
Data Integration Services

Nesime Tatbul, Olga Karpenko, Christian Convey, Jue Yan

Technical Report

Brown University Computer Science Department

May 2001

Chapter 1

Data Integration Services

1 Introduction

With the prevalence of the network technology and the Internet, access to data
independent of its physical storage location has become highly facilitated. This
further has enabled users to access a multitude of data sources that are related in
some way and to combine the returned data to come up with useful information
which is not physically stored in a single place. For instance, a person who
has the intension of buying a car can query several car dealer web sites and
then compare the results. He can further query a data source which provides
information about car reviews to help his decision about the cars he liked. As
another example, imagine a company which has several branches in different
cities. Each branch has its own local database recording its sales. Whenever
global decisions about the company have to be made, each branch database must
be queried and the results must be combined. On the other hand, contacting
data sources individually and then combining the results manually every time an
information is needed is a very tedious task. Instead, a service is needed which
provides transparent access to a collection of related data sources as if these
sources as a whole constituted a single data source. We call such a service a data
integration service and the system that integrates multiple sources to provide
this service is usually referred to as a data integration system (Figure 1.1).

The main contribution of a data integration system is that users can focus
on specifying what data they want rather than on describing how to obtain
it. A data integration system relieves the user from the burden of finding the
relevant data sources, interacting with each of them separately, then combining
the data they return. To achieve this, the system provides an integrated view
of the data stored in the underlying data sources. Users can uniformly access
all the data sources as if they were querying a single data source. The access to
the integrated data is usually in the form of querying rather than updating the
data.

Furthermore, a data integration system facilitates decision support applica-

1

2 CHAPTER 1. DATA INTEGRATION SERVICES

Data Source Data Source

answer

Data Integration System

query

Data Source

Figure 1.1: Data Integration System

tions like OLAP (On-Line Analytical Processing) and data mining. OLAP is to
perform financial, marketing or business analysis to be able to make business
decisions on a collection of data from one or more data sources. The analy-
sis is done through asking a large number of aggregate queries on the detailed
data. For example, the company in our previous example can easily develop
OLAP applications once its branch databases are integrated. Data Mining is
discovering knowledge from a large volume of data. Statistical rules or patterns
are automatically found from the raw collection of data. Data integration helps
bringing a large body of data together from multiple data sources that can be
uniformly queried for knowledge discovery. Detailed information on data mining
techniques can be found in the Customization Chapter.

In this chapter, we discuss the issues involved in building and operating
a data integration system and provide a survey of existing solutions to these
issues.

1.1 Major Issues

Let us investigate the main stages involved in building and using a data integra-
tion system to comprehend the major issues: design, modeling, and operation.

• A data integration system is basically an information system. Like all
computer systems, its architecture has to be designed with data sources
to be integrated being the major components. Usually, the data sources
must be integrated as they are without making any changes on their design
and operation.

• Also, like all information systems, there is an application domain a data
integration system has to model. This application domain is determined
by the underlying data sources and its modeling should be based on the
models of the data sources that make up the integration system.

• After its modeling and design, a data integration system has to be provided
with query functionality. This is again highly dependent on the underlying
data sources’ query capabilities.

1. INTRODUCTION 3

Although the contents of the data sources are related in some way, they are
likely to show variety in many aspects. These differences make both the design
and modeling phase and the operation phase of a data integration system very
difficult. The major issue in building a data integration system is resolving
these differences between the data sources that may occur at different levels.
This issue is generally referred to as heterogeneity of the data sources.

The data sources to be integrated may belong to the same enterprise (like
the company example), but might also be arbitrary sources on the World Wide
Web (like the car buyer example). Most of the time, each of the sources is
independently designed for autonomous operation. Also, the sources are not
necessarily databases; they may be legacy systems which are old and obsolete
systems that are difficult to migrate to a modern technology or they may be
structured/unstructured files with different interfaces. Data integration requires
that the differences in modeling, semantics and capabilities of the sources, with
possible data inconsistencies be resolved. More specifically, the major issues
that make integrating such data difficult include:

• Heterogeneity of the data sources
Each source to be integrated might model the world in its own way. The
representation of data of the similar semantics might be quite different
in each data source. For example, each might be using different naming
conventions to refer to the same real world object. Moreover, they may
contain conflicting data. In addition to data representation and modeling
differences, heterogeneity may also occur at lower levels including the ac-
cess methods the sources are using, the operating systems underlying the
individual data sources, etc.

• Autonomy of the data sources
Usually data sources are created in advance of the integrated system. In
fact, most of the time they never know that they are part of an integration.
They can make decisions independently and they can not be forced to act
in certain ways. As a natural consequence of this, they can also change
their data or functionality without any announcement to the outside world.

• Query correctness and performance
Queries to an integrated system are usually formulated according to the
unified model of the system. These queries need to be translated into forms
that can be understood and processed by the individual data sources.
This mapping should not cause incorrectness in query results. Also, query
performance needs to be controlled as there are many factors which can
degrade it. These include the existence of a network environment which
can cause communication delays and the possible unavailability of the data
sources for answering queries.

4 CHAPTER 1. DATA INTEGRATION SERVICES

1.2 Chapter Outline

In the rest of this chapter, we discuss the above mentioned issues in more detail.
The order of the subsections in the chapter roughly corresponds to the stages
involved in building and operating a data integration system. We start out
presenting the common approaches to architecting a data integration system in
Section 2. Later, we discuss the semantic problems encountered in modeling and
data mapping stages of a data integration system in Section 3. Techniques for
querying the integrated data are presented in Section 4. The data extraction
phase of querying where data is actually obtained from the data sources is
detailed in Section 5. We devoted Section 6 to the discussion of an important
issue in one particular type of data integration architecture: management of
materialized views in datawarehousing systems. This section completes our
discussion about the major problems and solutions. Finally, Section 7 concludes
the chapter.

2. DATA INTEGRATION ARCHITECTURES 5

2 Data Integration Architectures

The data sources can be organized in the integration system in many ways. In
this section we introduce three main architectures of data integration systems:
federated databases, mediation, and data warehousing. We group these ap-
proaches based on whether the queries to the data sources are sent to the sources
when these queries arrive, or the results of the queries are pre-stored. The for-
mer approach is a virtual approach and the latter is a materialized approach
to data integration. We compare the approaches at the end of this section.
We use three parameters to describe the characteristics of the sources of these
integration systems: autonomy, heterogeneity, and distribution [Has00, OV99].

• Autonomy
Autonomy indicates how independent the data sources are from the other
sources and from the integrated system. According to Veijalainen and
Popescu-Zeletin’s classification [MW88], there are three types of auton-
omy:

– Design autonomy
The source is independent in data models, naming of the data ele-
ments, semantic interpretation of the data, constraints etc.

– Communication autonomy
The source is independent in deciding what information it provides
to the other components that are parts of the integrated system and
to which requests it responds.

– Execution autonomy
The source is independent in execution and scheduling of incoming
requests.

• Heterogeneity
Heterogeneity refers to the degree of dissimilarity between the component
data sources that make up the data integration system. It occurs at differ-
ent levels. On a lower level, heterogeneity comes from different hardware
platforms, operating systems, and networking protocols. On a higher level,
heterogeneity comes from different programming and data models as well
as different understanding and modeling of the same real-world concepts
(i.e. naming of relations and attributes).

Logical heterogeneity can not be resolved automatically as it comes from
the fact that different people present the same concept differently. It
involves both schematic and semantic heterogeneity. Schematic problems
are the differences in the elements that are used to represent some concept.
For example, to store the information about voluntary student positions
in the University, one database developer may use the attributes names
for each job (Tea Czar, Hospitality Czar) with true/false values for
each student; the other developer may model these jobs as values of the

6 CHAPTER 1. DATA INTEGRATION SERVICES

attribute Job. Some of the semantic problems that arise are the interpre-
tation of names and the difference in units used for the attributes. We
discuss these issues in Section 3.

• Distribution
Distribution refers to the physical distribution of data over multiple sites.
Creating an integrated system and choosing the appropriate architecture,
the designers should take into account the possible latency to communicate
with the data sources.

We further consider the most difficult case: fully-distributed and heterogeneous
systems with autonomous or semi-autonomous data sources. Metadata - the
auxiliary data describing the main data - is maintained in the integrated systems
to deal with the problems caused by the heterogeneity. It can contain both
technical information about the sources (such as query capabilities and access
methods), and also semantic information (such as the semantic connections
between the relations, the domain dictionary specification) [BKLW99].

We describe the main architectural approaches to the design of the data in-
tegration systems, and discuss some solutions to the issues caused by autonomy,
distribution and heterogeneity.

2.1 Major Approaches to Data Integration

Two common approaches to integrate data sources are the following:

• Virtual View Approach
In this case the data is accessed from the sources on-demand when a user
submits a query to the information system. This is also called a lazy
approach to data integration.

• Materialized View/Warehousing Approach
Some filtered information from data sources is pre-stored (materialized) in
a repository (warehouse) and can be queried later by users. This method
is also called an eager approach to data integration.

Sometimes a hybrid approach is used: integrated data is selectively materi-
alized. The data is extracted from sources on-demand, but the results of some
queries are pre-computed and stored. In order to choose what queries to mate-
rialize, designers should consider many factors, such as “popularity” of queries
and cost of maintenance [Ash00]. These issues are discussed in Section 6.

2.2 Virtual View Approach

Here we discuss two architectures for integrating data sources using a virtual
view approach. They are federated database systems and mediated systems.

2. DATA INTEGRATION ARCHITECTURES 7

2.2.1 Federated Database Systems

A Federated Database System (FDBS) consists of semi-autonomous components
(database systems) that participate in a federation to partially share data with
each other [SL90]. Each source in the federation can also operate independently
from the others and the federation.

The components can not be called “fully-autonomous” because each com-
ponent is modified by adding an interface that allows communication with all
other databases in the federation.

Each of the component database systems can be either a centralized DBMS, a
distributed DBMS, or another federated database management system, and may
have any of the three types of autonomy mentioned above (design autonomy,
communication or execution autonomy). As a consequence of this autonomy,
heterogeneity issues become the main problem.

There are loosely coupled FDBSs and tightly coupled FDBSs.
A tightly coupled FDBS has a unified schema1 (or several unified schemas)

which can be either semi-automatically built by schema integration techniques
(see Section 3 for details) or created manually by the users. To solve the logical
heterogeneity, a domain expert needs to determine correspondences between
schemas of the sources. A tightly coupled FDBS is usually static and difficult
to evolve, because schema integration techniques don’t allow to add or remove
components easily. An example of this kind of FDBSs is Mermaid [TBC+87].

A loosely coupled FDBS does not have a unified schema, but it provides
some unified language for querying sources. In this configuration, component
database systems have more autonomy, but humans must resolve all semantic
heterogeneities. Requested data comes from the exporter of this data itself and
each component can decide how it will view all the accessible data in the feder-
ation. As there is no global schema, each source can create its own “federated
schema” for its needs. Examples of such systems are MRSDM [Lit85], Omnibase
[Rea89] and Calida [JPSL+88].

As pointed out by Heimbigner and McLeod [HM85], in order to remain au-
tonomously functioning systems and provide mutually beneficent sharing of data
at the same time, components of FDBS should have facilities to communicate
in three ways:

• Data exchange
The components should be able to access the shared data of the other
components of the FDBS. This is the most important purpose of the fed-
eration and good mechanisms of data exchange are a must.

• Transaction sharing
There may be cases where for some reason the component does not want
to provide direct access to some of its data, but can share operations

1Unified schema is the schema produced out of the schemas of the integration system
components, after resolving all syntactic and semantical conflicts between these schemas.
This schema allows users to query the integrated system as if it were one database.

8 CHAPTER 1. DATA INTEGRATION SERVICES

on its data. Other components should have the ability to specify which
transactions they want to be performed by another component.

• Cooperative activities
As there is no centralized control, cooperation is the key in federation.
Each source should be able to perform a complex query involving accessing
data from other components.

The most naive way to achieve interoperability2 is to map each source’s schema
to all others’ schemas. It is a so-called pair-wise mapping. You can see an
example of such federated database system in Figure 1.2. Unfortunately, it
requires n · (n − 1) schema translations and becomes too tedious with a large
number of components in a federation. Research is being done on tools for
efficient schema translation (See Section 3 for details).

We should note that the term “Federated Database Systems” is used dif-
ferently in the literature: some researchers call only tightly coupled systems
FDBSs [BKLW99], some call only loosely coupled systems FDBSs [HM85], and
some take the same approach we did by considering tight and loose architectures
be two kinds of federated database system architecture [SL90].

DB5

DB1

DB2

DB3

DB4

Figure 1.2: Example of federated database architecture

Federated architecture is very appropriate to use when there is a number of
autonomous sources, and we want, on one hand, to retain their “independence”
allowing user to query them separately, and, on the other hand, allow them to
collaborate with each other to answer the query.

2.2.2 Mediated Systems

Mediated system integrates heterogeneous data sources (which can be databases,
legacy systems, web sources, etc) by providing virtual view of all this data. Users
asking queries to the mediated system do not have to know about data source

2Interoperability here means the ability of each source to use the data of the other sources.

2. DATA INTEGRATION ARCHITECTURES 9

location, schemas or access methods, because such system presents one global
schema to the user (called mediated schema) and users ask their queries in terms
of it.

A mediation architecture is different from a tightly coupled federation in the
following ways [SL90]:

• A mediated architecture may have non-database components

• The query capabilities of sources in a mediator-based system can be re-
stricted and the sources do not have to support SQL-querying at all

• Access to the sources in a mediator-based system is usually read-only as
opposed to read-write access in a FDBS (due to the fact that the sources
in the mediator-based system are more autonomous) [BKLW99]

• Sources in a mediator-based approach have complete autonomy which
means it is easy to add or remove new data sources

Source 1

Wrapper Wrapper

Mediator

query query

query query

query

. . .
Source n

Metadata

Figure 1.3: Mediated architecture (borrowed with some minor changes from
[GMUW00])

A typical architecture for a mediated system is shown in Figure 1.3. The
main components of a mediated system are the mediator and one wrapper per
data source. The mediator (sometimes also called an integrator) performs the
following actions in the system:

1. Receives a query formulated on the unified (mediated) schema from a user.

2. Decomposes this query into sub-queries to individual sources based on
source descriptions.

10 CHAPTER 1. DATA INTEGRATION SERVICES

3. Optimizes the execution plan based on source descriptions.

4. Sends sub-queries to the wrappers of individual sources, which will trans-
form these sub-queries into queries over sources’ local models and schemas.
Then the mediator receives answers to these sub-queries from wrappers,
combines them into one answer and sends it to the user.

These steps are described in detail in Section 4.
A wrapper hides technical and data model details of the data source from

the mediator. It is an important component of both a mediator-based archi-
tecture and a data warehouse. Please refer to Section 5 for more information
about wrappers.

Example
Let us assume there are two data sources - two car dealer databases which
both became parts of Acme Cars company. Each of the car dealers has a sepa-
rate schema for storing information about cars. Dealer 1 stores it in the relation:

Cars(vin, make, model, color, price)

Dealer 2 stores information about his cars for sale in the relation:

CarsForSale(vehicleID, carMake, carModel, carColor, carPrice).

Acme Cars uses a mediated architecture to integrate these two dealers’ databases.
It does this by providing a mediated schema of the two schemas above. The
mediated schema consists of just one relation:

Automobiles(vin, autoMake, autoModel, autoColor, autoPrice).

Now if a client of Acme Cars submits an SQL-query:

SELECT vin, autoModel, autoColor
FROM Automobiles
WHERE autoMake = "Honda" AND autoPrice < 14,000

The wrapper for the first database will translate this query to:

SELECT vin, model, color, year
FROM Cars
WHERE make = "Honda" AND price < 14,000

It also renames model to autoModel and color to autoColor. The wrapper for
the second dealer will translate this query to:

SELECT vehicleID, carModel, carColor

2. DATA INTEGRATION ARCHITECTURES 11

FROM CarsForSale
WHERE carMake = "Honda" AND carPrice < 14,000

The wrapper also renames vehicleID to vin, carModel to autoModel and
carColor to autoColor.

Some known implementations of mediator-based architecture are: TSIMMIS
(The Stanford-IBM Manager of Multiple Information Sources) [CGMH+94],
Information Manifold [KLSS95], SIMS [AHK96], and Carnot [HSC+97].

2.3 Materialized View Approach (Data Warehousing)

In a materialized view approach, data from various sources is integrated by
providing a unified view of this data, like in a virtual view approach, but here
this filtered data is actually stored in a single repository (called data warehouse).
A data warehouse is different from the traditional databases with OLTP (On-
Line Transaction Processing) in the following ways [CD97]:

• It is mainly designed for decision support. As a consequence, a data ware-
house often contains historical and summarized data. That also implies
that users of a data warehouse are different than users of a traditional
DBMS: they will be analysts, knowledge workers, executives

• Workloads in warehouses are query intensive; queries are complex and
query throughput is more important than transaction throughput

• Information is usually read-only as opposed to read/write operations in
OLTP.

There are three important steps involved in building and maintaining a data
warehouse:

• Modeling and design

In the stage of designing a warehouse, the developers need to decide what
information from each source they are going to use in the warehouse, what
views (queries) over these sources they want to materialize, and what the
global unified schema of the warehouse will be.

• Maintenance (refreshing)

Maintenance deals with how the warehouse is initially populated from
the source data and how it is refreshed when the data in the sources
are updated. View maintenance is a key research topic specific to data
warehousing and we discuss it in detail in Section 6.

• Operation

Operation of a data warehouse involves query processing, storage and
indexing issues.

12 CHAPTER 1. DATA INTEGRATION SERVICES

Data

Warehouse

Metadata

Integrator

Wrapper Wrapper

query

Data source 1
 . . .

Data source n

Figure 1.4: Data warehouse architecture

Example of a data warehouse architecture is given in Figure 1.4.
Example
Suppose there is a company Cute Toys that owns two toy stores. There are two
types of toys at each store: teddy-bears and dogs. Each store has a database,
where they store a number of toys sold on each date, for each kind of a toy.
Store 1 stores the relation: Sales(date, typeToy, numberSold) and store
2 has two relations: TeddyBears(date, numberSold) and DogsToys(date,
numberSold).

Now assume that the company would like to have the following relation in
the data warehouse for decision making purposes (future marketing):

ToySales(date, typeToy, numberSold)

In this case, the integrator needs to first select appropriate tuples from each
source, take their union and then aggregate, so that for each date and type of a
toy we have a total number of toys of this kind sold on a given date. The SQL
query to the first source is straightforward, as the relation is exactly the same
apart from the name it has. It will look the following:

INSERT INTO ToySales1(date, typeToy, numberSold)
SELECT date, typeToy, numberSold
FROM Sales

2. DATA INTEGRATION ARCHITECTURES 13

For the second source, the integrator can ask two queries:

INSERT INTO ToySales2(date, typeToy, numberSold)
SELECT date, "TeddyBear", numberSold
FROM TeddyBears

INSERT INTO ToySales2(date, typeToy, numberSold)
SELECT date, "Dog", numberSold
FROM DogsToys

So, wrappers to sources 1 and 2 will return relations ToySales1 and ToySales2
correspondingly. Now integrator component will join them summing the num-
ber of toys of each kind sold on each date:

INSERT INTO ToySales(date, typeToy, numberSold)
SELECT date, typeToy, SUM(numberSold)
FROM ToySales1 s1, ToySales2 s2
WHERE s1.typeToy=s2.type AND s1.date = s2.date

Some implementations of the data warehousing approach to data integration
include the Squirrel [HZ96] and WHIPS (WareHouse Information Prototype at
Stanford) [HGMW+95] systems.

We would like to note that the sources that are integrated always retain their
execution autonomy.

2.4 Comparison of the architectures

The virtual view approach is preferable to the data warehousing in the following
cases:

• the number of data sources in an integrated system is very large and/or
the sources are likely to be updated frequently (like in the case of the web
sources),

• there is no way to predict what kind of queries the users will ask.

If, however, sources are permanent, don’t get upgraded too often and the design-
ers of the integrated system know what kind of queries are to be expected most
often, answers to these queries can be materialized. Also, if some sources are
physically located far away from the mediator, then accessing them each time
a query is formulated may introduce undesired delays in response time. In this
case, a data warehousing approach might be chosen to improve the performance.

Among the two architectures based on the virtual view approach (federation
and mediation), mediated approach is chosen more often. As for the federa-
tion, the systems with this architecture are not very common nowadays due
to the large number of interfaces that need to be written for each source to
communicate with all the others.

14 CHAPTER 1. DATA INTEGRATION SERVICES

A hybrid approach is usually discussed as a way to improve the performance
of some mediator-based systems. The approach to the data integration in this
case is virtual, but some selected queries are materialized in a repository. This
repository then can serve as a new source for the mediated system. A hybrid
approach is proposed in [Ash00], but otherwise is less commonly discussed in
literature than are data warehousing and mediation.

3. SCHEMA INTEGRATION 15

3 Schema Integration

A schema is a description of how data in a database appears to be structured
to users of the database. For example, in a relational database, the schema
specifies what relations are in the database, what attributes are defined for each
relationship, etc. In an object-oriented database, the schema specifies what
classes are defined, what attributes and methods those classes have, etc.

Schema integration is the work that is performed, while constructing an
integrated information system, of reconciling the schemas of the different data
sources into a single, coherent schema [JLYV00].

The product of schema integration is a (perhaps new) schema that can con-
tain all of the information that is to be available from the integrated information
system. Various metrics exist for judging how good the integrated schema is,
and are discussed in Section 3.3.

Schema integration can be a very easy or very difficult task, depending
on how many data sources are to be integrated, and on how differently their
schemas represent information. This section explores the issues that can make
schema integration so problematic, and describes what techniques have been
developed to deal with those problems.

3.1 Problems in Schema Integration

Schema integration problems can be broadly separated into two categories: the
informal problems arising from how humans organize themselves, and problems
in the formal realm of how schemas are represented.

3.1.1 Human Organizational Problems

Autonomous Data Sources When performing data integration, it is possi-
ble that the people controlling the various data sources act fairly autonomously
with respect to the people constructing the integrated system. Autonomous
data sources seems even more now than before the Internet became so popular,
because the range of data sources available for integration is much larger than
before.

When a data source is managed by people who are autonomous from the
people constructing the integrated system, various problems can arise for the
schema integration task:

• Lack of Schema Information Sharing

The source data administrators might not be interested in, or may not
have the resources, to help the integrators to understand how their site’s
schema relates to the schemas of other sites being integrated.

• Unannounced Schema Changes

The source data administrators might change their site’s schema with-
out forewarning the integrators, leading the integration software to make
invalid assumptions about the data source.

16 CHAPTER 1. DATA INTEGRATION SERVICES

• Inconsiderate Schema Design

The data source administrators might choose a schema that is very difficult
to integrate with the other schemas in the integrated system. In tightly
controlled organizations, the various data source administrators might be
coerced into all having easily integrated schemas. Such coercion is unlikely
to be possible in highly autonomous environments.

Complexity of the Set of Data Source Schemas Schema integration
is a knowledge-intensive task. It is conceivable that for some large systems,
no one human would ever be able to understand the the schemas of all the
constituent data sources [Hal95]. This places a limitation on the human-oriented
methodologies that can be used to successfully integrate such systems [ND95].

3.1.2 Logical problems

These problems fit squarely in the realm of logics, formal languages, semantics,
etc. These problems are the focus of much attention in schema integration
research and their formal nature lends them to attempted solutions involving
logic, semantics, and knowledge representation.

Numerous incompatible taxonomies have been proposed for describing the
problems that can occur in schema integration. Several representative tax-
onomies appear below.

The Taxonomy from [JLYV00] 3

• Heterogeneity Conflicts

Problems with the use of different data models in different schemas. For
example, one schema may use an object oriented database, while the in-
tegrated schema must be represented with a relational database.

• Naming Conflicts

Different schemas may use the same term to describe different concepts
(homonyms) or two different terms to describe the same concept (syn-
onyms).

• Semantic Conflicts

When different schemas use different levels of abstraction are used to
model the same entity.

For example, one database might distinguish between “cars” and “trucks”,
whereas another schema in the same integrated system might simply model
“automobiles” and fail to store the car/truck distinction.

3It is claimed in [JLYV00] that consensus has been reached for using this taxonomy rather
than competing taxonomies.

3. SCHEMA INTEGRATION 17

• Structural Conflicts

Different schemas may represent the same information in different ways.

For example, one car ownership schema may use a single table that stores
car and owner information, while another schema may normalize the same
information into a “car” table and an “owner” table.

The Taxonomy from [Var99] This taxonomy is largely a refinement of
[JLYV00]’s Heterogeneity Conflicts concept, but is still slightly incompatible
with the other taxonomy. [Var99] offers this as a taxonomy of semantic incon-
sistencies (e.g., semantic conflicts). However, this taxonomy includes Naming
Conflicts as a cause of semantic inconsistency, while [JLYV00] considers naming
conflicts to be very distinct from semantic inconsistencies.

• Naming Conflicts

This is the same notion as Naming Conflicts from [JLYV00].

• Domain Conflicts

Different schemas use different simple values to represent data.

For example, one schema store care price as an integer number, while
another might store a textual-rendition of the car’s price in a text string.

• Metadata Conflicts

A concept can be represented with the schema in one data source, but as
regular (non-schema) data in another data source.

For example, one data source may distinguish between cars and trucks by
maintaining two separate tables, one for cars and one for trucks. Which
table a record appears in specifies whether the vehicle is a car or a truck.
Another data source may use a single table, but have a field in that table
that indicates whether or not a row in the table represents a car or a truck.

• Structural Conflicts

This is the same notion as Structural Conflicts from [JLYV00].

• Missing Attributes

One schema may represent a superset of the information available in an-
other schema.

For example, in two schemas that represent cars for sale, one schema may
include an attribute for the date of the car’s last oil change, whereas the
other schema makes no provision for storing that information.

This issue is related to [JLYV00]’s Semantic Conflicts in the sense that
both deal with differences in the level of detail about a the same entity
that two schemas can store.

18 CHAPTER 1. DATA INTEGRATION SERVICES

• Different Hardware/Software

This conflict describes the fact that two information systems that are
being integrated can have different hardware, operating systems, com-
munications protocols, etc. Those differences can cause problems when
integrating the two systems.

In our opinion, this is not a cause of semantic inconsistency when inte-
grating the information systems. This is a more concrete, low-level issue
that has little to do with the semantics of the information systems.

The Taxonomy from [ND95] This work does not offer a full taxonomy of
schema integration problems, but does discuss one problem omitted from the
two taxonomies listed above: recognition of object identity across different data
sources/schemas.

Different data sources may attempt to provide information about the same
entity. Recognizing the instances where two or more data sources are in fact
both describing the same entity can be problematic.

3.2 Representation of the Integrated Schema

The integrated schema will generally be represented in one of the following forms
[LSS93].

3.2.1 Common Data Model

This is the design decision to choose a particular data model (such as relational
or object-oriented) in which to provide access to data in the integrated system.

Common Data Model(CDM) vs. Homogeneous Descriptions A ho-
mogeneous description in an integrated system is that system’s single, unified
schema [JLYV00].

This design choice of whether or not to use a CDM must not be confused
with the whether or not to use a homogeneous description for the integrated
system.

The concepts are distinct. CDM only specifies that some particular (per-
haps unspecified) data model (i.e., object-oriented, or relational) will be used to
represent the integrated system. In contrast, a homogeneous description spec-
ifies not only the data model to be used, but also the particular schema to be
provided by the integrated system.

CDM and homogeneous descriptions are similar, however, because higher-
order logics are an alternative to each choice, as we will later see.

Integration Practices Associated with CDM The use of a CDM has
traditionally been paired with the development of a homogeneous description
for the integrated system in a one-time effort [JLYV00].

3. SCHEMA INTEGRATION 19

The implementation of integrated systems using CDM also have some asso-
ciation with the use of procedural languages, rather than declarative languages
[CGL+98].

3.2.2 Description Logics

Description Logics (DLs) are languages used to represent knowledge in a par-
ticular structured manner. A DL model uses the notions of concepts and roles
to represent basic ideas about the world [CLN99].

Concepts are unary predicates that specify the subset of some domain. For
example, a concept might be a the notion of “car”, “truck”, “automobile”, or
“automobile dealership”. Each of those concepts is a definition which includes
some objects but excludes others.

Roles are binary predicates that can be used to express relationships between
concepts. For example, a role might be “for-sale-by”, that represents the binary
relationship that can exist between a “car” and an “automobile dealership”.
[CGL+98] describes a DL that also explicitly models n-ary predicates.

Description Logics in Schema Integration DLs can be used by software
to reason about the semantics of data for when provided with basic semantic
information [Bor95]. This makes them a powerful tool in computer-assisted
design of integrated schemas, because DL-based reasoning can make the hu-
mans designing the integrated system aware of certain relationships within and
between schemas that they otherwise may have gone unnoticed.

The use of DLs for data integration advocated in [CGL+98] uses a DL to
not only model each data source, but also to express a model of a global domain.
The global domain contains the set of concepts and roles that are used in the
integrated view of the system.

DL reasoning systems use a set of intermodel assertions [CGL+98] that hu-
mans can state. These are assertions, expressed in terms of the already-defined
concepts and roles, express relationships between the concepts and roles of the
data sources in the integrated system, and between the data sources and the
global domain model of the integrated system.

DL-based systems can do lots of automatic reasoning as data sources are
added to or removed from the integrated system. This automatic reasoning can
reduce the effort invested and errors introduced by the humans designing the
integrated system.

Schema characteristics that DLs can identify include [Bor95]:

• Coherency of a Concept

Whether or not any element in a database could ever meet the require-
ments for inclusion in the concept.

• Subsumption of One Concept by Another

Identifies which concepts will always have a superset/subset relationship.

20 CHAPTER 1. DATA INTEGRATION SERVICES

• Mutual Disjointness of Two Concepts

Identifies whether or not the same object could ever meet the requirements
for membership in both concepts.

• Equivalence of Two Concepts

Identifies whether or not two concepts that will always contain the exact
same set of elements.

Ability to Represent Schemas from Various Data Models One reason
that DLs are a useful tool in reasoning about schemas is that DLs meeting
certain criteria are capable of representing the schemas of many popular data
models, such as the entity-relation and object-oriented (sans the methods) mod-
els [Bor95].

3.2.3 Other Formalisms for Schema Integration

Description Logics are not the only languages that can be used to aid in schema
integration. See [HG92] and [ND95] for examples of such formalisms.

3.3 Quality Metrics for Integration Schemas

Various quality metrics for integrated schemas have been proposed:

• Accessibility - All data needed from the data sources to provide the
integrated view is in fact available from the present set of data sources
[CGL+98].

• Believability - Warranting confidence that the data provided by the inte-
grated system and/or data sources is consistent (in the Description Logic
sense) and complete [CGL+98].

• Completeness [JLYV00]

• Consistency (in the Description Logic sense) of each data source [CGL+98]

• Correctness [JLYV00]

• Minimality [JLYV00]

• Understandability [JLYV00]

• Integration Transparency - In systems that use a Common Data Model,
this is the ability of the integrated system to provide views of itself that
actually look like one of its constituent data sources [LSS93] 4.

• Information Capacity - The ability of an integrated schema to express
all of the information that the data source schemas can express [EJ95].

4One might consider this to be a feature that is present or absent from an integrated
system, rather than a metric that can be given various scores.

3. SCHEMA INTEGRATION 21

• Readability - The integrated schema makes clear to humans the impor-
tant relationships that are implied by the integrated schema [CGL+98].

• Redundancy - The recognition of equivalent concepts [CGL+98]

3.4 Steps in Schema Integration

Some attention has been paid to the steps that humans, and their software tools,
go through in the design of an integrated schema.

3.4.1 The Overall Schema Integration Process

No general consensus of what the steps are is clear from a survey of academic
literature on the subject. Below are two different breakdowns that have been
proposed.

From [BF94], we have:

1. Pre-integration

This step involves:

• translating the data source schemas into the integrated system’s com-
mon data model, and

• semantic enrichment [JLYV00] of the source schemas: recording ad-
ditional semantic information about the schema in a semantic data
model (such an entity-relationship model)

This is done for two reasons:

• Using one semantic data model for all data sources eliminates issues
that arise from the data sources using different data models for their
schemas.
For example, suppose two car dealerships are integrating their cus-
tomer databases. One dealership’s database uses a relational schema,
and the other users an object-oriented schema. When integrating the
systems, both of those schemas can first be translated into a semantic
data model, such as entity-relationship, so simplify reasoning about
the integration.

• The semantic data model can express the relationships between the
data source’s schema elements and the problem domain that could
not be expressed by the data source schema’s data model. Having a
formal representation of the additional semantic information is help-
ful, and perhaps necessary, for producing a good integrated schema.
Note that this additional information must be discovered by humans,
since it may be simply absent from some data source schemas.

22 CHAPTER 1. DATA INTEGRATION SERVICES

2. Comparison

This is the analysis of the the collection of data sources being integrated,
looking for relationships between the elements of the various schemas.

This can be done at two levels: comparison of the schemas, and compari-
son of the actual data in the data sources. Statistical reasoning techniques,
such a fuzzy logic, might be used in these steps to guess at the relation-
ships.

3. Integration

This is the construction of the integrated schema.

4. Schema Transformation

In contrast to [BF94], [JLYV00] offers the following sequence:

1. Pre-integration

This includes an early planning phase for the integration project, including
selection of the schemas to be integrated, and what order they will be
integrated in.

As with [BF94]’s pre-integration step, this step also includes semantic
enrichment of the source schemas.

2. Schema Comparison

This is the analysis of the collection of source schemas to look for correla-
tions and conflicts between them.

A partial list of conflicts that might be detected at this stage appears in
Section 3.1.

3. Schema Conforming

This is the modification of source schemas to make them more suited for
integration with each other.

This includes the resolution the conflicts that were detected in the schema
comparison step, which still remains a partially manual step for humans.

[JLYV00] suggests that there are other besides conflict resolution might
lead to the modification of source schemas, but does not elaborate on what
those reasons are.

4. Schema Merging and Restructuring

This step is where the (conformed) source schemas are finally tied together
to form the integrated schema.

The resulting integrated schema can then be evaluated in terms of the
quality metrics described in Section 3.3. The results of that quality anal-
ysis can lead to further iteration of the schema integration to improve the
quality of the integrated schema.

3. SCHEMA INTEGRATION 23

3.4.2 Processes for Performing Incremental Integration Steps when
Using Higher-Order Logics

[CGL+98] describes the steps that can be taken when new data sources or new
type of queries are introduced to an integrated system that is integrated using
a higher-order logic (i.e., a description logic).

Source-Driven This is when a new data source is to be added to the inte-
grated system. The steps to be taken are as follows.

1. Source Model construction

The information in the new data source is expressed in terms of the higher-
order logic used by the integrated system.

2. Source Model integration

New intermodel assertions are recorded that relate the new data source to
the other data sources and to the global domain model.

Conflicts that are made apparent after these assertions are recorded are
also dealt with at this step.

3. Quality Analysis

This is the assessment of the quality of the integrated schema. The out-
come of this assessment may lead to the repetition of some earlier steps
in this sequence, or even in a reconsideration of the global domain model.

4. Source Schema specification

Recall that description logics may be used only at design time to support
the software tools that help humans to design the integrated schema and
develop query plans.

At runtime, the description logics may go unused, and a traditional schema
(i.e., relational) must be used to access the data source.

This step is the construction of a new view of the data source that:

• is in a schema language usable by the system at runtime, and

• offers a view of the data source that was designed during the earlier
source model integration step.

5. Materialized View Schema restructuring5

The new data source may have introduced new kinds of information to the
integrated system. When the integrated system uses materialized views,
those views may need to be restructured to be able to express the newly
available information.

5Only applicable when the integrated system uses materialized views (see Section 6).

24 CHAPTER 1. DATA INTEGRATION SERVICES

Client-Driven Integration This is when a query must be supported by the
integrated system, but no execution plan has yet been formulated for that par-
ticular query.

To accommodate this event, humans can use software tools that reason about
the integrated system’s DL to determine whether or not the query can be an-
swered using data source views that are already established.

See [CGL+98] for more specific details on how the reasoning software can
help when the integrated system uses materialized views.

3.5 Schema Integration Tools

3.5.1 Available Tools

Based on a survey of academic literature and on the author’s familiarity with
industrial solutions for data warehousing, the set of tools for assisting with
schema integration appears to be largely academic.

An excellent overview of key academic systems for schema integration can
be found in [JLYV00].

3.5.2 Benefits of Using Schema Integration Tools

Schema integration tools are good for performing a great deal of reasoning
about an integrated system, as long as humans have provided the information
that these systems need in an appropriate language.

In particular, the tools can reduce the required human effort needed to in-
tegrate schemas by:

• identifying and resolving some schema conflicts [Hal95]

• identifying relationships between the data that are stored in different
sources that have different schemas [Hal95]

• optimizing the integrated schema in terms of consistency, redundancy, and
type checking [Bor95]

• helping humans know how to rewrite newly-encountered queries [CGL+98]

• determining whether or not existing data sources are capable of answering
a query [CGL+98]

3.6 The State of the Art

Schema integration is still an activity that involves humans, primarily at two
steps:

• Schema enrichment of data sources

This activity may involve research by people to add information about
source schemas that was never recorded in the schema, or perhaps even in
written documents.

3. SCHEMA INTEGRATION 25

• Conflict resolution

When schema integration tools detect certain conflicts in how data sources
and/or the global domain model express information, human judgement
is currently needed to decide what to do about the problem.

A trend in research appears to be efforts to reduce the need for human
involvement in the process. For the time being, however, schema integration
can labor intensive.

26 CHAPTER 1. DATA INTEGRATION SERVICES

4 Querying the Integrated Data

The main purpose of building data integration systems is to facilitate the access
to the multitude of data sources. The ability to correctly and efficiently process
the queries to the integrated data lies in the heart of the system. The traditional
way of query processing involves the following basic steps:

1. getting a declarative query from the user and parsing it

2. passing it through a query optimizer which produces an efficient query
execution plan that describes how to exactly evaluate the query, i.e., apply
which operators, in what order, using what algorithm

3. executing the plan on the data physically stored on disk

The procedure described above also applies to query processing in data in-
tegration systems in general terms. However, the task is more challenging due
to the complexities brought by the existence of multiple sources with differing
characteristics. First of all, we need to decide which sources are relevant to
the query and hence should participate in query evaluation. These chosen data
sources will participate in the process by their own query processing mecha-
nisms. Second, due to potential heterogeneity of the sources, there may exist
various access methods and query interfaces to the sources. In addition to being
heterogeneous, the sources are usually autonomous as well and therefore not all
of the them may provide full query capability. Third, the sources might con-
tain inter-related data. There may be both overlapping and inconsistent data.
Overlapping data may lead to information redundancy and hence unnecessary
computations during query evaluation. Especially in the case where there is a
large number of sources and the probability of overlap is high, we may need to
choose the most beneficial sources for query evaluation. The last but not the
least, the sources may be incomplete in terms of their content. Therefore, it
may be impossible to present a complete answer to user’s query. This list of
complications is extensible.

As discussed in Section 2, a data integration system may be built in two
major ways: by defining a mediated schema on the participating data sources
without actually storing any data at the integration system (virtual view ap-
proach) or by materializing the data defined by a unified schema at the integra-
tion system (materialized view approach). In both of the approaches, the user
query is formulated in terms of the schema of the integrated system. However,
in the latter approach, since the data is stored at the integration system accord-
ing to the unified schema, query evaluation is no more difficult than traditional
way of query processing. The major issue there, is the synchronization of the
materialized data with the changes to the original data at the data sources,
i.e., maintenance of the materialized views. We discuss this issue in Section 6.
During maintenance, views defined on the data sources have to be processed
on the data sources to re-materialize the updated data. In other words, query
processing on the original data sources is realized usually at a different time

4. QUERYING THE INTEGRATED DATA 27

than the user’s query being processed on the materialized views. On the other
hand, in the virtual view approach, every time a user asks a query, data source
access is required. Therefore, query processing for the virtual approach includes
the issues that would arise for the maintenance stages of the materialized view
approach. In this regard, we discuss mainly the query processing problem for
the virtual view approach in this section.

In the rest of this section, first we briefly discuss the modeling issues which
forms the basis of all the following arguments. Then we present the main stages
in query processing in data integration systems in order, namely, query refor-
mulation, query optimization and query execution.

4.1 Data Modeling and Mapping

Traditionally, to build a database system, we first model the requirements of
the application and design a schema to support the application. In a data
integration system, rather than starting from scratch, we have a set of pre-
existing data sources which would form the basis of the application. However,
each of these data sources may have different data models and schemas. In other
words, each source presents a partial view of the application in its own way of
modeling. In fact, if we were to design a database system for the application
starting from scratch, we would have another model, which would have the
complete and ideal view of the world. To simulate this ideal, we need to design
a unifying schema in a single data model based on the schemas of the data
sources being integrated. Then each source needs to be mapped to relevant parts
of this unified schema. This single schema of the integrated system is called the
”mediated schema”. Having a mediated schema facilitates the formulation of
queries to the integrated system. The users simply pose queries in terms of the
mediated schema, rather than directly in terms of the source schemas. Although
this is very practical and effective in terms of transparency of the system to the
user, it brings the problem of mapping the query in mediated schema to one or
more queries in the schemas of the data sources.

Figure 1.5 shows the main stages in query processing in data integration
systems. There is a global data model that represents the data integration
system and each of the data sources has its own local data model. There are
two conceptual translation steps: (i) from the mediated schema to exported
source schemas, (ii) from exported source schemas to source schemas. The
difference comes from the data models used. In the former one, the user query
is reformulated as queries towards individual sources, but they are still in the
global data model. In the latter one, source queries are translated into a form
that is understandable and processable by the data sources directly, i.e., data
model translation is achieved in this latter step. These two steps are performed
by the mediator and the wrapper components in the system, respectively. In
this section, we will be focusing on the operation of the mediator and the details
of the wrapper will be presented in Section 5.

As Figure 1.5 indicates, in addition to modeling the mediated schema, we
need to model the sources so that we can establish an association between the

28 CHAPTER 1. DATA INTEGRATION SERVICES

Descriptions

Query

Mediated
Schema

Source

Source
Statistics

WrapperWrapperWrapper

Query (in mediated schema)

Query
Reformulation

Optimization

Execution
Engine

Query

logical plan
(source queries in exported source schemas)

physical plan
(distributed query execution plan)

source query
in exported
source schema

Source
Data
Source Source

Data

query in
source
schema

global data

model

local data models

Data

Figure 1.5: Stages of Query Processing [Lev99b]

relations in the mediated schema and the relations in the source schemas. This
is achieved through source descriptions. The description of a source should
specify its contents and constraints on its contents. Moreover, we need to know
the query processing capabilities of the data sources. Because in general, in-
formation sources may permit only a subset of all possible queries over their
schemas. Source capability descriptions include which inputs can be given to
the source, minimum and maximum number of inputs allowed, possible outputs
of the source, selections the source can apply and acceptable variable bindings
[LRO96].

In Figure 1.5, first, using the mediated schema and the source descriptions,
user query is reformulated into source queries in exported source schemas. An
exported source schema refers to translated source schema in the global data
model. These source queries provide a logical plan to the query optimizer which
later produces a physical query execution plan using some source statistics.
Afterwards, the physical plan is executed by the query execution engine through
communicating with the data sources through their wrappers. Although it is
not shown in this figure, the query execution engine later collects the results

4. QUERYING THE INTEGRATED DATA 29

from the sources which are then combined for presentation to the user.
To be able to present the methods for querying the integrated data, we need

to choose a data model and language to express the mediated schema, source
descriptions and the queries. Due to its simplicity for illustrating the concepts,
we will be using relational model as our global data model and Datalog as our
language.

4.1.1 Datalog

We can express queries and views as datalog programs. A datalog program
consists of a set of rules each having the form:

q(X̄) : −r1(X̄1), . . . , rn(X̄n)

where q and r1, . . . , rn are predicate names and X̄, X̄1, . . . , X̄n are either vari-
ables or constants. The atom q(X̄) is called the head of the rule and the atoms
r1(X̄1), . . . , rn(X̄n) are called the subgoals in the body of the rule. It is assumed
that each variable appearing in the head also appears somewhere in the body.
That way, the rules are guaranteed to be safe, meaning that when we use a
rule, we are not left with undefined variables in the head. The variables in
X̄ are universally quantified and all other variables are existentially quantified.
Queries may also contain subgoals whose predicates are arithmetic comparisons.
A variable that appears in such a comparison predicate must also appear in an
ordinary subgoal so that it has a binding.

Predicates that represent relations stored in the database are called EDB
(Extensional DataBase) predicates and predicates whose relation is constructed
by the rules are called IDB (Intensional DataBase) predicates. In the above rule,
q is an IDB predicate. If all ri are EDB predicates, then we have a conjunctive
query. A conjunctive query has the following semantics: We apply the rule for
the query to the EDB relations by substituting values for the variables in the
body of the rule. If a substitution makes all the subgoals true, then the same
substitution applied to the head, is an inferred fact about the head predicate
and the answer to the query [Ull97]. In this section, we will be considering
conjunctive queries.

4.1.2 Modeling the Data Sources

To reformulate a query in mediated schema as a set of queries that are written
in terms of the source schemas, we need the relationship between the relations
in the mediated schema and the source relations. This is achieved through
modeling the sources using source descriptions.

There are three approaches to describing the sources [Fri99]:

Global As View (GAV) Approach
For each relation R in the mediated schema, a view in terms of the source
relations is written which specifies how to obtain R’s tuples from the
sources.

30 CHAPTER 1. DATA INTEGRATION SERVICES

Example
The following simple example shows how mediated schema relations CAR
and REVIEW can be obtained from the source relations S1, S2 and S3.

S1(vin, status, model, year) ⇒ CAR(vin, status)

S2(vin, status, make, price) ⇒ CAR(vin, status)

S1(vin, status, model, year) ∧ S3(vin, review) ⇒ REVIEW(vin, review)

S2(vin, status, make, price) ∧ S3(vin, review) ⇒ REVIEW(vin, review)

This approach was taken in the TSIMMIS System [CGMH+94].

Local As View (LAV) Approach
For each data source S, a view in terms of the mediated schema relations
is written that describes which tuples of the mediated schema relations
are found in S.

Example
In LAV, we take an opposite approach to GAV and we describe each source
in terms of the mediated schema relations. Assume that source S1 con-
tains cars produced after 1990 and source S2 contains cars sold by the
dealer "ACME".

S1(vin, status, model, year) : − CAR(vin, status),

MODEL(vin, model, year), year ≥ 1990

S2(vin, status, make, price) : − CAR(vin, status),

MODEL(vin, make, year), SELLS(dealer name, vin, price),

dealer name = "ACME"

S3(vin, review) : − REVIEW(vin, review)

Query processing using the LAV approach is an application of a much
broader problem called ”Answering Queries using Views”. We will further
discuss this problem in the next section.

One of the systems that used this approach was the Information Manifold
System [KLSS95].

Description Logics (DL) Approach
Description Logics are languages designed for building schemas based on
hierarchies of collections. In this approach, a domain model of the applica-
tion domain is created. This model describes the classes of information in
the domain and the relationships among them. All available information
sources are defined in terms of this model. This is done by relating the
concepts defining the information sources to appropriate concepts defin-
ing the integrated system. Queries to the integrated system are also asked
in terms of this domain model. In other words, the model provides a
language or terminology for accessing the sources.

4. QUERYING THE INTEGRATED DATA 31

DL approach is similar to LAV in that a view that describes each source
is written except that views are formulated not in terms of a mediated
schema, but on concepts and classes from the application domain model.
Queries are also formulated in the same way.

This approach was taken in the SIMS System [AHK96].

Each of these approaches has certain advantages and disadvantages over
the others [Lev99b]. The main advantage of GAV is that query reformulation
in GAV is very easy. Since the relations in the mediated schema are defined
in terms of the source relations, it is enough to unfold the definitions of the
mediated schema relations. Another advantage is the reusability of views as
if they were sources themselves to construct hierarchies of mediators as in the
TSIMMIS System [CGMH+94]. However, it is difficult to add a new source to
the system. It requires that we consider the relationship between the new source
and all the other sources and the mediated schema and then change the GAV
rules accordingly. Query reformulation in LAV is more complex 6. However,
LAV has important advantages compared to GAV: adding new sources and
specifying constraints in LAV are easier. To add a new source, all we need to
do is describe that source in terms of the mediated schema through one or more
views. We do not need to consider the other sources. Moreover, if we want to
specify constraints on the sources, we simply add predicates to the source view
definitions.

Compared to GAV and LAV approaches, DL approach has the benefit of
presenting the user a richer domain model with hierarchical structures. Since
the source relations and the mediated schema relations are parts of the same
domain model, mapping between them is facilitated. However, DL by itself is
not expressive enough to model arbitrary joins of relations [Lev99b]. As in LAV
approach, adding new data sources is easy in DL approach. However, if the
contents of the new source can not be completely mapped to the domain model,
then the domain model has to be extended [AKS96].

4.1.3 Using Probabilistic Information

The source descriptions that have been mentioned up to now consider sources in
isolation. However, the sources may be related. Moreover, they have the under-
lying assumption that sources are complete. For example, in a previous example,
we considered that source S1 contains cars produced after 1990. All the cars in
S1 are produced after 1990 for sure but we do not know whether all the cars
produced after 1990 exist there. Therefore, in addition to the qualitative source
descriptions as discussed in the previous subsection, we also need quantitative
descriptions about the correlation and incompleteness of the sources [FKL97].
Qualitative descriptions allow us distinguish irrelevant sources. Quantitative
descriptions help us distinguish among the relevant sources the ones which have
higher probability to contain the answers.

6As we shall see in the next section, the most important work done on query reformulation
focus on the LAV approach.

32 CHAPTER 1. DATA INTEGRATION SERVICES

[FKL97] categorizes the quantitative information needed into three and presents
how each can be specified using probabilities:

• coverage (completeness) of the sources
It specifies the degree to which sources cover what their qualitative descrip-
tion suggest. This is done through specifying the probability of finding
certain data items in the source. For instance, if S1 is believed to cover
90% of all the cars produced after 1990, then this probability will be 0.9.

• overlap between parts of the mediated schema
It specifies the degree of overlap between the parts of the mediated schema
and hence indirectly the overlap between the data sources. For example,
probability that a car is a Japanese car given that it is economic in gas may
be assigned a value so that if we know that a car has low gas consumption,
then we can infer that it is a Japanese car with some confidence.

• overlap between information sources
This is to correlate the source contents. It can be derived from the other
two categories or can be explicitly stated. For example, the probability
that a car contained in S1 is also contained in S2 may be 0.9, which is
approximately equivalent to saying that S1 is a subset of S2.

This kind of probabilistic information can be very useful to optimize query
processing. The sources that have higher probability of containing an answer
to a query may be given priority in access. [VP98] also includes a similar study
on using probabilistic information in data integration systems.

4.2 Query Reformulation

Using the source descriptions, a user query written in terms of the mediated
schema is reformulated into a query that refers directly to the schemas of the
sources (but still in the global data model). There are two important criteria
to be met in query reformulation [Lev99a]:

• Semantic correctness of the reformulation: The answers obtained from the
sources will be correct answers to the original query.

• Minimizing the source access: Sources that can not contribute any answer
or partial answer to the query should not be accessed. In addition to
avoiding access to redundant sources, we should reformulate the queries
as specific as possible to each of the accessed sources to avoid redundant
query evaluation.

In this section, we will mainly discuss query reformulation techniques for
the LAV approach of source modeling. The reason for this is that query refor-
mulation in LAV is not straightforward and also it is one of the applications
of an important problem called ”Answering Queries using Views”. In what fol-
lows, first we briefly summarize this problem together with its other important
applications. Then we present various query reformulation algorithms for LAV.

4. QUERYING THE INTEGRATED DATA 33

4.2.1 Answering Queries Using Views

Informally, the problem is defined as follows: Given a query Q over a database
schema, and a set of view definitions V1, . . . , Vn over the same schema, rewrite
the query using the views as Q′ such that the subgoals in Q′ refer only to view
predicates. If we can find such a rewriting of Q into Q′, then to answer Q, it is
enough that we answer Q′ using the answers of the views [Lev00].

Interpreted in terms of the query reformulation problem for the LAV ap-
proach, this means the following: By using the views describing the sources in
terms of the mediated schema, we can answer a user query written in terms
of the same schema by rewriting the query as another query referring to the
views rather than the mediated schema itself. Each view referred by the new
query can be evaluated at the corresponding source this way. Basically we are
decomposing the query into several subqueries each of which is referring to a
single source.

Answering queries using views has many other important applications which
include query optimization, database design, data warehouse design and seman-
tic data caching [Lev00]. For example, query optimization may be achieved by
using previously materialized views for answering a query in order to save from
recomputation. We are discussing data warehouse design issues in Section 6.

The ideal rewriting we expect to find would be an ”equivalent” rewriting.
However, this may not always be possible. In data integration systems in partic-
ular, source incompleteness and limited source capability would lead to rewrit-
ings that approximate the original query. Among the many possible approxi-
mate rewritings, we need to find the ”best” one. The technical term for this best
rewriting is ”maximally-contained” rewriting. The below definitions formalize
these terms [Lev00]:

Query Containment and Equivalence A query Q′ is contained in another
query Q if, for all databases D, Q′(D) is a subset of Q(D). A query Q is
equivalent another query Q′ if Q′ and Q are contained in one another.

Equivalent Rewritings Let Q be a query and V = V1, . . . , Vm be a set of
view definitions. The query Q′ is an equivalent rewriting of Q using V if:

• Q′ refers only to the views in V , and

• Q′ is equivalent to Q.

Maximally-contained Rewritings Let Q be a query and V = V1, . . . , Vm

be a set of view definitions in a query language L. The query Q′ is a
maximally-contained rewriting of Q using V with respect to L if:

• Q′ refers only to the views in V ,

• Q′ is contained in Q, and

• there is no rewriting Q1 such that Q′ ⊆ Q1 ⊆ Q and Q1 is not
equivalent to Q′.

34 CHAPTER 1. DATA INTEGRATION SERVICES

4.2.2 Completeness and Complexity of Finding Query Rewritings

Theoretical issues related to the problem of finding query rewritings using views
include completeness and complexity of the query rewriting algorithms. We will
briefly touch on these issues here and we refer the interested readers to [Lev00]
for a detailed discussion.

Completeness of a query rewriting algorithm is defined as follows in [Lev00]:
Given a set of views V and a query Q, will the query rewriting algorithm al-
ways find a rewriting of Q using V if there exists such a rewriting? The answer
to this question also depends on the query language used to express the query
rewritings. Sometimes the limited expressiveness of the language may prevent
the algorithm from finding a query rewriting although there exists one. In the
case that no equivalent query rewriting exists, then we try to find a maximally-
contained rewriting. [Lev00] also points out that sometimes we need to use
recursive Datalog rules to be able to come up with a maximally-contained rewrit-
ing. This exemplifies the dependence of the algorithms on the expressiveness of
the query language.

The complexity of the query rewriting algorithms can be discussed under
different language and modeling assumptions. In general, they are in NP. Please
refer to [Lev00] for a discussion of the specific cases.

4.2.3 Reformulation Algorithms

Given a query Q and a set of views V1 . . . Vn, to rewrite Q in terms of Vis, we
have to perform an exhaustive search among all possible conjunctions of m or
less view atoms where m is the number of subgoals in the query. The following
algorithms propose alternative ways of finding query rewritings to avoid the
exhaustive search.

The Bucket Algorithm (Information Manifold)
The main idea underlying the Bucket Algorithm [Lev00] is that we can
reduce the number of query rewritings that need to be considered if we
consider each subgoal in the query separately to determine which views
may be relevant to each subgoal. Given a query Q, the Bucket Algorithm
finds a rewriting of Q in two steps:

1. The algorithm creates a bucket for each subgoal in Q which contains
the views (i.e., data sources) that are relevant to answering that
particular subgoal.

2. The algorithm tries to find query rewritings that are conjunctive
queries, each consisting of one conjunct from every bucket. For each
possible choice of element from each bucket, the algorithm checks
whether the resulting conjunction is contained in the query Q or
whether it can be made to be contained if additional predicates are
added to the rewriting. If so, the rewriting is added to the answer.
Hence, the result of the Bucket Algorithm is a union of conjunctive
rewritings.

4. QUERYING THE INTEGRATED DATA 35

The following simple example shows how the algorithm works:
Example
Consider the car-dealer example we presented earlier. Assume that there
are three data sources S1, S2 and S3. S1 contains information about cars
produced after 1990. S2 contains cars sold by the dealer named "ACME".
S3 contains car reviews. Assume that we have the following relations in
the mediated schema:

CAR(vin, status)

MODEL(vin, model, year)

SELLS(dealer_name, vin, price)

REVIEW(vin, review)

Furthermore, we have the following view definitions for the data sources:

S1(vin, status, model, year) : − CAR(vin, status),

MODEL(vin, model, year), year ≥ 1990

S2(vin, status, model, price) : − CAR(vin, status),

MODEL(vin, model, year), SELLS(dealer name, vin, price),

dealer name = "ACME"

S3(vin, review) : − REVIEW(vin, review)

Assume that we are looking for used cars produced before 1990, their
reviews and where they are sold. We pose the following query to the
mediated system:

Q(vin, dealer, review) : − CAR(vin, status), MODEL(vin, model, year),

SELLS(dealer name, vin, price), REVIEW(vin, review),

year < 1990, status = "used"

We will use the initial letters of the fields for ease of presentation. The
first step of the Bucket Algorithm constructs the following buckets per
subgoal in Q:

CAR(V, S) MODEL(V, M, Y) SELLS(D, V, P) REVIEW(V, R)

S2(V, S, M’, P’) S2(V, S’, M, P’) S2(V, S’, M’, P) S3(V, R)

Notice how views are mapped to each query subgoal by the buckets. It is
important to note that we did not insert S1 into buckets CAR(V, S) and
MODEL(V, M, Y) because of the constraint on the year attribute in the
query. Since S1 contains cars which are produced after 1990 and the query
asks for the ones produced before 1990, S1 can not answer the query.

The second step of the algorithm chooses one view from each bucket and
combines them into a new query. Since for this simple example we have
already one entry per bucket, there will be one combination of views. In
general, we would have to construct one query per possible combination of
the entries and we would test for containment in the original query. Then
the result would be the union of all the contained queries.

36 CHAPTER 1. DATA INTEGRATION SERVICES

We obtain the following new query written in terms of the view definitions
rather than mediated schema relations:

Q’(vin, dealer, review) : − S2(vin, status, model, price),

S3(vin, review), year < 1990, status = "used"

Note that we eliminated two redundant references to view S2 and we
also added the extra constraints on the year and status attributes since
without these predicates, Q’ would not be contained in Q.

In terms of completeness and complexity, [Lev00] mentions that the Bucket
Algorithm is guaranteed to find maximally-contained rewriting of a query
if the query does not contain arithmetic comparison predicates. However,
the second phase may take exponentially long.

The Inverse-Rules Algorithm (InfoMaster)
The key idea underlying this algorithm is to construct a set of rules that
invert the view definitions, i.e., rules that show how to compute tuples for
the mediated schema relations from tuples of the views [Lev00]. One can
think of this process as obtaining GAV definitions out of LAV definitions.
In other words, we are not actually rewriting the query, but we are rewrit-
ing the view definitions so that the original query can be easily answered
on the rewritten rules.

One inverse rule is constructed for every subgoal in the body of the view.
While inverting the view definitions, the existential variables that appear
in the view definitions are mapped using Skolem functions to ensure that
the value equivalences between the variables are not lost. The following
example illustrates the algorithm:

Example
Consider the view definition for S1 in the previous examples:

S1(vin, status, model, year) : − CAR(vin, status),

MODEL(vin, model, year), year ≥ 1990

Inverse-Rules Algorithm inverts this view definition by writing one inverse
rule for every subgoal in the view definition as below:

CAR(f1(V, status, model, year), status) : − S1(V, status, model, year)

MODEL(f1(V, status, model, year), model, year) : −
S1(V, status, model, year)

As illustrated above, the attribute vin is replaced by a skolem function
f1 which takes all the attributes of the view head as input. The attribute
corresponding to vin is changed to a variable V. The reason that we treat
vin as a special attribute is that it is shared between CAR and MODEL in
the view definition. That is, a vin value in CAR should also exist in MODEL
to take place in the view S1. f1 makes sure that they are mapped to the
same value.

The rewriting of a query Q using the set of views V is the datalog program
that includes the inverse rules for V and the query Q. Below we show how
a query is evaluated using these rules.

4. QUERYING THE INTEGRATED DATA 37

Q(vin) : − CAR(vin, status), MODEL(vin, model, 2000)

Assume that the source that is defined by S1 contains the following data:

S1 = {(1, "used", "Honda", 2000), (2, "new", "Toyota", 2001),
(3, "used", "Subaru", 2000)}

Then the algorithm would compute the following tuples:

{CAR(f1(1, "used", "Honda", 2000), "used"),

CAR(f1(2, "new", "Toyota", 2001), "new"),

CAR(f1(3, "used", "Subaru", 2000), "used"),

MODEL(f1(1, "used", "Honda", 2000), "Honda", 2000),

MODEL(f1(2, "new", "Toyota", 2001), "Toyota", 2001),

MODEL(f1(3, "used", "Subaru", 2000), "Subaru", 2000)}
When Q is evaluated on those tuples, we would obtain the answer {1, 3}.
In terms of completeness, this algorithm is guaranteed to find a maximally-
contained rewriting in polynomial time in the size of the query and the
views [Lev00].

Note that this example also illustrates how the rules in GAV approach can
be used to evaluate the queries.

The MiniCon Algorithm
MiniCon Algorithm is an improved version of the Bucket Algorithm. As
in the Bucket Algorithm, there are two steps: computing the buckets,
one for each subgoal in the query, and then computing the rewritings
using the buckets. Additionally, MiniCon Algorithm pays attention to
the interaction of the variables in the query and in the view definitions
to prune some of the views to be added into the buckets. This way, the
number of views to be considered for the rewriting step is reduced, i.e.,
there will be less number of combinations to check.

The following example clarifies the algorithm.

Example
Consider the following view definitions and the query:

S1(vin, status, model, year) : − CAR(vin, status),

MODEL(vin, model, year)

S2(vin, status, model, price) : − CAR(vin, status),

MODEL(vin, model, year), SELLS(dealer name, vin, price)

S3(vin, review) : − REVIEW(vin, review)

Q(vin, dealer, review) : − CAR(vin, status), MODEL(vin, model, year),

SELLS(dealer name, vin, price), REVIEW(vin, review)

The original Bucket Algorithm would put S1 into buckets of CAR and
MODEL. However, S1 can not be used in the rewriting of Q for the following
reason: Q requires join on SELLS and REVIEW. To use S1, either it should

38 CHAPTER 1. DATA INTEGRATION SERVICES

contain also SELLS and REVIEW or it should have appropriate variables in
the head so that it can be joined with other views that contain SELLS and
REVIEW. S1 must have variable vin to be joined with SELLS and REVIEW
on vin attributes of the other views. However, S1’s head only contains
model and year. Therefore, we can not use S1 in rewriting. There is no
need to put it in the buckets of CAR and MODEL subgoals. S2 will go into
the buckets of CAR, MODEL and SELLS and S3 will go into the bucket of
REVIEW. The new query will be:

Q’(vin, dealer, review) : − S2(vin, status, model, price),

S3(vin, review)

Pruning S1 in the bucket construction step, we need to check less number
of view combinations to rewrite Q′ that is contained in Q.

For a detailed discussion on the MiniCon Algorithm, please see [PL00].

The Shared-Variable-Bucket Algorithm
This algorithm, like the MiniCon Algorithm, also aims at recovering the
weak aspects of the Bucket Algorithm to obtain a more efficient algorithm.
The idea is again to examine the shared variables and reduce the bucket
contents so that the number of view combinations to be considered is
reduced at the second phase of the algorithm. We are not describing this
algorithm in detail. Interested readers should see [Mit99].

The CoreCover Algorithm
In this algorithm, closed-world assumption is taken where views are mate-
rialized from base/source relations [ALU01]. Among the possibly infinite
number of rewritings, the aim is to find the ones that are guaranteed to
produce an optimal physical plan if there exists any. Since the rewriting
aims towards query optimization, different cost models are also consid-
ered in this algorithm. One particular difference of this algorithm is that,
contrary to the previous algorithms, this algorithm aims at finding equiv-
alent rewritings rather than contained rewritings. We will again redirect
the interested readers to [ALU01] for a better discussion of the CoreCover
Algorithm.

Comparison of the Algorithms
The CoreCover Algorithm is quite different than the other algorithms.
First, all the other algorithms aim at finding a maximally-contained rewrit-
ing of the query whereas the goal of the CoreCover Algorithm is to find an
equivalent rewriting. Second, closed-world assumption is taken which en-
ables the algorithm to find an equivalent rewriting. Third, reformulation
stage of query processing is like integrated with the optimization stage
since the rewriting has to guarantee an optimal plan for the query.

Of the remaining four algorithms, Bucket, MiniCon and Shared-Variable-
Bucket Algorithms share the same spirit in that buckets are constructed
and then cartesian product of the buckets are taken to produce the rewrit-
ings. The deficiency of the Bucket Algorithm is that the constructed

4. QUERYING THE INTEGRATED DATA 39

buckets are unnecessarily large and this causes a lot of combinations to be
computed and tested for the second phase. MiniCon and Shared-Variable-
Bucket Algorithms use a very close approach to prevent this deficiency.
The MiniCon Algorithm has been shown to outperform both the Bucket
and the Inverse-Rules Algorithms [PL00].

Finally, the Inverse-Rules Algorithm has the advantage that it is query-
independent. That is, the rules are computed once and then they apply
to any query afterwards. Also, the rules are easy to extend for additional
constraints to be added to the system like functional dependencies [Lev00].
On the other hand, the rewriting obtained by the Inverse-Rules Algorithm
may contain views that are not relevant to the query because this algo-
rithm ignores the predicates that impose constraints on the variables. An
additional phase which removes the irrelevant views may be added to the
algorithm, but this is shown to be very inefficient [Lev99b]. Also, Inverse-
Rules Algorithm may have to consider a large number of rule unfoldings
during query evaluation.

4.3 Query Optimization and Execution

Query optimization refers to the process of translating a declarative query into
an efficient query execution plan, i.e., a specific sequence of steps that the query
execution engine should follow to evaluate the query. In addition to the op-
erators and their application order specified in the query execution plan, the
optimizer should also decide on the specific algorithms that implement the op-
erators and which indices to use with them. There may be many possible ex-
ecution plans. The best execution plan can be chosen in two ways: cost-based
or heuristics-based. In the cost-based approach, the optimizer has to estimate
the costs of candidate plans and choose the cheapest of them. Cost estimations
are done using statistical information about the underlying data such as sizes of
the relations and the selectivity of predicates. Heuristics-based plan generation
involves using some rules of thumb like doing selections before joins. Usually
heuristics-based technique is easier and cheaper than the cost-based one, be-
cause it does not need to consider and evaluate the cost of all possible plans.
However, the optimal plan is not guaranteed.

As discussed in the previous section, query reformulation step already pro-
vides some optimizations on the query by pruning irrelevant sources and distin-
guishing the overlapping sources to avoid redundant computation. Furthermore,
the rewritten queries are to be as specific as possible. However, these are logical
or higher level optimizations. There are still many optimizations to be done
when it comes to actually executing the logical plan generated by the reformu-
lator physically on the data.

Query optimization in data integration systems is more difficult than the
optimization problem in traditional databases because:

• Sources are autonomous. Optimizer may not have any statistics or either
has few or unreliable statistics about the data stored in each of the sources.

40 CHAPTER 1. DATA INTEGRATION SERVICES

• Sources are heterogeneous. They may have different query processing
capabilities. The optimizer needs to exploit these capabilities as much
as it can. In addition to what kind of queries the sources can process
and how they can process them, it is also relevant that what kind of
processing power they have underlying their data management system
and performance changes due to workload changes.

• In traditional databases, it is easy to estimate the data transfer time since
it is between the local disk and the main memory. In data integration
systems however, data transfer time is not predictable due to the existence
of the network environment. Both delays and bursts may occur.

• On one hand, the sources are overlapping and there is redundancy for
most of the time. That is why access to redundant sources should be
minimized. On the other hand, some sources may become unavailable
without any notice. Query optimizer should be able to handle these cases
flexibly by replacing overlapping sources for each other to compensate for
unavailability of any of them.

An additional problem that may cause inefficient query execution is that the
logical plan produced by the reformulator tends to have a lot of disjunctions,
i.e., union operations.

The bottom line is that it is difficult to decide statically what the optimum
strategy would be to execute a query due to insufficient information and dynam-
icity of the environment. Therefore, the traditional approach of first generating
a query execution plan and then executing it is no more applicable. [IFF+99]
proposes an adaptive query execution approach in which query optimization
and execution are interleaved. In the rest of this section we mainly discuss this
approach.

4.3.1 Adaptive Query Execution*

[Note: * refers to that this section is an advanced section and optional to the
reader.]

In addition to the above listed problems, [IFF+99] makes the following ob-
servations about query optimization in data integration systems:

• It is more important to aim at minimizing the time to get the first answers
to the query rather than trying to minimize the total amount of work to
be done to execute the whole query.

• Usually the amount of data coming from the data sources is smaller com-
pared to case of querying a single source as in traditional database systems.

Adaptivity in [IFF+99] exists in two levels:

• interleaved planning and execution

4. QUERYING THE INTEGRATED DATA 41

• adaptive operators for execution engine

At a higher level, the former is achieved by creating partial plans called frag-
ments rather than complete plans. The optimizer decides how to proceed next
only after executing a fragment. Once a fragment is completed, the optimizer
would know more about the sources and the environment so that it could do
better planning for the rest of the query.

The latter includes using new operators during execution depending on the
observations listed above. Two important operators used in the Tukwila System
described in [IFF+99] are double-pipelined hash join and the collector operator.

Double-pipelined hash join is a join implementation that allows Tukwila to
quickly return the first answers to the query in spite of the fact that some sources
may be responding very slowly. In contrary to the conventional hash join where
smaller of the two relations to be joined is chosen as the inner relation to hash
by the join attribute, in double-pipelined hash join, both relations are hashed.
This way, result tuples are produced as soon as the data from sources arrive.
This masks the slow data transmission rates of some sources. The optimizer
no longer has to make a decision about which relation should be the inner one
(Normally, it would have to know the size of the relations to be able to choose
the smaller one as the inner). Also, the processing is not blocked due to delays
at the sources.

The collector operator is used to facilitate union over large number of over-
lapping sources. Using the estimates about the overlap relationships between
the sources and depending on the run-time behavior of the sources (delays, er-
rors) optimizer adapts its policy about how the unions should be performed and
the collector operator achieves the application of this dynamic policy. Policies
are specified using rules.

Both levels of adaptivity are realized through event-condition-action rules.
Events are raised by execution of the operators or completion of some fragments
and obtaining some partial results. When an event triggers a rule, first the as-
sociated condition is checked. If it is true, then the defined action is executed.
Possible actions include reordering of operators, re-optimization, changing the
policy of the collector operator and so on. The rules accompany the operator
tree generated by the optimizer. They specify how to modify the implementa-
tion of some operators (for example, the collector) during run-time if needed
and conditions to check at points where fragments complete in order to detect
opportunities for re-optimization.

4.3.2 Query Translation

One thing we have treated as a black box until now is how actually the source
queries in exported schemas (in schema of the sources but in the global data
model) are translated into their actual schemas (in their local data models) and
then get executed by their native query processors. This step is called the query
translation step. It is achieved by the source-specific wrappers. Data extraction
from sources by the wrappers is the topic of the next section.

42 CHAPTER 1. DATA INTEGRATION SERVICES

5 Techniques for Extracting Data: Wrappers

Data extraction deals with the issues that arise during the process of getting data
from the different sources to the integration system. It combines techniques from
the areas of database systems and artificial intelligence (such as natural language
processing and machine learning). In this section, first we discuss wrappers that,
as we have seen in the previous sections, are important components of a data
integration system. Then we review some work on tools for semi-automatic and
automatic wrapper generation.

During information integration from heterogeneous data sources, we have to
translate queries and data from one data model to another and from one data
schema to another. As we mentioned in Section 2, this is done by wrappers
that are written for each data source in the integration system. Each wrapper
transforms queries in the unified schema to the queries in the format of the
the underlying data source and then translates the results back to the unified
schema. We would like to note that mediator systems usually require more
complex wrappers than do most warehouse systems.

5.1 Wrapper Generation Approaches

Wrapper designers can either construct the wrappers manually, or use some
tools facilitating the wrapper code development. Three approaches are usually
considered:

• Manual
Hard-coded wrappers are often tedious to create and may be impractical
for some sources. For example, in case of web sources: the number of them
can be very big, new sources are added frequently, and both the structure
and the content of any source may change [AK97]. All these factors lead
to the high maintenance costs of manually generated wrappers.

• Semi-automatic (interactive)
It was noted in [HGMN+97] that the part of a wrapper code which
deals with the details specific to a particular source is often small. The
other part is either the same among wrappers or can be generated semi-
automatically based on the declarative description given by a user. Tech-
niques such as programming by example can be used for this purpose.

• Automatic
Automatic generation means that there is no human involvement. Tools
for automatic wrapper generation can be site-specific or generic. They
usually need training in the initial stage and are based on the supervised
learning algorithms.

5. TECHNIQUES FOR EXTRACTING DATA: WRAPPERS 43

5.2 Tools for Semi-automatic/Automatic Wrapper Con-
struction

Here we review several techniques for semi-automatic and automatic wrapper
generation for structured/semistructured data . Most of them are designed for
the case of web sources. As we mentioned above, writing the wrapper code for
web sources may be especially hard due to the frequent changes of content and
structure of the sources. On the other hand, data on the web often has a partial
structure. This fact allows us to develop tools for automatically extracting this
data.

5.2.1 Using Formatting Information in the Semistructured Pages on
the Web

HTML documents often have some internal hierarchy of information, but this
hierarchy is not specified explicitly. For example, a site of a travel agency
may have information about several countries and hotels in the semistructured
format. Some records, such as “a capital”, “money units”, “a language” will
appear for all countries, while some others like “states” are country-specific.
The presence of a partial structure in many web sources gives an integration
system designer an opportunity to generate wrappers for the sources of a partic-
ular domain semi-automatically. Often this “semistructured” information may
come to the web from the databases underlying the web sources. This raises the
question “Why could not we query these databases directly in this case?”. Un-
fortunately, for a number of subjective reasons, a source may not set permissions
for the outside users to query it.

The approach we describe was proposed by [AK97] and is used for semi-
automatically generating wrappers for both multiple-instance sources and single-
instance sources. A multiple-instance source contains information on several
pages that are all of the same format. An example is CNN’s weather pages7:
pages for all cities have the same structure (for instance, there is always a
Current Conditions section with temperature, humidity and wind specified).
Wrapper must be able to answer queries about all sections of the individual page.
A single-instance source contains a single page with semi-structured information.

The authors identify three steps of a wrapper generation process for the
types of sources mentioned above: “structuring the source; building a parser;
adding communication capabilities between sources, a wrapper, and a mediator”
[AK97] .

1. Structuring the source

The first step refers to the finding heading tokens on a page, such as
“Current Condition”, “Temperature”, “Wind”, and organizing them in a
hierarchy tree. Such sections are usually stressed in the document by the
size of font (big), the type of font (bold, italic), by noticing a colon fol-
lowing such a token, etc. All these simple heuristics, used by the authors,

7http://www.cnn.com/WEATHER/

44 CHAPTER 1. DATA INTEGRATION SERVICES

proved to work well for the domains they specified.
After a system has suggested the set of headings, a user may interfere by
correcting the output. The hierarchy of the found headings is determined
based on indentation spaces and font size. The grammar describing the
structure of pages of a web source is produced as the result of this step.
Results published by the authors show that usually just few corrections
made by the user are needed for a web source.

2. Building a parser

A parser for extracting any structured portion of data can be generated
automatically given the output grammar of the first step.

3. Adding communication capabilities

First, a wrapper needs some mechanisms to fetch the appropriate pages
from the sources. In the case of a single page for each source, it is not a
problem as long as URL of this page is known. In the case of multiple
pages for a source, we need to map a query to the URL or set of URLs.
In the case of the CNN weather site, for example, we can specify that for
a given state in the USA and a city in it, the URL of the page containing
the weather forecast can be obtained by adding the following to the end
of the “http://www.cnn.com/WEATHER/” string:
- the abbreviation of the region (for instance, ne stands for the north east);
- the abbreviation of the state;
- the name of the city and a 3-letter city abbreviation.
For example, the URL for Providence, RI is
http://www.cnn.com/WEATHER/ne/RI/ProvidencePWD.html.
Second, a wrapper relies on some protocols to deliver data over the net-
work. Authors of the paper [AK97] were using Perl scripts.
Third, a wrapper and a mediator need to communicate between them-
selves in the integrated system. In the reviewed system [AK97], KQML
(Knowledge Query and Manipulation Language) was used for this.

5.2.2 Template-based Wrappers

The approach proposed by Hammer et. al. [HGMN+97] is applicable to several
types of data sources: relational databases, legacy systems, and web sources.
Their wrapper implementation toolkit is based on the idea of template-based
translation. A designer of a wrapper uses a declarative language to define the
rules (templates) which specify the types of queries handled by a particular
source. For each rule he also defines an action to be taken in case a query sent
by the mediator of an integration system matches the rule. This action will
cause a native query - a query in the format of the underlying source - to be
executed.

Filter queries are used to extend the set of queries a source can handle.
If a source does not support some predicates, the query will be turned into
two queries: the native query (that will contain only those predicates that are

5. TECHNIQUES FOR EXTRACTING DATA: WRAPPERS 45

supported by the source) and the filtered query that will “postprocess” the
results of the native query.

The process of query transformation consists of the following steps. First,
a query from the mediator is parsed, then it is matched against the templates
in the system. If the matching rule was found, the native query is processed by
the data source, and the result is filtered with the filter query by the wrapper.

A rule-based language MSL [PGMA96] is used by the authors for query
formulation. Below we give an example of an MSL query, a template matching
it, and the corresponding native and filter queries. For the purpose of the
example (that is based on the example presented in [HGMN+97]), the data
source is a relational database.
Example
Let us refer again to the example of Acme Cars company that has a relation

Automobiles(vin, autoMake, autoModel, autoPrice, autoYear).

This relational database consisting of just one relation, is our data source. We
need to write a wrapper supporting MSL queries to this source. We further as-
sume, that the source does not support comparison predicates on the autoPrice
attribute. Let a user A ask the MSL query about all Honda cars for sale whose
price is less than 12,000$:

C :-- C:<Automobiles
{<autoMake "Honda"><autoPrice P>}>
AND LessThan(P, 12,000)

One of the templates, matching this query is:

C :-- C:<Automobiles{<autoMake $A >}>

Notice, that the result of this template query is a superset of the results asked
by the user query. The action corresponding to this template is to select all
automobiles with the autoMake = $A. In the system, $A is substituted with
"Honda" and a native SQL query for the relational database is produced:

SELECT *
FROM Automobiles
WHERE autoMake = "Honda"

After the wrapper received an answer to this SQL query from the source, the
only thing remained, is to postprocess the results of this query using the follow-
ing filter query:

C :-- C:<Automobiles{<autoPrice P>}>
AND LessThan(P, 12,000)

46 CHAPTER 1. DATA INTEGRATION SERVICES

This will only leave those "Honda" cars, whose price is less than 12,000$. After
that, the result can be returned back to the mediator of the integration system.

5.2.3 Inductive Learning Techniques for Automatically Learning a
Wrapper

These techniques are sometimes called wrapper induction techniques [Eik99] and
are based on inductive learning. According to [Eik99], inductive learning is the
task of computing a generalization from a set of examples of some unknown
concept. This generalization should suggest the model explaining all of the
examples.

A very simple example of an inductive inference is when a teacher says a
sequence of numbers: 2, 4, 6, 8, 10; and then asks a pupil to guess the rule he
used to produce the next number from the previous (in this case pn+1 = pn +2).

[Eik99] points out the following classification of the inductive learning meth-
ods used for wrapper induction:

• Zero-order learning
They are also called decision tree learners as their solutions are represented
as decision trees. The drawback of these methods is coming from the
fact that they are based on the propositional logic that has a number of
limitations. For example, they can not deal with several relations in a
relational database [Eik99].

• First-order learning
Methods of this type can deal with first-order logical predicates.
Inductive logic programming is a method of this class, widely used due
to the ability to deal with complex structures such as recursion. Two
approaches - bottom-up and top-down - are often used as a part of the
first-order learning.

The bottom-up approach first suggests a generalization based on few ex-
amples. Then this generalized model is corrected based on the other ex-
amples.
The top-down approach starts with a very general hypothesis and then
distills it learning from negative examples.

Some known systems for inductive learning of wrappers are STALKER [MMK98]
and the system described by Kushmerick et al. [KWD97]. An excellent overview
of some other systems for information extraction by inductive learning is given
in [Eik99].

Here we discuss the system developed by Kushmerick et al. [KWD97]. This
approach is suited for the text sources (HTML-pages) with a tabulated structure
and with the following delimiters: head, right, left and tail.
Example
Let us consider an HTML page with the list of pupils in the class with the
corresponding GPA (this example is based on the example in [KWD97]). For
the simplicity, we assume that each pupil is identified by only the second name.

5. TECHNIQUES FOR EXTRACTING DATA: WRAPPERS 47

<HTML>
<TITLE>Current GPA of the students</TITLE>
<BODY>Current GPA of the students<P>
Simpson <I>2.72</I>

Johnson <I>3.5</I>

Peterson <I>4.0</I>

<HR>End
</BODY></HTML>

 and (as well as <I> and </I>) are called left and right delimiters
and separate the data on the HTML page. However, the first and the last
strings also contain these delimiters; so in order to distinguish between tuples
and heading/ending of the HTML page, a head tag <P> and a tail tag <HR>
can be used [KWD97]. This set of delimiters makes the job of a wrapper simple:
first skip a string with <P> in the end; then, till the marker of the end is reached,
fill out tuples with the data surrounded by (,) and (<I>, </I>).

The algorithm the authors developed is used for automatic generation of
wrappers for HTML-sites with such structure. Missing data is not allowed, and
the order is also strict. They call this class of wrappers HLRT-wrappers (head,
left, right and tail).

First, a number of HTML pages is labeled. Labeling in this case means
the specification of the tuples, contained in the HTML page. In the example
above, we would label that HTML page with {(Simpson, 2.72), (Johnson, 3.5),
(Peterson, 4.0)}. The hypothesis in this case is a set of tags used to separate
each attribute (in the example, the wrapper should learn that and
are used to separate family names; <I> and </I> - GPA-s. Labeling by hand
is pretty laborious, so the authors described how a set of heuristics (domain-
specific) can be used as an input for a labeling algorithm to semi-automate
it.

Induction algorithm learns from these labeled data. Iteratively, the algo-
rithm constructs a set of delimiters consistent with the labeled pages. It is done
by considering possible combinations of tags present in the pages till the con-
sistent set of tags is found. The question is ”How many examples are enough
to conclude that the set of delimiters that is consistent with all examples so far,
will be consistent with the remaining examples?”. More formally, we need to
know how many examples are enough to say that with probability ε we learned
a wrapper correctly with confidence δ. The authors provide the formulas they
used to estimate it.

48 CHAPTER 1. DATA INTEGRATION SERVICES

6 Materialized View Management

A view defines a derived relation from a set of database relations. It is actually a
query whose result is given a name that can be used like other ordinary relation
names stored in the database. When the tuples of the virtual relation defined
by a view are physically stored in a database, we call such a view materialized
view.

Use of materialized views dates back to early 1980s [GM99]. They were
first proposed to be used as a tool to speed up queries on views. Then they
were also used to maintain integrity constraints and to detect rule violations in
active databases. They gained serious reconsideration by the emergence of new
applications like data warehousing. In this section, we discuss issues related to
use of materialized views in data integration systems.

We presented the materialized view approach to data integration in Sec-
tion 2. The term comes from the fact that a set of views are derived from the
data sources and the answers to those views are actually stored in a repository
called a data warehouse. The main purpose of this pre-computation is to improve
query response time. None of the complex query processing steps described in
Section 4 is needed to be able to answer a user query in data warehouses at the
time the query is asked. Those steps are completed and the results are collected
in advance of the queries. This not only provides the ability to answer many
queries very quickly, but also increases the availability of the system since the
warehouse continues to answer queries even if the underlying data sources may
become inaccessible for some reason at the time of querying.

Of course the benefits mentioned above do not come for free. First, the
views to be materialized need to be determined. Usually it is both costly and
redundant to materialize all the derived relations defined by the views which
constitute the unified schema of the integrated system. The most beneficial
views need to be selected based on criteria like frequently asked queries. Second
and more importantly, the views that are selected to be materialized need to be
maintained. View maintenance refers to the process of synchronizing derived
data stored at the warehouse with the updates on the base data, i.e. data stored
at the underlying data sources. The naive way of maintaining views would be
to re-materialize the views when a relevant update occurs. However, this is not
desirable for good performance.

In this section, we first present the materialized view selection problem to-
gether with the proposed solutions. Then we discuss various approaches for
maintaining the selected views efficiently.

6.1 Design and Selection of Views to Materialize

The problem of materialized view selection can be defined as follows: Given
a set of queries to the integrated system with their access frequencies and a
set of source relations with their update frequencies, find a set of views to be
materialized such that the total query response time (i.e. query processing time)
and the cost of maintaining the selected views are minimized [YKL97]. There

6. MATERIALIZED VIEW MANAGEMENT 49

may also be other resource constraints to be considered such as disk space, but
the most important of all is the maintenance cost/time.

Previous research on this problem has concentrated on Multiple-Query Op-
timization (MQO) techniques. MQO is the problem of finding an optimal query
execution plan for evaluating a set of queries simultaneously. Techniques used
involve identifying the common subexpressions among queries, executing those
once and reusing later. In general, there may be many possible plans for each
query and there may also be many possible ways of combining them. Thus, the
search space is really large. Two general approaches are: (i) producing local op-
timal plans for each query and then merging them, which does not guarantee an
optimal solution, and (ii) generating a globally optimal plan, which has a larger
search space. [SG90] has proven that MQO problem is NP-complete. Proposed
solutions usually make use of heuristics to find a solution as close as possible to
the optimal solution. The related work on materialized view selection follows a
similar path.

[YKL97] proposes a method where a Multiple View Processing Plan (MVPP)
is constructed from the set of queries. Then some parts of this plan are selected
to be materialized. The cost comparisons are based on the following cost mea-
sures: Cost of a query is the number of rows in the table used to construct
that query. Cost of query processing is the frequency of the query multiplied
by cost of query access from materialized nodes. Cost of view maintenance is
equal to the cost of constructing the view, i.e. re-materialization is assumed.
Total cost is equal to the sum of the cost of query processing and the cost of
view maintenance.

There are two stages to view selection:

1. finding a good MVPP
MVPP is the global query execution plan in which local execution plans
for individual queries are merged based on shared operations on common
sets [YKL97]. There are two ways of finding the MVPP:

• merging local optimal query plans
Local optimal plans are computed for each query. Then the queries
are ordered in a descending fashion based on their query processing
costs multiplied by their access frequencies. If there are k queries, k
MVPPs are constructed as follows:

for i=1 to k do
take the ith local query plan and
incorporate all the others to it in order

The view selection algorithm at stage 2 will be run on these k MVPPs
and then the least costly one will be chosen. This approach takes
linear time in terms of the number of queries.

• generating a globally optimal plan
Rather than the locally optimal plans, all possible plans for each
query are considered. The problem is mapped to a 0-1 integer linear

50 CHAPTER 1. DATA INTEGRATION SERVICES

programming problem which is stated as follows: Select a subset
of the join plan trees such that all queries can be executed and the
total query processing cost is minimum [YKL97]. Then the set of join
trees found are used to construct the MVPP. Solution to the linear
programming problem is the optimal solution. However, solving it is
exponential in the number of queries. Therefore, usually near-optimal
solution is found.

2. selecting views to materialize from the MVPP
An execution tree is built for the given MVPP whose nodes correspond to
intermediate results to the queries. We can simply choose the complete
tree or all the leaf nodes for materialization. These correspond to mate-
rializing all the queries and all the base relations, respectively. However,
the aim is to find a set of intermediate nodes to materialize such that the
total cost for query processing and view maintenance is minimized. The
brute force way of finding this set is to compare the cost of every possible
combination of nodes. This is not efficient. Some heuristics should be
used. The algorithm presented in [YKL97] is based on the following idea:
Whenever a new node is considered to be materialized, we calculate the
saving it brings in accessing all the queries involved, subtracting the cost
for maintaining this node. If the value is positive, then this node will be
materialized and added into the solution set.

A somewhat similar approach is presented in [Gup97] which is based on using
greedy heuristics and AND-OR graphs. An AND-OR graph represents a set of
query plans. AND-OR graphs of the queries are merged to obtain an AND-OR
view graph. Each node in the AND-OR view graph represents a view that could
be selected for materialization. The problem is to choose among the nodes of
the AND-OR view graph such that sum of total query response time and total
maintenance time is minimized. [Gup97] states that the minimum set cover
problem can be reduced to this problem and it is NP-hard. A near-optimal
algorithm is presented which uses greedy heuristics. The set of the selected
views has a benefit and at each step views that would increase the benefit of
this set would be added to the set. Special cases of AND view graphs, OR view
graphs, view graphs with indices are also investigated in [Gup97].

[RSS96] and [MRRS00], which mainly focus on the view maintenance prob-
lem, indirectly cover some methods that are applicable to view selection. [RSS96]
proposes to augment a given set of materialized views with an additional set of
views that may reduce the total maintenance cost. The selection problem here
is to determine the additional views. [MRRS00] applies MQO techniques both
to view selection and maintenance. Selection comes into play where additional
views are to be materialized temporarily for efficient maintenance. The claim
is that the same techniques are also applicable to selection of permanent views
to materialize.

There are also research studies in materialized view selection for the special
case of data cubes [HRU96] and multidimensional datasets [SDN98] in OLAP.
We do not present them in detail here.

6. MATERIALIZED VIEW MANAGEMENT 51

6.2 The Problem of View Maintenance

Materialized views are derived from data originally stored at multiple data
sources. As primary copies of data at the data sources get updated, materi-
alized views become stale or inconsistent with the underlying data. We call the
process of bringing the materialized views up-to-date with the changes in the
underlying data view maintenance. A materialized view can always be brought
up-to-date by re-evaluating the view definition. However, recomputing the views
every time the base data changes is not very efficient. Besides, [GM95] points
out that in general only a part of the view changes in response to changes in
the base relations, which is called the heuristic of inertia. Thus, only the parts
of the views that are affected from the changes need to be computed and up-
dated. This is called incremental view maintenance. The following exemplifies
incremental view maintenance.

Example
Consider the following base relation stored at some data source:
Cars(vin, status, model, year, price)
Assume that the following view defined on Cars is materialized at the data

warehouse:
CheapCars(vin, price) :- Cars(vin, status, model, year, price),

price ≤ 3000
When a new car tuple <471, "used", "Mazda", 1992, 2500> is added

into the Cars table at the data source, CheapCars view needs to be updated.
The only modification needed is addition of the tuple <471, 2500>. The
whole view need not be recomputed. When another car tuple <839, "used",
"LandRover", 1996, 15000> is added, however, CheapCars does not need any
modification because the new tuple does not satisfy the view definition.

In this subsection, we present the dimensions of the problem and alternative
policies for view maintenance. Incremental view maintenance techniques will be
discussed in the following subsections.

6.2.1 Dimensions of the Problem

The following parameters determine the complexity of the view maintenance
problem [GM99]:

• Available Information
It refers to the amount of information available to the view maintenance
algorithm. The view definition and the actual update occurred on base
data have to be known to the algorithm. In addition to that, informa-
tion like the content of the materialized views, the contents of the base
relations, the definitions of other views and integrity constraints at the
data sources might also be accessible to the algorithm. Depending on
how much information is available, the task of view maintenance might be
facilitated. For example, if we knew that a certain attribute is a key at
the underlying data source, then we would also know that every insertion
would have a different value for that attribute. Hence, an insertion at the

52 CHAPTER 1. DATA INTEGRATION SERVICES

source would require an insertion at the materialized view that refers to
that attribute.

• Allowable Modifications
It determines what modifications can be handled by the view maintenance
algorithm given other parameters. These might include insertions, dele-
tions, updates, group updates, etc.

• Expressiveness of the View Definition Language
View definition language may also facilitate or complicate the task of view
maintenance. Views might be defined at various levels of expressiveness
through languages including conjunctive queries, aggregation, recursion,
negation, etc.

• Database and Modification Instance
Current contents of the data sources or the materialized views and the
modification may also determine the capabilities of the maintenance algo-
rithm.

• Complexity
A dimension that is somewhat at a different level than the others is the
complexity dimension which refers to the efficiency of the view mainte-
nance algorithm. Complexity can be measured in multiple sub-dimensions
including complexity of view maintenance language, view maintenance al-
gorithm or amount of extra information needed.

6.2.2 View Maintenance Policies

There are two main steps in materialized view maintenance: propagate and
refresh [GM99]. Propagate step involves computing changes to be done on
the materialized views upon changes to the base data and in refresh step the
computed changes are actually applied on the materialized views. Propagate
step always precedes the refresh step. The decision of when to perform the
refresh step is called a view maintenance policy. Maintenance policies can be
categorized as follows:

• Immediate View Maintenance
Refreshing is done within the transaction that changes the base data. The
advantages of this policy are that queries are processed fast and always
return up-to-date results. The reason for this is that materialized views
are brought up-to-date in advance of the queries. On the other hand, this
policy slows down the transactions at the data sources since propagation
and refreshing are to be done in the transaction’s scope. Besides, this
policy may not always be applicable when the data sources are fully au-
tonomous and their commit decisions can not be delayed by the integrated
system.

• Deferred View Maintenance
Refreshing on the views is done later than the transaction that changes

6. MATERIALIZED VIEW MANAGEMENT 53

the base data. Log of changes to the base data are to be kept. This policy
allows batch updates by applying all the changes collected in the log to
the views at the same time. There are three deferred view maintenance
policies:

– Views are refreshed lazily at query time. It is guaranteed that query
answers will be consistent with the base data and this is done without
slowing down the transactions at the sources. However, queries to
the integrated system are processed more slowly.

– Changes to views are forced after a certain amount of change to the
base data have been done. Both transaction and query performances
are good, but queries may return non-up-to-date results.

– Refreshing is done periodically in certain time intervals. This is also
called the snapshot maintenance. Again, in spite of the good trans-
action and query time, queries may return non-up-to-date results.

In general, immediate maintenance does not scale with the number of mate-
rialized views, but deferred maintenance does. Therefore the decision of which
views to maintain immediately has to be made very selectively. If real-time
queries are asked on a view for which consistent results are crucial, then that
view should be maintained immediately. Views which are queried relatively in-
frequently can be maintained in a deferred fashion. Usually decision support
applications, where a stable copy of the derived data is more important than
freshness, use periodical deferred policy. [CKL+97] provides a decent study on
consistency and performance issues in supporting multiple view maintenance
policies. Materialized views that are related to each other may become in-
consistent if they are maintained under different policies. Mutual consistency
between views has to be settled.

The next question to ask is how view maintenance is applied. In the next
subsections, we discuss how actually the maintenance should be performed.

6.3 Incremental View Maintenance

Incremental view maintenance algorithms have been investigated for a long time
as an efficient alternative to re-materialization. Most of the work in this area
consider the problem for centralized database systems where materialized views
are used for purposes like speeding up queries on views or implementing rule
checking efficiently. The problem has additional facets when considered in the
scope of data integration systems. However, previous work still applies to some
cases and form the basis of algorithms for data integration applications. We
believe the following categorization of incremental view maintenance algorithms
clarifies the link between the two cases:

• pre-update algorithms: maintenance is performed before the base rela-
tions have been actually updated, as in the case of immediate mainte-
nance policy where maintenance is performed within the transaction that
is updating the source.

54 CHAPTER 1. DATA INTEGRATION SERVICES

• post-update algorithms: maintenance is performed after the transaction
that updates the relevant base relations is over.

Previous methods that apply to centralized databases naturally involve pre-
update algorithms because the base relations and the materialized views are
parts of the same system. However, data integration systems have to use post-
update algorithms since the underlying sources are autonomous and they are
unaware of the maintenance procedures that are occurring in the integrated sys-
tem. We can not force them to include maintenance procedures within their up-
date transactions. As stated in [ZGMHW95], information sources are decoupled
from the data warehouse. This brings additional problems about consistency.

In this section, our focus is on methods devised for incremental view mainte-
nance in general. We present techniques specifically on data integration systems
in the next subsection.

[GM95] provides a survey of incremental view maintenance algorithms clas-
sifying them according to view language and available information dimensions.
Here we discuss some of them without giving an explicit classification. Our aim
is to give a flavor of the important issues that are addressed in many of those
algorithms.

[BLT86] handles Select (S), Project (P) and Join (J) views in isolation first
and then considers them together as SPJ views. For each case, both insertions
and deletions are considered. For S views, inserted tuples are simply unioned
and deleted tuples are simply subtracted from the materialized view data set.
Updating P views when deletion occurs in the base relation is more complicated.
The problem stems from the fact that a tuple in the view that is projected
on some particular attribute may be there due to multiple tuples in the base
relations. If one of these base tuples is deleted, the derived tuple may not have
to be deleted since there are other existing base tuples that it is derived from.
This problem is solved by using counters for view tuples. A view tuple would
have to be deleted when the counter dropped to 0. Upon insertions of new
tuples to one of the join relations, J views should only perform join between
the newly added tuples and the other join relation rather than computing the
join between two relations from scratch. Deletions are handled in a similar way
by only joining the deleted tuples and then subtracting those from the original
view. These methods are further combined together for SPJ views [BLT86].

[GMS93] presents two algorithms: Counting algorithm and DRed (Deletion
and Re-derivation) algorithm. In both of these algorithms, the emphasis is on
deletion since it is more problematic. Counting algorithm is proposed for non-
recursive views with negation and aggregate functions. It is based on the counter
method of [BLT86], but the view language is more general. For each tuple in
the materialized view, number of alternative derivations is stored as the count.
Relevant insertions increment the count and relevant deletions decrement the
count by 1. When the count drops to 0, the tuple need not be stored in the
materialized view any more. This algorithm also works with recursive views
only if every tuple has finite number of derivations. DRed algorithm works for
general recursive views with negation and aggregation. This algorithm involves

6. MATERIALIZED VIEW MANAGEMENT 55

three basic steps: (i) ignore the alternative derivations and put the view tuple
into the delete set if it gets invalidated at least by one of its derivations, (ii)
remove the tuples from the delete set if they have other derivations, (iii) compute
the tuples to be inserted to the views due to insertions to base relations.

In addition to the algorithmic approaches as summarized above, there are
algebraic approaches to incremental view maintenance. [GL95] presents an ap-
proach based on multi-set/bag semantics. All the arguments are based on the
equivalence of bag-valued expressions. Bag algebra expressions are used to rep-
resent the materialized views. Given a transaction that changes the state of the
database and a set of bag expressions, they try to derive delta expressions which
represent how the bag algebra expressions need to be updated. The goal is to
find a minimal set of such delta expressions. [GL95] also emphasizes that proper
handling of duplicates is important for computing the aggregate functions (like
averaging a list of values) correctly.

[RSS96] explores what additional views should be materialized for optimal in-
cremental maintenance of a given materialized view. [MRRS00] generalizes this
idea to how to maintain a set of views efficiently by using additional temporar-
ily or persistently materialized views. Approach involves materializing common
subexpressions between view maintenance expressions as in multi query opti-
mization algorithms. We mentioned this approach before in this section as we
presented the selection of views to materialize.

6.4 View Maintenance in Data Integration Systems

The main problem in data integration systems in terms of incremental view
maintenance is that maintenance has to be done after the updates at the data
sources have occurred. Later, when the maintenance has to take place, the
integrated system may need to ask additional queries to the data sources if it
does not have all the information needed to perform the maintenance. If the
data sources continue to change in the time between the updates known by the
integrated system and the maintenance time, then the additional queries will
be answered according to the new state of the data sources which is different
than the one at the time of initial update (i.e., the update which is trying to
be fixed at the integrated system). This is called a state bug [CGL+96] or view
maintenance anomaly [ZGMHW95]. This problem stems from the fact that pre-
update maintenance algorithms can not be used for data integration systems as
they are. [CGL+96] proposes two ways of avoiding the state bug:

• using the pre-update algorithms but restricting the updates and views so
that correctness is guaranteed

• developing specific algorithms for the post-update case

[CGL+96] proposes new algorithms for post-update case which are based on
the usage of database invariants, i.e. conditions that are guaranteed to hold at
every state of the database. These are used to maintain correctness. As [GL95],
algebraic approach based on bag semantics is taken. [CGL+96] also emphasizes

56 CHAPTER 1. DATA INTEGRATION SERVICES

the minimization of the view down-time. Usually views become inaccessible for
queries during maintenance. [QW97] addresses this problem through a two-
version no locking (2VNL) algorithm. Two concurrent versions of the materi-
alized views provide continuous and consistent access to the warehouse during
maintenance.

[ZGMHW95], on the other hand, is based on a pre-update view mainte-
nance algorithm. The algorithm in [BLT86], which we briefly summarized in
the preceding subsection, is used as basis. [ZGMHW95] proposes ECA (Ea-
ger Compensating Algorithm) in which extra compensating queries are used to
eliminate anomalies. In fact anomalies would not occur if we re-computed the
views or stored the copies of base relations referenced in the views, but both
of these options are too costly and not good options compared to incremental
view maintenance. In ECA, the basic idea is to send compensating queries to
the data sources to avoid the potential anomalies that may occur according to
query answers coming from the data sources. In other words, the warehouse
eagerly forces data sources to send correct information. This is done by an-
ticipating what kind of anomalies can occur beforehand and preparing view
maintenance queries which contain compensating expressions in addition to the
view maintenance expressions that would avoid the anomalies.

Next subsections discuss how the incremental maintenance process could be
made more efficient.

6.5 Update Filtering

Not all the updates at the data sources cause updates at the materialized views.
We can speed up the maintenance process if we can detect which base data
updates have no effect on the views, and hence need not be maintained. Such
updates are called irrelevant updates and the procedure of pruning irrelevant
updates from the maintenance plan is called update filtering. [BCL89] calls
queries/views that are not affected from the updates queries independent of
updates.

Most of the work in this area aims at theoretically defining necessary and
sufficient conditions for the detection of irrelevant updates for the cases of in-
sertions, deletions and modifications [BLT86, BCL89, LS93]. [BCL89] defines
irrelevant updates as update operations applied to a base relation has no effect
on the state of a derived relation independently of the database state. [LS93]
reduces the update independence problem to equivalence problem for Datalog
programs and provides decidability results for different cases. [BLT86] presents
more practical algorithms for detecting irrelevant updates. The views considered
are in the form of PSJ queries. Selection condition is the primary determinant
for deciding relevance. For insertions at the base relations, we substitute the
values of the inserted tuple in the selection condition of the view. If the selection
condition becomes unsatisfiable, then the insertion is irrelevant to the view, i.e.,
no tuple needs to be inserted to the view. Else, the insertion may be relevant
to the view. Similarly, for deletions, we substitute the values of the deleted
tuple in the selection condition of the view. If the selection condition becomes

6. MATERIALIZED VIEW MANAGEMENT 57

unsatisfiable, then the deletion is irrelevant to the view, i.e., no tuple from the
view needs to be deleted. In general, satisfiability of boolean expressions is
NP-complete. [BLT86] assumes boolean expressions that are conjunctions of
inequalities. Then the problem can be solved in polynomial time. It can also
be generalized to disjunctions of conjunctions, which adds a linear factor to the
complexity.

In conventional database systems, update filtering can be implemented using
integrity constraints or triggers. The base relations are not decoupled from the
derived relations. View definitions are known to the whole system. However, in
data integration systems, the filtering has to be done at the integration system
level. Data sources can not perform filtering since they are not aware of the
view definitions.

6.6 View Self-Maintenance

Another way to speed up maintenance is to minimize external data source access.
As we mentioned earlier, to maintain a view, we may need to ask queries to
the data sources in addition to the update information itself. This requires
to communicate with the sources. We should try to exploit the information
available at the integrated system (data warehouse) as much as we can to avoid
this communication.

In general, self-maintenance refers to views being maintained without using
all the base data. There exists different notions of its exact meaning depending
on how much information is available. The ideal case is that the view update is
performed locally at the integrated system by only knowing the particular base
data update that has occurred, the view definitions and the materialized data.
Whenever this is not possible, we need additional techniques to minimize base
data access.

The first thing to do is to decide whether a given view is self-maintainable or
not. If it is, then we need to know how to achieve self-maintenance. Otherwise,
techniques may be developed to make it self-maintainable. Self-maintainability
can be both investigated on a single view or on multiple views. Initially, we can
consider each view in isolation. It should also be noted that self-maintainability
is an issue specific to data integration systems. In traditional (centralized)
databases, since all information is known to the system, there is no context for
self-maintainability.

[GJM96] aims at defining self-maintenance rules for SPJ views. Self-maintain-
ability algorithms are highly dependent on the view definition language. Three
issues are investigated: (i) which relation is modified, (ii) what type of modifi-
cation, and (iii) if key information can be exploited. The results they have come
up with are as follows:

• For insertions, SP views are self-maintainable. SPJ views are self-maintain-
able only if join is a self-join (i.e. relation R is joined with itself) and join
attribute is the key of R. Other SPJ views are not self-maintainable.

• For deletions, SPJ views are self-maintainable.

58 CHAPTER 1. DATA INTEGRATION SERVICES

• For updates, if modeled as deletion followed by insertion, the rules for
insertions and deletions hold. Otherwise, SPJ views are self-maintainable
if updates are on non-exposed (i.e. not involved in any predicate in the
view definition) attributes.

[BCL89] explores similar conditions for a more general view definition language.
[Huy97] investigates the meaning of self-maintainability at different contexts.

They show that self-maintainability can be reduced to the problem of deciding
query containment.

There are several techniques to make views locally maintainable [Huy97]:

• Multiple-View Self-Maintenance
Views that are not self-maintainable when considered in isolation may
become collectively maintainable at the integrated system when they are
considered together [Huy97]. In other words, the information available to
each view is extended to all the materialized views at the warehouse in
addition to its own definition and materialization.

• Batch Updates
Rather than maintaining each update operation separately, if we save the
updates and maintain them all together, then the amount of work may
be reduced. For example, if an update operation deletes a tuple and
a following update inserts the same tuple back, then these two updates
have no effect on the state of the materialized views when considered as
a whole.

• Auxiliary Materialized Views
By materializing additional views, other views may become self-maintainab-
le. The basic idea here is to increase the amount of information available
at the integrated system level.

Lastly, one important point to note is that self-maintenance also removes the
situations where anomalies can occur when the maintenance is totally performed
locally at the integrated system. The reason for this is that anomalies are caused
by additional queries asked to the data sources some time after the related
update has occurred. If a view is self-maintainable, then no additional querying
is necessary.

6.7 Dynamic View Management

As stated earlier, materialized view management has two important compo-
nents: view selection and view maintenance. Until now we assumed that views
to materialize are selected once at the beginning according to some statistics on
frequently asked queries and base data update frequencies and then the selec-
tion is over. From that point on, the system concentrates on the maintenance of
those selected views. This kind of view management is called static view man-
agement. The major problem with this approach is that if the query workload

6. MATERIALIZED VIEW MANAGEMENT 59

or base data update patterns change, then the decisions about view selection
become invalid.

The solution proposed in [KR99] is dynamic view management in which
view selection and view maintenance stages are unified. The query workload
is continuously monitored by the system and view selection decisions are up-
dated dynamically. The constraints to be considered in addition to the changing
workload patterns include disk space and maintenance window. Maintenance
window has more importance than space because usually the system is unavail-
able for queries while the maintenance is being carried out. This time window
has to be kept as short as possible. The more number of views materialized,
the longer the maintenance window is. However, more materialization speeds
up the query processing. Therefore, a compromise has to be made.

60 CHAPTER 1. DATA INTEGRATION SERVICES

7 Concluding Remarks

Data integration services are important ingredients of network data services.
They present an opportunity for transparent access to many different data
sources residing on the network, as if these data sources were in fact a sin-
gle data source. In other words, they hide from the user the fact that there is
a diversity of data sources.

In this chapter, we have presented major problems in building and operating
data integration systems together with a survey of proposed solutions. Most of
the current data integration methods are still under research and most of the
systems mentioned throughout this chapter are research prototypes. There is
a need to apply the proposed techniques to real-life systems to improve their
performances.

One important point we have not mentioned in the chapter is the standard-
ization issues that are under development to represent and communicate data
on the web in an easier way. The most well-known of these standards is the
eXtensible Markup Language (XML) [XML00]. As XML or similar standardiza-
tion efforts became widely used, the data integration services could also benefit
from this. The heterogeneity in data representations could decrease and more
effective solutions for data integration would be possible.

The amount and availability of data that exist on the network are growing
in an increasing speed. The need to bring these data together to infer useful
information is also rising. As long as there will be data, there will also be need
for data integration services.

Bibliography

[AHK96] Y. Arens, C. Hsu, and C. A. Knoblock. Query Processing in
the SIMS Information Mediator. In A. Tate, editor, Advanced
Planning Technology, pages 61–69. AAAI Press, Menlo Park, CA,
1996.

[AK97] N. Ashish and C. Knoblock. Semi-automatic Wrapper Genera-
tion for Internet Information Sources. In Second IFCIS Interna-
tional Conference on Cooperative Information Systems (CoopIS),
Charleston, SC, 1997.

[AKS96] Y. Arens, C. A. Knoblock, and W. Shen. Query Reformulation
for Dynamic Information Integration. Journal of Intelligent Infor-
mation Systems (JIIS) - Special Issue on Intelligent Information
Integration, 6(2/3):99–130, 1996.

[ALU01] F. N. Afrati, C. Li, and J. D. Ullman. Generating Efficient Plans
for Queries Using Views. In ACM SIGMOD International Con-
ference on Management of Data, Santa Barbara, CA, May 2001.

[Ash00] N. Ashish. Optimizing Information Mediators By Selectively Ma-
terializing Data. PhD thesis, USC, March 2000.

[BCL89] J. A. Blakeley, N. Coburn, and P. Larson. Updating Derived
Relations: Detecting Irrelevant and Autonomously Computable
Updates. Transactions on Database Systems (TODS), 14(3):369–
400, September 1989.

[BF94] M. Bonjour and G. Falquet. Concept Bases: A Support to Infor-
mation Systems Integration. Proceedings of CAiSE94 Conference
, Utrecht, 1994, 1994.

[BKLW99] S. Busse, R. Kutsche, U. Leser, and H. Weber. Federated In-
formation Systems: Concepts, Terminology and Architectures.
Technical Report 99-9, Berlin Technical University, 1999.

[BLT86] J. A. Blakeley, P. Larson, and F. Wm. Tompa. Efficiently Updat-
ing Materialized Views. In ACM SIGMOD International Con-

61

62 BIBLIOGRAPHY

ference on Management of Data, pages 61–71, Washington, DC,
May 1986.

[Bor95] A. Borgida. Description Logics in Data Management. IEEE
Transactions on Knowledge and Data Management, 7(5):671–682,
October 1995.

[CD97] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing
and OLAP Technology. SIGMOD Record, 26(1):65–74, 1997.

[CGL+96] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey.
Algorithms for Deferred View Maintenance. In ACM SIGMOD
International Conference on Management of Data, pages 469–480,
Montreal, Canada, June 1996.

[CGL+98] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and
R. Rosati. Description Logic Framework for Information Integra-
tion. In Principles of Knowledge Representation and Reasoning,
pages 2–13, 1998.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
Project: Integration of Heterogeneous Information Sources. In
10th Meeting of the Information Processing Society of Japan
(IPSJ), pages 7–18, Tokyo, Japan, October 1994.

[CKL+97] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and
K. A. Ross. Supporting Multiple View Maintenance Policies.
In ACM SIGMOD International Conference on Management of
Data, pages 405–416, Tucson, AZ, June 1997.

[CLN99] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying Class-Based
Representation Formalisms. Journal of Artificial Intelligence Re-
search, 11:199–240, 1999.

[Eik99] Line Eikvil. Information Extraction from World Wide Web. A
Survey, July 1999.

[EJ95] L. Ekenberg and P. Johannesson. Conflictfreeness as a Basis for
Schema Integration. In Conference on Information Systems and
Management of Data, pages 1–13, 1995.

[FKL97] D. Florescu, D. Koller, and A. Levy. Using Probabilistic Infor-
mation in Data Integration. In International Conference on Very
Large Data Bases (VLDB), pages 216–225, Athens, Greece, Au-
gust 1997.

[Fri99] M. T. Friedman. Representation and Optimization for Data In-
tegration. PhD thesis, University of Washington, 1999.

BIBLIOGRAPHY 63

[GJM96] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data Integration us-
ing Self-Maintainable Views. In International Conference on Ex-
tending Database Technology (EDBT), pages 140–144, Avignon,
France, March 1996.

[GL95] T. Griffin and L. Libkin. Incremental Maintenance of Views with
Duplicates. In ACM SIGMOD International Conference on Man-
agement of Data, pages 328–339, San Jose, CA, June 1995.

[GM95] A. Gupta and I. S. Mumick. Materialized Views: Problems, Tech-
niques, and Applications. Data Engineering Bulletin, 18(2):3–18,
June 1995.

[GM99] A. Gupta and I. S. Mumick, editors. Materialized Views: Tech-
niques, Implementations, and Applications. MIT Press, 1999.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining
Views Incrementally. In ACM SIGMOD International Conference
on Management of Data, pages 157–166, Washington, DC, May
1993.

[GMUW00] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System
Implementation, chapter 11: Information Integration. Prentice
Hall, 2000.

[Gup97] H. Gupta. Selection of Views to Materialize in a Data Warehouse.
In International Conference on Database Theory (ICDT), pages
98–112, Delphi, Greece, January 1997.

[Hal95] G. Hall. Negotiation in Database Schema Integration. In The In-
augural AIS Americas Conference on Information Systems, Pitts-
burgh, PA, August 1995.

[Has00] W. Hasselbring. Information System Integration. Communica-
tions of the ACM, 43(6):33–38, 2000.

[HG92] R. Herzig and M. Gogolla. Transforming Conceptual Data Models
into an Object Model. In International Conference on Concep-
tual Modeling / the Entity Relationship Approach, pages 280–298,
1992.

[HGMN+97] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Bre-
unig, and V. Vassalos. Template-based wrappers in the TSIMMIS
system. In Workshop on Management of Semistructured Data,
Tucson, Arizona, May 1997.

[HGMW+95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and
Y. Zhuge. The Stanford Data Warehousing Project. IEEE Bul-
letin of the Technical Committee on Data Engineering, 18(2):41–
48, 1995.

64 BIBLIOGRAPHY

[HM85] D. Heimbigner and D. McLeod. A Federated Architecture for
Information Management. ACM Transactions on Office Informa-
tion Systems, 3(3):253–278, 1985.

[HRU96] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing
data cubes efficiently. In ACM SIGMOD International Confer-
ence on Management of Data, pages 205–216, Montreal, Canada,
June 1996.

[HSC+97] M. N. Huhns, M. P. Singh, P. E. Cannata, N. Jacobs, T. Ksiezyk,
K. Ong, A. P. Sheth, C. Tomlinson, and D. Woelk. The
Carnot Heterogeneous Database Project: Implemented Applica-
tions. Distributed and Parallel Databases Journal, 5(2):207–225,
1997.

[Huy97] N. Huyn. Multiple-View Self-Maintenance in Data Warehousing
Environments. In International Conference on Very Large Data
Bases (VLDB), pages 26–35, Athens, Greece, August 1997.

[HZ96] R. Hull and G. Zhou. A Framework for Supporting Data Integra-
tion Using the Materialized and Virtual Approaches. In ACM
SIGMOD International Conference on Management of Data,
pages 481–492, 1996.

[IFF+99] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S.
Weld. An Adaptive Query Execution System for Data Integration.
In ACM SIGMOD International Conference on Management of
Data, pages 299–310, Philadelphia, PA, June 1999.

[JLYV00] M. Jarke, M. Lenzerini, and P. Vassiliadis Y. Vassiliou. Funda-
mentals of Data Warehouses. Springer Verlag, 2000.

[JPSL+88] G. Jacobsen, G. Piatetsky-Shapiro, C. Lafond, M. Rajinikanth,
and J. Hernandez. CALIDA: A Knowledge–Based System for
Integrating Multiple Heterogeneous Databases. In Third Inter-
national Conference on Data and Knowledge Bases, pages 3–18,
Jerusalem, Israel, 1988.

[KLSS95] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Informa-
tion Manifold. In AAAI Symposium on Information Gathering in
Distributed Heterogeneous Environments, 1995.

[KR99] Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View
Management System for Data Warehouses. In ACM SIGMOD
International Conference on Management of Data, pages 371–
382, Philadelphia, PA, June 1999.

[KWD97] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper in-
duction for information extraction. In Intl. Joint conference on
Aritificial Intelligence (IJCAI), pages 729–737, 1997.

BIBLIOGRAPHY 65

[Lev99a] A. Y. Levy. Combining Artificial Intelligence and Databases for
Data Integration. In Special issue of LNAI: Artificial Intelligence
Today; Recent Trends and Developments. Springer Verlag, 1999.

[Lev99b] A. Y. Levy. Logic-Based Techniques in Data Integration. In
J. Minker, editor, Workshop on Logic-Based Artificial Intelli-
gence, Washington, DC, June 1999.

[Lev00] A. Y. Levy. Answering Queries Using Views: A Survey. Submit-
ted for publication, 2000.

[Lit85] W. Litwin. An Overview of the Multidatabase System MRSDM.
In ACM National Conference, pages 495–504, October 1985.

[LRO96] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heteroge-
neous Information Sources Using Source Descriptions. In Inter-
national Conference on Very Large Data Bases (VLDB), pages
251–262, Bombay, India, September 1996.

[LS93] A. Y. Levy and Y. Sagiv. Queries Independent of Updates. In In-
ternational Conference on Very Large Data Bases (VLDB), pages
171–181, Dublin, Ireland, August 1993.

[LSS93] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. On
the Logical Foundation of Schema Integration and Evolution in
Heterogeneous Database Systems. In 2nd International Confer-
ence on Deductive and Object-Oriented Databases, pages 81–100,
Phoenix, AZ, 1993.

[Mit99] P. Mitra. Algorithms for Answering Queries Efficiently Using
Views. Technical report, Infolab, Stanford University, September
1999.

[MMK98] I. Muslea, S. Minton, and C. Knoblock. Wrapper induction for
semistructured web-based information sources. In Conference on
Automatic Learning and Discovery CONALD-98, 1998.

[MRRS00] H. Mistry, P. Roy, K. Ramamritham, and S. Sudarshan. Materi-
alized View Selection and Maintenance using Multi-Query Opti-
mization. Submitted for publication, March 2000.

[MW88] N. E. Malagardis and T. J. Williams, editors. Standards in Infor-
mation Technology and Industrial Control, chapter Multidatabase
Systems in ISO/OSI Environment, pages 83–97. North-Holland,
Netherlands, 1988.

[ND95] S. Navathe and M. Donahoo. Towards Intelligent Integration of
Heterogeneous Information Sources. In Proceedings of the 6th
International Workshop on Database Re-engineering and Inter-
operability, 1995.

66 BIBLIOGRAPHY

[OV99] M. T. Özsu and P. Valduriez. Principles of Distributed Database
Systems, chapter 4: Distributed DBMS Architecture. Prentice
Hall, 1999.

[PGMA96] Y. Papakonstantinou, H. Garcia-Molina, and S. Abiteboul. Ob-
ject fusion in mediator systems. In International Conference on
Very Large Databases, Bombay, India, September 1996.

[PL00] R. Pottinger and A. Levy. A Scalable Algorithm for Answering
Queries Using Views. In International Conference on Very Large
Data Bases (VLDB), pages 484–495, Cairo, Egypt, September
2000.

[QW97] D. Quass and J. Widom. On-Line Warehouse View Maintenance.
In ACM SIGMOD International Conference on Management of
Data, pages 393–404, Tucson, AZ, June 1997.

[Rea89] M. Rusinkiewicz and et. al. OMNIBASE: Design and Implemen-
tation of a Multidatabase System. In 1st Annual Symposium in
Parallel and Distributed Processing, Dallas, Texas, May 1989.

[RSS96] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized View
Maintenance and Integrity Constraint Checking: Trading Space
for Time. In ACM SIGMOD International Conference on Man-
agement of Data, pages 447–458, Montreal, Canada, June 1996.

[SDN98] A. Shukla, P. M. Deshpande, and J. F. Naughton. Materialized
View Selection for Multidimensional Datasets. In International
Conference on Very Large Data Bases (VLDB), pages 488–499,
New York City, NY, August 1998.

[SG90] T. K. Sellis and S. Ghosh. On the Multiple-Query Optimization
Problem. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), 2(2):262–266, June 1990.

[SL90] A. P. Sheth and J. A. Larson. Federated Database Sys-
tems for Managing Distributed, Heterogeneous and Autonomous
Databases. ACM Computing Surveys, 22(3):183–236, 1990.

[TBC+87] T. Templeton, D. Brill, A. Chen, S. Dao, E. Lund, R. Macgregor,
and P. Ward. Mermaid: A Front-End to Distributed Heteroge-
neous Databases. In International Conference on Data Engineer-
ing, pages 695–708, 1987.

[Ull97] J. D. Ullman. Information Integration using Logical Views. In
International Conference on Database Theory (ICDT), pages 19–
40, Delphi, Greece, January 1997.

[Var99] A. Vargun. Semantic Aspects of Heterogeneous Databases, 1999.

BIBLIOGRAPHY 67

[VP98] V. Vassalos and Y. Papakonstantinou. Using Knowledge of Re-
dundancy for Query Optimization in Mediators. In Workshop on
AI and Information Integration (in conjunction with AAAI’98),
Madison, WI, July 1998.

[XML00] Extensible Markup Language (XML) 1.0. W3C Recommendation,
October 2000. http://www.w3.org/TR/REC-xml.

[YKL97] J. Yang, K. Karlapalem, and Q. Li. Algorithms for Materialized
View Design in Data Warehousing Environment. In International
Conference on Very Large Data Bases (VLDB), pages 136–145,
Athens, Greece, August 1997.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View
Maintenance in a Warehousing Environment. In ACM SIGMOD
International Conference on Management of Data, pages 316–327,
San Jose, CA, June 1995.

