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ABSTRACT model produces approximate answers by omitting tuples from the

Data stream management systems may be subject to higher inpu{:orrect answer [6, 11, 18, 23, 26]. In this model, all delivered wiple

rates than their resources can handle. When overloaded, the sys&® guaranteed to besabsebf the exact answer. This property is

tem must shed load in order to maintain low-latency query results. |mpo_rtant since it allows the application to rgly on the_tuples that it
In this paper, we describe a load shedding technique for queriesrecel_\/es to be correct. The challenge here is to p_rowde the Iargest
consisting of one or more aggregate operators with sliding win- POSSible subset. An alternate approach to degrading the resultis to
dows. We introduce a new type of drop operator, called a “Window emit nearly the same numbe_r of t_uples, e_ach of which might be in-
Drop”. This operator is aware of the window properties (i.e., win- accurate [7]. The challenge in this case Is to ensure that the errors
dow size and window slide) of its downstream aggregate operatorsare bounded by. some amount. It is an apphcatlon-lev_el decision
in the query plan. Accordingly, it logically divides the input stream as to whether it is better to have all va_Iues, some of which may be
into windows and probabilistically decides which windows to drop. inaccurate, or ]‘ewer va_lues, all of which are accurate. The work
This decision is further encoded into tuples by marking the ones described in this paper is ba_sed on the S“bs?‘ “?S”" mOdel'

that are disallowed from starting new windows. Unlike earlier ap- Oursupset-based.apprommatlon assumption is motivated by Sev-
proaches, our approach preserves integrity of windows throughouteral real-life applications. For example, consider the case of a dis-

a query plan, and always delivers subsets of original query asswer ltri?]bjteg’ m.ltJ)|ti-p|a)./el’ ghamcei: AQ SPE could b? used ag tlhe pub-
with minimal degradation in result quality. ish/subscribe engine that distributes events to interested client ma-

chines [3]. In many cases like this, the output stream is a sequence
of updates. Each new tuple updates the previous one. It is impor-

1. INTRODUCTION tant for the play of the game that positions of players and weapons

Stream processing engines (SPEs) [8, 10, 21] have been showrbe reported accurately. An error in a position could cause the client
to be useful for many modern applications that have very high in- program to simulate a “hit” when one has not occurred. Thus, in
put rates and that need low-latency response to a set of continuoughis example, it would be better to slow down the play (produce
queries. Applications that have this characteristic include network “jerky” images) than to do the wrong thing.
traffic monitoring, industrial process control, and sensor networks.  Aggregates play a key role in many data stream applications.

Providing meaningful service even under system overload is one Often we would like to produce a computation on ranges of con-
of the key challenges for stream processing engines. We assumesecutive input tuples (a window) as an arbitrary user-defined func-
that overloads occur as temporary bursts. If an overload is sus-tion. Most recent stream processing systems provide full support
tained, then the system is not provisioned properly, and an SPEfor user-defined aggregates (e.g., [2, 19]). With such a capability,
will likely not be able to provide acceptable guaranteed service. it is highly likely to use them at arbitrary places in a query plan.
Under such bursty conditions, queues will build up, thereby seri- Thus,nested user-defined aggregatese proven to be essential in
ously increasing the latency of results. Thus, if we are to operate various applications, ranging from habitat monitoring with sensors
within the given latency bounds, there may be no alternative but to to online auctions [24], and highway traffic monitoring [5].
shed load by dropping some tuples. Dropping tuples will produce  As a concrete example, consider the query plan in Figure 1, that
an approximation to the correct result. The goal then becomes to computes the number of times in an hour that IBM’s high price and
develop load shedding algorithms that remove an overload and atlow price in a 5-minute window differ by more than 5. Box 2 is a
the same time minimize the degradation of the result. user-defined aggregate that collects all prices for a symbol in a 5-

The load shedding problem has been studied earlier. Two al- minute window, and then emits a tuple that contains the difference
ternative approximation models have been commonly used. Onebetween the high and the low price. This stream is then filtered
to retain differences that are larger than a given threshold, in this
case, 5. A downstream aggregate then counts these extreme price
differences. This kind of behavior can nest to an arbitrary depth.
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Figure 1: An example nested aggregation query



Load shedding techniques devised so far have applied drops in 1 tuple/sec cost = T = 1/2 tuple/sec

units of individual tuples. Drops are implemented as a specific op- 2 sec/tuple
erator, and this operator is pushed toward the inputs to avoid wasted

tors such as aggregates, either block the motion of such drops (e.g., | —1— input arrival timeline

drop must be placed between box 4 and box 5 in Figure 1), or result AR -
in non-subset answers if drops are pushed across them. Further- Y Y - output delivery timeline
more, if inexact answers are produced through load shedding in the ! ! ! =1/
middle of the query plan, it is difficult to understand how this er- L=2 L=3 L=4 h

ror will propagate through subsequent downstream operators. This ~ With load shedding:

further limits the query topologies across which suchdropscanbe 1 2 3 4 5 &6

work. A major limitation of this approach is that windowed opera- 1 2
|
\

placed (e.g., there can be at most one aggregate operator in the | ; ; i i i input arrival timeline
query, at the leaf of the query tree [7]). O . .

In this paper, we introduce a new approach which applies drops o “ o « o “ ] o
in units of windows. This approach never produces wrong values i i i output delivery timeline
and does not suffer from any of the problems mentioned above. L=2 L=2 L=2 T=1/2
It further enables the placement of drops at early points in a query
plan (e.g., before box 1 in Figure 1), maximizing the amount of pro- Figure 2: A simple overload scenario

cessing saved while keeping the error under control. More specif-
ically, in this paper, we study the problem of load shedding for
aggregation queries over data streams. The main contributions of
our work can be listed as follows:

in this diagram represents a query operator and each arc represents
a data flow or a queue between the operators. Common subexpres-
sions can be shared across multiple queries by allowing multiple

e We propose a novel load shedding approach for windowed a€S to emanate from a single box. Details of our data and query

aggregation queries which guarantees to deliver subset re-model are further described in earlier work [2]. _
sults. The load shedder component, which is the focus of this paper,

. . . continuously monitors CPU load of a running query network. If

* Our technique is genera}l enough. to handle arbitrary (user- an overload is detected, drop operators are inserted into the query

_defmed) aggregate functions, multiple levels of aggregate nestietwork. These operators discard a certain fraction of their input

ing, and shared query plans. tuples to remove excess load from the system with minimal degra-
¢ Regardless of where the aggregates appear in a query plandation in quality of the delivered result.

our approach enables pushing drops across them, to early Let usillustrate the basic idea of load shedding on a simple over-

points in the plan, maximizing the amount of processing savedload scenario. Consider the query in Figure 2 with a CPU cost of
e We mathematically analyze the correctness and performance?2 Séconds per input tuple. Also assume that the input arrives at the

of our approach. rate of 1 tuples per second. The input arrival timeline shows the
points where a new tuple arrives with the indicated timestamp, and
the output delivery timeline shows the points where a result with
that timestamp is delivered. Since the system can only process 1

The rest of this paper is organized as follows: Section 2 presentstUple every 2 seconds, a queue starts to build up and latency of out-
an overview of models and assumptions underlying the stream pro-Put tuples (L) starts increasing due to the queue waiting time. The
cessing environment that we consider. Our subset-based, window-duery throughput (T) is 1/2 tuples delivered per second. Now as-
aware load shedding approach is presented in detail in Section 3.Sume that the load shedder inserts a drop at the query input which

We present an experimental evaluation of this approach in Sectiondrops 50% of its input. In Figure 2, tuples with bold timestamps
4. Section 5 summarizes the related work in this area. Finally, are the ones that are kept, while the italic ones are dropped. In this

we conclude in Section 6, outlining potential avenues for future Case, the input rate will decrease to 1/2 tuples per second, and the

e \We experimentally evaluate the performance of our approach
on a stream processing system prototype.

research. query will be able to keep up with the reduced input rate. As a re-
sult, there will be no queueing and tuple latencies will be limited
2. BACKGROUND by the processing cost which is 2 seconds. Furthermore, the query

s )  throughput will still be 1/2 tuples delivered per second. Hence,
| The work presented in this paper is part of the Aurora/Borealis py shedding load, both latency can be reduced and also the output
stream processing system [1, 2]. We first give a brief overview gpplication can be updated with the highest possible throughput
of our stream processing system with emphasis on its load shedderfrequency_ Therefore, results do not get stale.
component, followed by a detailed discussion of other models and e studied this general notion of load shedding for data stream
assumptions that are particularly relevant to the work described in management systems in our earlier work [26]. In this paper, we
this paper. build on our previous framework to enable load shedding on queries

21 System Overview with sliding window aggregates.

We model a data stream as an append-only sequence of tuple®.2  Aggregation Queries

with a uniform schema. Embedded in each tuple, is a header that An aggregation querjs composed of one or more aggregate

carries system-assigned annotations such as tuple’s arrival times e a16r5 along with other operators. Aggregate operators act on
tamp. Continuous queries are defined through a boxes-and-arrowsy,inqows of tuples. Before we define the aggregate operator, we de-
based dataflow diagram, which we cajaery networkEach box  qrine how we model its two important building blocks: windows

1Borealis is a distributed stream processing system. Eachaismode and aggregate functions.
runs Aurora as its underlying query processing engine. The Window Model. Data streams are continuous sequences of




data records that may have no end. Traditional set operations Iike__‘ 3015 38 20 10 3‘(

join or aggregate may block or may require unbounded memory if
data arrival is unbounded. Most applications, however, require pro
cessing on finite portions of a stream rather than the whole. Each
such excerpt is calledwindow Windows can be modeled in var-
ious ways [16]. In our system, there are two ways to physically
build windows: (i) attribute-based windows, and (ii) count-based
windows. In the first case, an attribute is designated as the win-
dowing attribute (usually time), and consecutive tuples for which
this attribute is within a certain interval constitute a window (e.g.,

k 11 X | [l 1
stock reports over the last 10 minutes). Here, tuples are assumed- 30 1530 20 1030 Window ' ..___ 201030

to arrive in increasing order of their windowing attributes. In the

second case, a certain number of consecutive tuples constitute a

window (e.g., the last 10 readings from the temperature sensor).
Our system also uses a sliding window model in which a window’s
endpoints move by a given amount to produce the next window.
The Aggregate Function.An aggregate functiort takes in a win-
dow of values and performs a computation on thefcan be a
standard SQL-style aggregate function (sum, count, average, min
max) or a user-defined function. Aggregate functions in our sys-
tem have the fornF(init, incr, final), such thatthenit
function is called to initialize a state when a window is opened;

i ncr is called to update that state whenever a tuple that belongs
to that window arrives; anéli nal is called to convert the state to

a final result when the window closes. Note that, as will soon be-

come apparent, our approach is in fact independent of the particular

aggregate functions used in a query.

The Aggregate Operator.An aggregate operatotggregate(S,
7,G,F,w,d) has the following semantics. It takes an input stream
S, which is ordered in increasing order on one of its attributes de-
noted by7, which we call thewindowing attribute If 7 is not
specified Aggregate requires no order on its input stream. In prac-
tice, 7 usually corresponds to tuple timestamps which can either be
embedded in the tuple during its generation at the source (e.g., tem

perature readings from a sensor, recorded with the time they were

measured), or can be assigned by the stream processing system
arrival time. From here on, we will use the terms “timestamp” and
“windowing attribute” interchangeably.

S is divided into substreams based on optional group-by attribu-
te(s) g, if specified. Each substream is further divided into a se-
quence of windows on which the aggregate functfois applied.
Aggregate’s window properties are defined by two important pa-
rameters:window sizew andwindow slided. These parameters
can be defined in two alternative ways: (i) in units of the window-
ing attribute7 (e.g., time-based window), (ii) in terms of number
of tuples (i.e., count-based window). According to the time-base
windowing scheme, a window’ consists of tuples whose times-
tamp values are less thanapart. Whemdggregate receives a tu-
ple whose timestamp is equal to or greater than the smallest times
tamp inW + w, W has to be closed. Whilg denotes how large
a window is and thus when it should be closédjenotes when
new windows should be opened. Evéryime units, Aggregate
has to open a new window. We assume that ¢ < w. When
0 = w, we say that we havetambling window Otherwise, we say
that we have aliding window Tumbling windows constitute an in-
teresting case because they partition a stream into non-overlappin
consecutive windows.

Aggregate outputs a stream of tuples of the forih g, v), one
for each windowl? processedt is the smallest timestamp of the
tuples inW, g is the value of the group-by attribute(s) (skipped
wheng is not specified), and is the final aggregate value returned
by thefi nal function of F. In this paper, we will assume th&t
consists of a single group and windows are time-based. Extension

d

S

..25¢
_— = Average ——
I | i 1
..301530 201030 Tuple 15_ 2010 _ L 1E
—— ! Drop —— | Average ——=
' 50%
[ 1 1 " T T T Th
..30 1530 20 10 3( o520 Tuple 2
——— | Average ——» Drop —»
| 50%
._20
— rop ————| Average ——»
' 50%

Figure 3: Drop alternatives for an aggregate

to more general forms of aggregates are provided in the technical
report version of the paper [27].

2.3 The Subset-based Approximation Model

Approximate answers result from dropping tuples. We will shed
load such that the delivered answer is a subset of the original an-
swer, and the size of this subset is the largest possible. In case of
multiple queries, the goal is to maximize the amount of total per-
cent tuple delivery.

Additionally, we assume that each output application also spec-
ifies a threshold for its tolerance gaps Gap represents a suc-
cession of tuples missing from the result. For example, we have
worked on a sensor network application [25], in which a person’s
physiological measurements must be delivered at least once per
minute, i.e., losing or choosing not to deliver results observed more
frequently is acceptable. We call the maximum output gap to which
an application can tolerate thmtch size The system must guar-
antee that the amount of consecutive output tuples missed due to
load shedding never exceeds this value. Note that batch size can
be defined in terms of tuple counts or time units. In this paper, we
Assume the former.

Note that batch size puts a lower bound on loss. Given a batch
size B, the query must at least deliver 1 tuple out of evB8ry-

1 tuples. Therefore, the fraction of tuples delivered can never be
below1/(B + 1). Under heavy workload, it may not be possible

to remove excess load while still meeting all applications’ bounds
on B. In this case, we apply “admission control” on queries, where
the most costly queries whose bounds can not be met have to be
completely shut down (by inserting drops at their inputs with drop
probabilityp = 1).

2.4 Load Shedding on Aggregates

In our subset-based load shedding framework, queries deliver
values all of which would also occur in the exact answer; no new
values are generated. As such, this framework has to address an im-
portant challenge when windowed aggregates are involved: drop-
ping individual tuples from streams does not guarantee subset re-
sults when such streams are to be processed by windowed aggre-
gates.

Let us illustrate our point with a simple example. Consider the

gaggregate operator in Figure 3, which computes 3-minute averages

on its input in a tumbling window fashion. If we place a tuple-
based random drop before the Average which cuts the load down
by 50%, then we obtain a non-subset result of nearly the same size
as the original. In this case, the load between the Tuple Drop and
the Average is reduced by a factor of 50%, but the load is the same
downstream from the Average. Alternatively, we can place the Tu-
ple Drop after the Average, which drops tuples after the average



has been computed. In this case, we produce a subset result of| Window Specification| Description

smaller size. However, load reduction has been achieved too late -1 don't care

in the query plan, and we do not save from the computation of the 0 window disallowed
aggregate. As a result, there is a tradeoff between achieving subset window allowed:
results and reducing load early in a query plan. We need a mech- T '

must preserve tuples with <

anism which would drop load before the Average, but would still
produce a subset resultVindowed aggregates deliver subset re-
sults if and only if they operate on original windows as indivisible
units This observation led us to invent a new type of drop oper-
ator, called aVindow Drop As shown in Figure 3, the Window  two parameters dfi’ in Drop are directly inherited fromlggregate
Drop can be placed before the Average, and applies drops in unitsso thati¥in Drop can divide the input stream into windows in ex-

of windows. As aresult, it can achieve early load reduction without actly the same way adggregate would. Then it decides which of
sacrificing the subset guarantee. Furthermore, our approach-is genthose windows should be dropped and marks their starter elements.
eral enough to allow user-defined and nested aggregates to appedrinally, when a tuple is received byAdggregate, Aggregate ex-
anywhere in the query plan, even when there is sharing. We nextaminest's window specification attribute and skips windows that

Table 1: Window specification attribute

describe this approach in detail. are disallowed. As a result of this, we save system resources at mul-
tiple levels. First, when a window is skippedggregate need not
3. WINDOW-AWARE LOAD SHEDDING open and maintain state for that window. In other wortlggregate

. i i does less work upon seeing tuples that arrive immediately after
In this section, we present our subset-based, window-aware l0adpecayse there is one fewer open window that those tuples can con-
shedding approach for aggregation queries over data streams. Weipute to. Second, whedggregate skips a window, it produces
show how various types of aggregation queries are handled throughy, output for that window, thereby reducing data rate and saving
the use our new Window Drop operator. from processing in the downstream subnetwork. THi¥dn Drop
. not only encodes window specifications into tuples, but it is also ca-
3.1 The Window Drop Operator pable of actually dropping tuples under certain conditions, which
A window drop operatoiVinDrop(S,T,G,w,d,p, B) takes we call anearly drop More specifically, tuples that are marked
six parameters in addition to an input stre&n7” denotes the win-  with a negative window specification value and that are beyond the
dowing attribute denotes the group-by attribute(s)denotesthe 7 range imposed by the most recently seen positive window speci-
window size 5 denotes the window slidg,denotes the drop proba- fication value can be dropped right away, without waiting to be seen
bility, and B denotes the drop batch size. TheG, w, § parameters by a downstream aggregate. Early drops are discussed in detail in
of WinDrop are derived from the properties of the downstream Section 3.4. It should be emphasized here that the ability to move a
aggregate operatorg.is determined by the load shedder according drop upstream from an aggregate enables us to continue pushing it
to the amount of load to be shed. Final/js derived based onthe  toward the inputs. This is important as it can save computation for
requirements of the output applications. the complete downstream subquery from where it ends up.
The basic functionality ofVin Drop is to encode window keep/
drop decisions into stream tuples to be later decoded by down- 3 2 Hand|ing Mu|tip|e Aggregates
stream aggregate operatofdin Drop logically divides its input There are two basic arrangements of aggregates in a query net-

stre(;imS Into ;'Te W|n§1towli of sizev, notln?ﬁthe start ?f aNeW work: (1) a pipeline arrangement, (2) a fan-out arrangement. Ta-

\(/jvm ovlll;v%y ime Lkm' S: orsvbe_lry?rokup /dconsgcu_ ve W'E' h ble 2 summarizes the rules for setting window drop parameters for
ows, VianLirop Makes a probablliSlic keep/drop AeciSion. Each w,qqq 1o arrangements. Any query network can be handled using

decision is an |_ndepender_1t Bern_oulll iy W'.th drop probabth_ty . a composition of these two rules. We now discuss these rules and

The drop decision for a window is encoded into the tuple which is how we derived them in detail

supposed to be the window’s first (or starter) element, by annotat- Pipeline Arrangement of Aggregates A query arrangement with

ing this tuple with aN'nd.OW spemflc_a_tlon_alue. . .. a sequence of operators where each operator’s output is fed into
Each tuple has a window specification attribute as part of its another one is calledipeline arrangement

syjtem-etts&gned tuple ?e?der, with a_d%fault value of _—1. To alllow Assume that we havie aggregatesd, (Fi, w;, 6;), 0 < i < k,
%/bovgns rear:w ?r?greg?je 0 ope_? at\_/vln ?;N_bup;obr:ﬂs)eelng .‘?ttUp € pipelined in ascending order of as shown in the first row of Ta-
Im fTOIt)hSG S de win ovt\; §Setc€||c_?h|pn al ribu et la.p(zf" |\;e ble 2. We would like to drogp fraction from the output oA, by
ihat a window can start a this tuple, but also indicates unti which P12CIN9W inDrop(..6.p, B) before the leftmost operator in the

. ’ ) ) ipelin . WinDrop must hav lidé that i [ to th
T value the succeeding tuples should be retained in the stream top peline (A). WinDrop must have a slidé that is equal to the

the intearity of th d wind To disall q slide of the last aggregatéy, in the pipeline. The reason for this is
ensure the integrity of the opened window. 10 disaliow a down- that Ay is the last operator that divides the stream into windows and
stream aggregate from opening a window upon seeing a tuple

; . e - produces one output evedy time units. Dropping fraction from
I summanizes the semanics for the window speciication aibute, S OUPUL recires that we encode a drop decision once every
. P 2 ' 0, time units. Furthermordy inDrop must have a window size
Consider an aggregate operatbggregate(F,w,0) ~and s nich will guarantee the preservation of all tuples of a winddw
sume that we would like to place a window drop befdggyregate. whenW is kept. If we only had4,, the window size would sim-
In order to dropp fraction from the output ofAggregate, we in-

f — ) ply bew,. However, there ark — 1 aggregates precedinty,, each
sertWinDrop(w, 0, p, B) atAggregate's input. Note thatthe first i v own corresponding window of tuples to be preserved. To be

2 ; : on the safe side, we consider the following worst case scenario: To
We do not showS when the input stream is clear from the context. From o
here on, we also drop tHE andgG parameters from both aggregate and win-  Produce an output tuple, with timem, A needs outputs o,

dow drop, simply assuming that windows are commonly defined on time in the rang€ft,,, tm.,,); Ax—1 in turn needs outputs ol in
andS consists of a single group. the rang€t,m, tm+wy, +w,_, —1); and so on. FinallyAd; needs out-




\ Aggregate Arrangement \ Parameters for WinDrop |

Pipeline:
fffffff ‘ b
- ! Aggregate Aggregate w=>wi—(k-1)
i WinDrop! 7 i B ls=6
| | 1 e Ak I
| @88 (Frow1,61) (Frr wi 51 B
Fan-out:
Aggregate B
A, = | W= |Cm(51;c,(5k)
S 1 ome (Fi,w1,01) ‘ + max;_ {extent(A;)}
| . 1 . ) — O
i WinDrop ! . ) : whereextent(A;) = w; — 6;
‘ |__» | non-aggregate : 5 = lem(s 5)
t@6,B) operator . - L. Ok
| ‘ P! Aggregate B B = min” { B; }
,,,,,,, 4 i=111cm(d7,...,05)/0;
(Fr» wi, Ox)

Table 2: Rules for setting window drop parameters

puts of A; in the rang€t,m, timtw,+...+ws— (k—2)) @nd A; needs Therefore, its extent beyorifl is w; — §;. We take the maximum
stream iNPUtStom , to 4w, +...+w1 —(k—1)) IN Order to guarantee the  of all the aggregates’ extents so that all aggregates can cleanly
desired range. Thereforé/inDrop has to preserve a window  close their open windows. As a result, the logical window that
of sizew: + ... + wi, — (K — 1) whenever it decides to retain a  encloses all aggregate siblings must have a window size ef
window, which forms its effective window size. Note that thisis Ilcm(d1,. .., dx) + max(extent(41),. .., extent(Ax)). In other
a conservative formulation, based on the worst case scenario wherwords, window slide is formulated such that each tiigin Drop
each aggregate’s window slide is such that the last time value in aslides, it positions itself to where all of the aggregatés through
window opens up a new window. As such, it is an upper bound Aj, would attempt to start new windows. Window sizés formu-
on the required window size fé# in Drop. Finally, the batch size lated such that when a keep decision is made, enough of the range is
parametei3 of WinDrop is assigned as specified by the output kept to preserve integrity of all of the aggregates’ windows. Finally,
application at the end of the pipeline. the batch size oV in Drop is the minimum allowed by all sibling
The simple example in Figure 4 illustrates the pipeline arrange- aggregates. Note that we need to scale each aggregate’s batch size
ment rule. We show a query that consists of two aggregatgs. B; before computing the minimum. This scaling is required be-
has a window size and slide of 3 and 2 respectively, followed by cause, whewVinDrop slides onceA; slides lcn{du, ..., dx)/d:
Az with window size and slide of 3 each. We first show how an in- times. Hence, lcitd1, . . ., dx)/J; consecutive windows fad; cor-
put stream with the indicated time values is divided into windows respond to 1 window folVin Drop.
by these aggregates consecutively. Then we show the correspond- The example in Figure 5 illustrates the fan-out arrangement rule.
ing WinDrop to be placed before this arrangement. According to We show a query that consists of two sibling aggregates. Window
our pipeline arrangement ruld/in Drop must have a window size  sizes and slides of these aggregates are the same as in the pipeline
and slide of 5 and 3 respectively. Hence, it divides the input stream example of Figure 4. Both aggregates receive a copy of the stream
as shown, marking the tuples that correspond to window starts. No- emanating from their parent, but they divide it in different ways
tice howWin Drop considers input tuples with time values in the based on their window parameters. We first show how this is done
range[1, 6) as an indivisible window unit to produce a result tuple together with the extents and common window start positions for
with time value of 1. The original query uses exactly the same time the aggregates. Both aggregates start new windows at time values
range to produce its result with time value of 1. 1 and 7. A; has an extent of 1 (i.e., its last window before a new
Fan-out Arrangement of Aggregates.A query arrangement with window starts at 7 extends until 8)4, has an extent of 0 (i.e.,
an operator whose output is shared by multiple downstream branchéss last window completely closes before a new window opens at
is called afan-out arrangement 7). Based on these, we show the corresponding. Drop that
When there are aggregates at child branches of a fan-out, wemust be placed before this aggregate arrangem®&mt. Drop must
need alWinDrop which makes window keep/drop decisions that have a window size and slide of 7 and 6 respectively. This way,

are common to all of these aggregates. Assunsibling aggre- it makes window keep/drop decisions at time values where both
gates,Aq(F1,w1,01), ..., Ax(Fr,wr, dx), as in the second row  A; and A, expect to open new windows. Furthermore, in case of
of Table 2. A commoriVinDrop for all aggregates would have a  a keep decisioniVinDrop retains all tuples required to cleanly
drop probability ofp, a window slide of Icnfdy, . . ., dx) and a win- close open windows of both of the aggregates.

dow size of lentdy, . . ., 0k )+max(extent (A1), . .., extent(Ag)), Composite Arrangements.We will now briefly illustrate the com-
whereextent(A;) = w; — d;. 6 = lem(d,...,dx) represents position of the rules in Table 2. Assume th&g in Figure 5 is an

the lowest common multiple of slides of all sibling aggregates, aggregate witlvy = 4 anddo = 1 (i.e., Ao(4, 1)). Thus, we have a
i.e., everyd time units, all aggregates start a new window at the combined arrangement with two pipelines and a fan-out. There are
same time point. AssuniE to be such a time point where all ag-  two alternative ways to construtdin Drop for this arrangement:
gregates meet to start a new windoextent(A;) represents the

number of time units tha#l; needs beyond” in order to cleanly 1. We first apply the fan-out rule oA; and A;, which gives
close its most recently opened windowd; must have opened a usWinDrop(7,6) as illustrated in Figure 5. Then we apply
window atT" — §;, because its next window will be starting At the pipeline rule on4y(4,1) and WinDrop(7,6), which
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Figure 5: Fan-out example

gives usWinDrop(10, 6).

12345678910 1112 .

1 7

[ win_start? win_sped keepuntil | relevant action

2. We first apply the pipeline rule on path$,(4, 1), A1 (3, 2)] yes T within | open er_ld_ow
and [Ao(4,1), A2(3,3)], which gives usWinDrop(6,2) kgepuntll_— T W _11)
andWinDrop(6, 3), respectively. We then apply the fan- yes p beyond \gpl)gﬁ[\;\ﬁrﬁd_gw_ (w=1)
out rule on these, which gives UBinDrop(10, 6). keepuntil = 7 — (w — 1)
: : e : win.spec=r — (w —1
3.3 Decoding Window Specifications yes 5 within [ open D o —
As mentioned earlier in Section 3.1, window drop attaches win- keepuntil = ¢ + w, (if >)
dow specifications to tuples that are potential window starters. These yes 0 beyond | skip window
specifications further indicate the fate of those windows and need yes 1 within | open window
to be decoded by downstream aggregates in order for them to take keepuntil = ¢ + w, (if >)
tmh:crr:%?]tisﬁt\xgr.ksl_n this section, we describe how this decoding yes 1 bqund skip winQow
Table 3 summarizes how an aggregaigyregate with window no T within | keepuntil = 7 — (w _11)
size w decodes the window specifications coded by a preceding Vn:IQE;f I;zi;; eftu(;;ef )
WinDrop. First assume thatlggregate receives a tuple with no pm beyond | keepuntil =7 — (w — 1)
time valuet and according to the slide parametet&fgregate, a win_spec =r — (w — 1)
new window has to start aupper half of Table 3). If the tuple has mark as fake tuple
a positive window specificatiom, then Aggregate opens a new no 0 within | mark as fake tuple
window with a window specification attribute ef— (w — 1) (i.e., no 0 beyond | mark as fake tuple
when this window closes and produces an output tuple, the window no 1 within | ignore
specification of this output tuple will be — (w — 1)). Aggregate no 1 beyond |ignore

also has to make sure that all successive tuples with time values up
tor — (w — 1) are retained in the stream (i.elggregate sets its
keepuntil variable tor — (w—1)). If the tuple has a non-positive (0

or -1) window specification, theAggregate checks ift is within

the time range that it must retain (i.e.,tif< keepuntil). If so, real content but only carries a window specification value that may
a new window is opened with the given window specification and be significant to some downstream aggregates. Such tuples should
the keep range is set tnax(keepuntil, ¢t + w). If not, Aggregate not participate in query computations and should be solely used for
skips this window. decoding purposes.

Now assume thatlggregate receives a tuple with time value We must point out here that fake tuples have one other impor-
where Aggregate does not expect to open a new window (lower tant use. A query network may have other types of operators lying
half of Table 3).Aggregate will not open any new window. How- between a window drop and the downstream aggregates which are
ever, it has to still maintain the window specification attribute in supposed to decode window specifications generated by the win-
the tuple for other downstream aggregates’ disposal (if any). The dow drop. We must make sure that window specifications correctly
two important specifications areand 0, the former indicating the  survive through such operators. For example, assume that the filter
opening of a window and the latter indicating the skipping of a between the two aggregates in Figure 1 (box 3) decides to drop a
window. If the specification is -1Aggregate does not need to tuplet from the stream since this tuple does not satisfy its predicate.
do anything. If the tuple has a positive window specificatign If ¢ is carrying a non-negative window specification, then we can
Aggregate updates its time range as well as the window specifi- not simply discard it. Instead, we must marks a fake tuple and
cation of the tuple. In both of the non-negative casbggregate let it pass through the filter. This is becaudds carrying a message
marks this tuple as fake tuple A fake tuple is one which has no  for the downstream aggregate (box 4) about whether to open or to

Table 3: Decoding window specifications



skip a window at a particular time point. plan might be more preferable than placing them at the input arcs.
Note that it can be argued that fake tuples introduce additional We will briefly discuss these situations.

tuples into the query pipeline. However, since these are not real tu-  UnlessB is large enough to allow early drops (i.8,> | %),

ples, operators except aggregates will just pass them along withoutthere is no benefit in placing a window drop operatdin Drop

doing any processing on them, whereas aggregates will check thefurther upstream than the leftmost aggregate in the pipeline. For the

flag to see if they should open a window. Hence, it is unlikely that pipeline arrangement, as we pldd&n Drop further upstream, the

fake tuples will drive the system into overload. difference betweew andé widens (i.e.jn = | % ] in Definition 1
grows). Similarly, for the fan-out arrangement, battands may
3.4 Early Drops get larger across a split whil may get smalleriWinDrop must

Window drop not only marks tuples, but it can also drop some be placed at the earliest point in the query where it saves processing
of them. In this section, we discuss how this early drop mechanism while also not violating the constraints ¢h

works. We start with a useful definition. Although not so common, a query plan may have multiple aggre-
DEFINITION 1 (WINDOW COUNT FUNCTION (WCF)). Con- gates with different sliding window properties over the same data
sider a streamS with tuples partially ordered in increasing order ~ Stréam (€.g., a pipeline arrangement with a mix of count-based and
of their time values. Assume that the very first tupleSihas a tlme-based wmdpws, and/or with different group-by fittrlbutes). In
time value of. Consider an aggregatdggregate(S, w, 5), where this case, the window drop must be placed at a point where such

w=m*6+¢m>10< ¢ < 5. We define a Window Count prop_erties are homogeneous downstream. It requires further inves
FunctionWCF : 7 — N,_that maps time valugto the number tigation to extend our framework to handle the heterogeneous case.
of consecutive windows to which tuples withelong as: i
i1, fte(0+i%6,0+(i+1)%d—1] 3.6  Analysis
where0 <i<m
m+1, ifte[@+ixd,
0+ (i—m)*xd+w—1]

Next we mathematically analyze our approach for correctness
and performance.
DEFINITION 2 (CORRECTNES$. Adropinsertion planis said

WCEF(t) = wherei > m to be correct if it produces subset results at query outputs.
m, ift € [91 (i—m)*6+w, THEOREM 1. Window drop inserted aggregation queries pre-
0+ (i+1)%5—1] serve correctness. _
wherei > m ProoOF The proof for this theorem has two parts, one for each

i aggregate arrangement. We can prove each by induction. Con-
Note that the first case only occurs once at the start of the stream.qqer 4 pipelineP of N aggregatest; (w;, 8;). Given a finite input
Thereafter, the second and the third cases occur repeatedly one aftef; o2 ms assume that the result &H(S) 7is the setd. and the re-

the other. If the aggregate window is tumbling (i.= 9), then sult for the window drop inserted versioR! (S), is the setd’. For
the second case has a time range length of 0, i.e., it is skipped. 5y _ WinDrop(w, 8) is inserted befored, such thato = w;
Also, the first case is equivalent to the third case since- 1. As 5 = 51’_ Every s, tinile units, WinDrop marks a tuplet as ei’-

a result, for tumbling window aggregaté®,C' F'(t) = m = 1 for ther keep £, wherer — t.time + ), or drop (0). When4;

all tuples (i.e., each tuple belongs to only 1 window). receives with specification of-, it opens a new window dttime
RULE 1 (EARLY DROPRULE). If a tuple with time value and retains all tuples in time rangg.time, 7). In this case,A;
belongs tok windows (i.e. W CF(t) = k), then this tuple can be delivers an output tuple € A. WhenA; receivest with a0 or
early-dropped if and only if the window drop operator decides to —1 specification, it does not open a window. In this ca$eadds
drop all of theset windows. no output tuple to the result. Thereford, C A. Next, assume
If a window drop operatofVin Drop flips a coin every time it that the theorem holds faV = n. We will show that it must also

observes a potential window start and decides to drop that window ho!d fory]lV = n + 1. We are given that & inDrop(w, §), with
with probabilityp, then for an early dropy inDrop has toflipthe & = 2_i—1wi — (n — 1) and§ = 4, inserted befored, pre-
coin for k consecutive times, which has probabiliy. Unlessp is serves correctness. Consider a winddwat A; with a time range

a big number ok is a small number (e.g., in the case of a tumbling  ©f [T T + w1 — 1], when processed produces an aggregate out-
window), then the probability of an early drop is very small. In- Put with time valuel’. Any aggregate downstream frorh, that
stead, to take advantage of early drops, we use the following (more includes a tuple with tim& in its window effectively Incorporates
deterministic) drop mechanism: We mentioned in Section 2.3 that, © Values with time up t@" + w, — 1. Therefore, ifWinDrop’ is

to indicate its tolerance to gaps in the answer, each query specifies?/aced beforedy, its effective window size must |n/clude this range
a constans for the maximum number of consecutive windows that  © Preserve W'n,dOW integrity. As a rESLW’mDTOP must have a
can be shed. Given a drop probability!V in Drop flips the coin window size of’ = wHwi —1 =3 " wi—(n—1)+wi—1=
once for every batch o windows and drops themll with prob- St wi — (n+ 1 —1). This proves our window size formulation
ability p. Based on the window count functidiy C'F, dropping for a pipeline ofr. 4+ 1 aggregates. Finally, in order to produce
B consecutive windows corresponds to a certain number of early subset results, thé/inDrop’ must produce results eithe¥, ;1
drops. Note that to satist§, at least one window has to be opened apart or in multiples of this quantity. Thereford/in Drop’ must
after each dropped batch. If the coin yields two consecutive drops, have a window slide af’ = d,,+1. This concludes the first part of
then we allow the first window of the second batch to open and our proof. The part for the fan-out case follows a similar inductive
compensate for it later by skipping a window when in fact the coin reasoning, therefore we do not discuss it here.]

yields a keep. This ensures that we satisfy l®gndp. We now analyze the effect of window drop on CPU performance.
. We also compare it against the random drop alternative [26]. Con-
3.5 Window Drop Placement sider a query network as in Figure 6, where an aggredéte ) is

In general, load reduction should be performed at the earliest present between two subnetworks of other non-aggregate operators
point in a query plan to avoid wasted work. However, there may whose total costs and selectivities are as shown. The CPU cycles
be certain situations where placing drops at inner arcs of the queryneeded to process one input tuple across this query network can be
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estimated asost, +sel1 *(costa+selaxcosts). Iftheinputstream 4. EXPERIMENTS
has arate oR tuples per time unit, then the CPU load as processing |, this section, we experimentally evaluate our window drop ap-

cycles per time unit iR « (costy + sely * (costa + sely * costs)). proach. In Section 4.1, we first compare our approach against the
If a random drop were inserted downstream from the aggregate random drop alternative which can only provide the subset guaran-
operator, the CPU load would become: tee by applying tuple-based drops when placed downstream from

Lrprop = R * (cost1 + sely x (costa + sely * (costrDrop+ all the aggregates in a query plan. As part of this initial set of
(1 —p)*costs))) experiments, we also show the advantage of shedding load early

The CPU cycles saved as a result of this would be: in a query plan, by placing the window drop operator at various
SRDrop = Rx(sely * sela*pxcosts — sely * selz * cOStRDrop) locations in a given plan and comparing the results. Then in Sec-

Instead, if a window drop were inserted at the query input, the CPU tjon 4.2, we examine the effect of window parameters, by varying
load would become: window size and slide, and measuring the result degradation for
Lwinprop = R * (costwinprop + costy + costy various query plans. We also compare these experimental results

, +sely x selz « (1 — p)  costs) against the analytical estimates of Section 3.6 to confirm their va-

costy = COStfcheck + S€lw1 * costy + selwz * Costeopy lidity. Finally, in Section 4.3, we evaluate the processing overhead

costh = S"‘Twl * COStweheck + S€lwa * COStweheck of our technique.

Fselut * sely  costy We implemented the window drop operator as part of the load
SUBN ET first checks if a tuple is fake or notdst scheck). As- shedder component of the Aurora/Borealis stream processing pro-
sumesel. Of tuples fromWinDrop are normal andsel.z of totype system. We conducted our experiments on a single-node
them are fake. Then, the former are processed normaily, { * Borealis server, running on a Linux PC with an Athlon 64 2GHz
cost1), and the latter are just copied acrossti@seluwz * costcopy)- processor. We created a basic set of benchmark queries as will be
A checks window specification attributes for ones to be opened gescribed in the following subsections. We used synthetic data to
(5554 costucheck) and for ones to be skippeslwacostucneck)- represent readings from a temperature sensor as (time, value) pairs
Then, tuples in the former group go through normal aggregate pro- For our experiments, the data arrival rates and the query workload
cessing {elw1 * seli + costz). The CPU cycles saved would be:  were more important than the actual values of the data workload.

SwinDrop = R (sely x sela * px costs + (1 — selw1) * costy Thus, for our purposes, using synthetic data was sufficient.
+(1 — selw1) * sely * costa — costw inDrop
08t eheck — S€lw2 * COSteopy 4.1 Basic Performance

_(SEZTMI + selw?) * COStwcheck)

If we compareSgprop With Swinprop, We see thabw in prop has
two additional savings terms: it saves from the aggregate operator’s ) )
cost ost) as well as from the first subnetwork’s cosb £t ) with Nested AggregatesFor this experiment, we used the nested aggre-
an amount determined byl.1 (as a result of any potential early gation query ;hown in Figure 7, which is similar to the stock counF
drops). On the other hand, there are three additional cost terms foréX@mple of Figure 1. There are two aggregate operators, each with
handling the flags introduced BY in Drop. We expect these costs tumbling W!ndows of size 10 and 1QO respectively, and both with
to be much smaller than the savingstfin Drop. We experimen- count functions. We used a batch size of 10. We added delay oper-
tally show the processing overhead of window drop in Section 4. ators bgfore and after each aggregate to model other operators that

Let us now briefly show howel.,1 andsel.» can be estimated. ~ May exist upstream and downstream from the aggregates. A de-
For simplicity, we will assume a stream with one tuple per time Iay_operator 5|mpl_y withholds its input tuple fpr a_spe_cmc amount
value. We drop windows in batches of sife By definition, each of time (busy-waiting the C.PU) befo.re releasing |'§ to its successor
drop-batch must be preceded and followed by at least one keep_operator. A delay operayor is esse_ntlallyaconvgnlent way to repre-
window. The total number of tuples in a batch(8 — 1) * & + w sent_a query subplan W!th a (_:ertaln CPU cost; its dela_y parameter
(see Figure 8). Given a drop-batéhs (w — 8) of its tuples overlap provides a kn_ob to easily adjust the query cost. In Figure 7, we
with the preceding and the following keep-windows, therefore the US€d appropriate delay values to make different parts of the query
number of tuples that belong only to the drop-batckiis+ 1) * equally costly. . . .
§—w. These are the tuples that can be early-dropped (assuming that | "€ goal of this experiment is twofold. First, we show how much
B > | 2]). This many tuples out of a total 6B — 1) 6+ can be window drop degrades the result for handling a given level of ex-

early-dropped and this would occur with probability Therefore, cess load. Second, we compare it against two alternatives: one is
. w6 ; , iati f our window drop approach, where a window drop is
n 1 = 1 —px BEDxI—w D a variation 0 _ , _
we end up withsel.,. P* E-1ysorw O WinDrop's output inserted in the middle of the query network; the other is random

tuples being kept as normal tuplgs. Furthermore, one tup!e out Ofdrop that is placed downstream from both of the aggregates. Figure
everyd tuples may have to be retained as a fake tuple since it carries - i ustrates these three alternative drop insertion plans.

. i . (B+1)*d—w | __ w
a 0 window specification. Thug;=———=] = (B +1) — [ §] Figure 10 presents our result. The excess rate on the x-axis rep-
outof (B +1) 6 — w will be additionally kept with probability. resents the percentage of the input rate that is over full capacity.

. Bi1)—| 2 . ; .
Therefore, we end up withel,,2 = p * ((Bm%. The y-axis shows the drop rate (i.e. the fraction of the answer

First we will show the basic performance of window drop for
both the pipeline and the fan-out (i.e., shared) query arrangements.
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Figure 9: Drop insertion plans for the fan-out arrangement

that is missing from the result)RDrop represents random drop, gregates. The parameters of the window drops are appropriately

Nestedlcorresponds to window drop inserted in the middle, and assigned based on the rules in Table 2.

Nested2is for window drop placed at the input. At relatively low Figure 11 presents our result. The y-axis shows the total drop

input rates, RDrop shows comparable performance to window drop rate for both of the queries, when the system experiences a certain

approaches. However, as the rate gets higher, both Nested1 andevel of excess load. Similar to our earlier result, shedding load at

Nested?2 scale far better than the RDrop approach. In fact, RDropthe earliest possible point in the query plan provides the smallest

stops delivering any results once the excess load gets beyond 65%drop rate, and hence, the highest result quality. Again, the win-

Nested2 either results in equal or smaller degradation in the answerdow drop operator enables pushing drops beyond aggregates and

compared to Nestedl at all load levels. split points in a query plan, reducing quality degradation without
As a result, window drop is effective in handling system over- sacrificing the subset guarantee.

load. It scales well with increasing input rate and outperforms the .

random drop alternative. Note that the RDrop case is all that would 4.2 Effect of Window Parameters

have been allowed by our previous work [26], since one could not  Next we investigate the effect of window parameters on window
move drops past aggregates. Placing the window drop further up-drop performance. We used a query with one aggregate operator
stream in a nested aggregation query significantly improves the re-with a count function as shown in Figure 12. We again added delay
sult quality, as more load can be saved earlier in the query, which gperators of 5 milliseconds each, before and after the aggregate,
reduces the total percentage of the data that needs to be shed. and set the batch size to 10.

Shared Query Plans. We repeated the previous experimenton a  The bar chart in Figure 12 shows the effect of window size on
shared query plan. We used a fan-out arrangement with two aggre-drops. An input rate that is 25% faster than the rate the system can
gate queries as shown in Figure 9. The figure plots the three alter-handle at full capacity is fed into the query. For each window size,
native load shedding plans that we compar&thared WinDrop we measure the fraction of tuples that must be dropped to bring the
is when window drop is placed at the earliest point in the query system load below the capacity. We take these measurements for a
plan, Split-WinDrop is when each query has a separate window window that slides by 1 (slowly sliding window) and for a window

drop placed after the split point, ai8plit_RDrop is when we ap- that slides by the window size (tumbling window). In most cases,
ply tuple-based random load shedding downstream from the ag-the drop rates came out to be lower for the tumbling window case.
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Figure 10: Comparing alternatives (pipeline) Figure 11: Comparing alternatives (fan-out)
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Figure 13: Effect of window slide
dow at a time, zero window overlap, and low aggregate selectiv-
——! WinDrop | Delay Aggregate| —| Delay ; Py ; :
: 1 5 msec 5 msec ity, providing more opportunity for early drops. As we increase
******* the window slide, the number of saved CPU cycles upstream from
1 ‘ ‘ the aggregate increases (due to early drops) while the number to be
_ rate+25% saved downstream from the aggregate decreases (due to low aggre-
slide=winsize—— L . o
slide=1=== gate selectivity). The required drop amount first increases, but then
08r ] starts decreasing due to additional savings from early drops. Note
ggﬁr'rsggggsl that this decrease is observed when slide gets above 10 (i.e., when
2 06 4 %] < B). Window drop shows the best advantage as the degree
g of window overlap decreases. We continue to observe this effect as
£ o4 excess load increases. Our analysis, plotted in Figure 13(b), cap-
: tures the general behavior very well, but as window slide grows, it
shows a departure from the measured results, for the same reason
0.2F o f as explained in the previous paragraph.
As a brief note, we also compared our window drop with a ran-
dom drop inserted after the aggregate. For slide=1, the performance

50 75 100 is similar (no early drops). For slide=100, random drop fails to
window size remove the overload, even at rate+25%. Thus, in the worst case
where there is a very high degree of window overlap and zero op-
portunity for early drops, window drop behaves similar to the ran-
dom drop. As slide grows, window drop achieves a clear advantage.
This is because window drop can achieve early drops in this case. .
A second observation is that drop rates stay almost fixed as the win-4-3 Processmg Overhead
dow size increases. Interestingly, the formulas presented earlier in  Next we evaluate the overhead of adding window drop into query
Section 3.6 also suggest that load should be independent of the agplans. This overhead has several potential sources: (1) an addi-
gregate window size wheh= 1 andd = w (seesel,1 andsely,s). tional operator to be scheduled in the query plan, (2) other opera-
We also measured average operator costs and plugged them intdors interpreting window specifications, (3) fake tuples.
our formulas. The formulas estimate drop rates to be 0.2 and 0.39 In this experiment, we used the query layout shown in Figure
for the tumbling and the sliding window case, respectively (shown 14. We varied the predicate of the filter to obtain various selectiv-
with dotted lines). The latter case is experimentally confirmed in ity values. We used a tumbling window whose window size is also
Figure 12. However, our formulas underestimate the drop rate for varied. Table 4 shows the ratio of throughput values for a query that
the tumbling window case. In this case, the aggregate operator hascontains a window drop that does not drop anything=<( 0) and
a very small selectivity. It closes a window and produces an output for the case when no window drop is present. We ran each query
once everyw tuples, at which point the downstream delay operator for a minute, at a rate that is 50% higher than the system capacity.
is scheduled. Our analysis models the average case behavior an&ince no tuples are dropped in either case, the reduction (if any)
fails to capture cases where internal load variations may occur duein the number of tuples produced with window drop must be due
to changes in operator scheduling frequency. to the additional processing overhead. First, Table 4 shows that in
Figure 13 details the effect of window slide on window drop per-
formance: Figure 13(a) shows our experimental result and Figure
13(b) plots the analytical estimates of Section 3.6. A window size — WinDrop | Filter 18?}@’80 Aggregate——>
of 100 with four different slide values is used. A slide value of 1
corresponds to a large number of simultaneously open windows,
therefore, a high degree of window overlap, and high aggregate Figure 14: Filtered aggregation query
selectivity. A slide value of 100 corresponds to one open win-

Figure 12: Effect of window size




| window size| selectivity=1.0] selectivity=0.5] streams [13]. Former techniques mostly rely on precomputed data

25 0.99 0.96 synopsis whereas latter approaches construct one-pass summaries
50 0.99 0.98 as streams arrive. Online aggregation [17] lies somewhere in-between
75 1.0 0.98 by interleaving sampling with query evaluation, on stored data.
100 1.0 1.0 More recently, the data triage approach has proposed to shed load
on streams by summarizing excess data into synopsis data struc-
Table 4: Throughput ratio (WinDrop( p = 0)/NoDrop) tures instead of dropping it [22]. In addition to samples, synopsis

can take the form of histograms [14], sketches [12], or wavelets [9,

. . . 15]. In majority of the existing work, aggregate approximations
general, the overhead is low. Second, as the window size inCreases, g i, the form of non-subset answers. To our knowledge, no previ-
the overhead decreases. This is due to the fact that the windowg, s \york has studied window behaviors in depth to perform subset
drop marks tuples less f.requently: Third, for lower selectivity, the approximations on sliding window aggregates.
overhead seems to be higher. This result accounts for the effect of
handling fake tuples. As we mentioned earlier in Section 3.3, fil-
ter generates fake tuples when its predicate evaluates to false bup' CONCLUSIONS AND FUTURE WORK
the tuple has to be retained if it is carrying a non-negative window  In this paper, we have shown a window-aware load shedding
specification. The chance of generating fake tuples increases as théechnique that deals with sliding window aggregate operators. More-
filter selectivity decreases. This may further lead to an increased over, we have done this in a way that preserves the subset result
overhead of processing fake tuples in the downstream query net-guarantee. Our techniques also support load shedding in query net-
work. As shown in Table 4, we see only a slight increase in over- Works in which aggregates can be arbitrarily nested. We believe
head when the filter selectivity is lowered to 0.5. that this is very important since, in our experience with the Au-

rora/Borealis system, user-defined aggregates have been used ex-
tensively in practice for many tasks that involve operating on a sub-
5. RELATED WORK sequence of tuples. Thus, they occur quite frequently in the interior
There has been a great deal of recent work in the area of dataof query networks. Our contribution is the ability to handle aggre-
stream processing [16]. Several research prototypes have biien b gates in a very general way that is consistent with a subset-based
[2, 10, 21]. Efficient resource management, adaptivity, and appro error model.
imation have been the main points of emphases. We have shown that, as is expected, with the added ability to
Load shedding for aggregation queries over data streams haspush drops past aggregates, we can recover more load earljaythere
been the subject of recent work by Babcock et al [7]. This work regaining the required CPU cycles while minimizing the total util-
inserts random drops into query trees and tries to minimize the ity loss. By focusing on dropping windows, we can better control
maximum relative error at outputs. This is achieved using statis- the propagation of error through the downstream network.
tical bounds, based on mean and standard deviation statistics on Some of the complexity in our solution is a result of the simple
windows of tuples received by aggregates. Our approach tries toflat data model. For example, not being able to denote windows as
produce maximum subset results, hence our approximation modelsets of tuples results in a tuple marking scheme. However, a simple
is quite different. Moreover, our approach targets a general classmodel simplifies implementation and allows for faster execution in
of aggregation query topologies (i.e., aggregates can be nested anthe general case.
can appear anywhere in a query plan, possibly with sharing), while  We plan to extend this work in the following directions:
the proposed work assumes query trees, with a single aggregateéPrediction-based Load Shedding. Subset-based load shedding
operator at the leaf level. Lastly, in that approach, the statistical approaches lead to gaps in query results. One way for the out-
bounds apply to only a limited set of aggregate functions, whereas put application to interpret these gaps is to predict what might be
our approach is independent of the actual aggregate functions andmissing from the result based on what is delivered (e.g., based on
can easily support user-defined functions. linear interpolation). Using a prediction-based interpretation of the
Load shedding for sliding window joins in memory-limited en-  subset result also gives us an opportunity to compare our approach
vironments have also been studied [6, 11, 18, 23]. Our approachagainst the relative-error based approaches (e.g., [7]). We hav
mainly considers CPU as the limited resource. The cited works conducted some preliminary experiments in this direction based
either produce maximum subset results or sampled subsets. on linear interpolation. Our results on real data traces show that
Punctuations are special annotations embedded into data streamfr small gaps (i.e, low batch size), our approach produces results
to specify end of a subset of data in the stream [29, 20]. They are with lower average error. Additionally, we have also observed that
devised to overcome the blocking and unbounded memory problemlarger slide values result in higher error for both approaches, but
in stateful stream operators. As such, punctuations constitute an al-our approach seems to scale better with increasing slide. We need
ternative to windowed processing. Our work is relevant to punctua- to conduct a more comprehensive experimental study to provide a
tions in the way we attach window indicators into tuples. Although detailed quantitative comparison.
in both cases streams are annotated with information that is im- Window-awareness on Joins.Joins also operate on windows of
portant in terms of optimizing query execution, the goals are quite tuples. However, the semantics is quite different. A join window
different. In punctuations case, annotations indicate some propertyinvolves two input streams, A and B. It defines which tuples from
that naturally exists in the stream, whereas in our case, window input B are in the range of a given tuple from input A so that the
specifications are artificially injected to cope with overload. Also, join predicate can be applied on them. Unlike aggregates, where
the previous work used similar windowing concepts to ours, but window behavior is crucial in producing subset results, this is not
their focus was on optimizing query evaluation and handling disor- the main issue for joins. Dropping inputs necessarily produces a
der in data streams [20]; whereas we inject window-awareness intosubset and load shedding on joins is mostly about controlling the
tuples to preserve result correctness when doing load shedding.  size of that subset. Consider a query with an Aggregate followed
Lastly, approximate query processing techniques have long beenby a Join. Window Drop placed before the Aggregate causes Ag-
studied for both traditional static data sets and continuous datagregate to produce a somewhat random subset per aggregate group



This further affects the overall query result from the Join in differ-

ent ways, depending on the form of the join predicate as well as

tuple values.
Memory-constrained Environments. Query networks with large

number of stateful operators like aggregates may also require load
shedding due to insufficient memory. An aggregate, with window

sizew and window slidej has at mosf% | open window states per

group. However, depending on the form of the aggregate function

(i.e., distributive/algebraic vs. holistic), a window state may be-

[11] A. Das, J. Gehrke, and M. Riedewald. Approximate Join
Processing Over Data StreamsA@M SIGMOD
ConferenceSan Diego, CA, June 2003.

[12] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
Processing Complex Aggregate Queries over Data Streams.
In ACM SIGMOD Conferen¢éMadison, WI, June 2002.

[13] M. Garofalakis and P. Gibbons. Approximate Query
Processing: Taming the MegabytesMhDB Conference
Rome, Italy, September 2001.

come unbounded [4]. We are planning to adapt our window drop [14] J. Gehrke, F. Korn, and D. Srivastava. On Computing

approach to such memory-constrained environments.
Distributed Load Shedding. We are also extending this work into

the distributed setting. Borealis [1, 3], the successor to Aurora,

Correlated Aggregates over Continual Data Streams
Databases. IACM SIGMOD Conferengé&anta Barbara,
CA, May 2001.

maps query networks to a large number of machines of varying [15] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.

computational capability (sensors, servers, and everything in be-
tween). In this case, load shedding requires that nodes cooperate in
choosing where and how much load to shed. A downstream node

Surfing Wavelets on Streams: One-pass Summaries for
Approximate Aggregate Queries. \fLDB Conference
Rome, Italy, September 2001.

will often request that its upstream nodes shed a certain amount[16] L. Golab and TOzsu. Issues in Data Stream Management.

of load on its behalf. That request can be further subdivided and

ACM SIGMOD Record32(2), June 2003.

passed (in part) upstream. We are currently investigating heuristic [17] J. Hellerstein, P. Haas, and H. Wang. Online Aggregation. In

approaches to the distributed load shedding problem [28].
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