioned earlier, our near real-time data inges-
tion support for data warehouses has also been followed by others
in different contexts [2, 4, 12, 14, 27]. Stream warehouses such as
ATT’s DataDepot focus on ingesting append-only streams into a
historical warehouse focusing on leveraging temporal semantics for
consistency and data partitioning [14]. Near real-time warehouses
focus on micro-batch ETL by invoking ETL pipelines at higher fre-
quencies to maintain a more up-to-date data warehouse [27]. More
recently, big data companies have proposed new architectures that
integrate near real-time and batch processing in a way to ensure low
latency for the former and high throughput for the latter [2, 12].
Finally, HTAP systems such as IBM’s Wildfire tightly integrate
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OLTP and OLAP support in order to support near real-time ana-
lytics including ingestion [4]. Our polystore environment contains
elements from each of these different approaches, but emphasizes
the use of a transactional streaming database infrastructure for near
real-time ingestion and a polystore backend for OLAP, in which
dynamic data placement plays a critical role.

8 SUMMARY AND ONGOINGWORK
In this paper, we have discussed the problem of data placement and
caching in a distributed polystore. Our belief is that data ingestion
in this setting presents some unique challenges that require further
study. Our solution involves an integration of a stream process-
ing system with an analytics back-end provided by the BigDAWG
polystore. This paper is a first step in that direction.

While caching and data placement are not new ideas, the con-
text of a polystore changes their performance characteristics in
such a way as to require a complete rethinking. In this paper, we
have considered Copying results in the ingestion engine to make
subsequent reads faster. Copying requires making or retaining a
copy in the streaming engine or in the home storage system of the
data. Any update to that data would have to be realized in all loca-
tions, making writes very expensive. To address this, we also allow
Moving the data, which simply moves the data to a new location
(including perhaps the ingestion engine). This paper has studied
the problem of how to best match the workload to the appropriate
Moves and Copies.

While the work described in this paper involves two systems
that each run on a single machine, the data placement problem is
further complicated once the individual systems within the poly-
store are distributed across multiple machines. In this scenario, it
is not enough to consider the system-level location of the data, but
also the location of the data on physical hardware. It is likely that
distribution properties of individual systems must be considered
when determining data locations at the polystore level. Additionally,
while this paper focuses on only two systems for simplicity, the
data placement problem becomes much more difficult in a configu-
ration space of three or more systems. As the number of systems
in a polystore increases, so do the possible trade-offs considered
when deciding when to Move or Copy data. These are interesting
research problems, and we leave them as future work.

In the future, we envision a system that dynamically Moves and
Copies the data in response to a particular workload. In order to
accomplish this, we will need several things.

• A cost model that can estimate a relative cost for various
placement plans. The cost model will be used to compare
the effectiveness of multiple plans and must account for the
extreme expense that is incurred when migrating data from
one system to another.
• A more robust distributed catalog that, among other things,
keeps track of where a particular piece of data currently
resides.
• A tighter integration with the BigDAWG query optimizer
that uses the cost model to choose the best query plan, which
here amounts to picking the best copy and using it at the
best point in a distributed query plan.

We are currently working on these research issues and intend to
perform a thorough experimental evaluation using several bench-
marks, including TPC-DI and an application furnished to us by a
major credit card processing company.
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