Data Ingestion for the Connected World

John Meehan, Cansu Aslantas, Stan Zdonik (Brown University)
Nesime Tatbul (Intel Labs & MIT)
Jiang Du (University of Toronto)
The IoT Era
Traditional Data Ingestion (ETL)

DATA SOURCES

- Extract
- Staging
- Flat Files

EXTRACT

- Data Sources

TRANSFORM

- Load
- OLAP/Storage
- Data Warehouse

- Data Cleaning
- Intermediate Results
- Data Normalization
- Intermediate Results
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 1. Ingest raw data
 2. ETL transform
 3. Update warehouse

http://www.tpc.org/tpcdi/
Poess et al, VLDB 2014
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 1. Ingest raw data

- Data collected into flat files
- Heterogeneous data types
- Incremental update from an OLTP source, once a day

Poess et al., VLDB 2014.
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 1. Ingest raw data
 2. ETL transform
 3. Update warehouse

✓ Storage for intermediate results
✓ Transactional state management

Poess et al., VLDB 2014.
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 1. Ingest raw data
 2. ETL transform
 3. Update warehouse

Bulk loading
Streaming Data Ingestion

• In modern apps such as IoT:
 – real-time streams of data from a large number of sources
 – majority of these sources report in the form of time-series
 – data currency & low latency is key for real-time decision making & control

✓ Need a stream-based ingestion architecture

✓ Must pay attention to time-series data type and operations (both during ingestion & analytics)
An Architecture for Streaming Data Ingestion

DATA COLLECTION

STREAMING ETL

ETL LIBRARY
- Data Cleaning
- Data Transformer
- Data Integration
- Data Router
- Data Staging
- Data Caching

SUPPORT
- Transaction Mgr
- Local Storage
- Scheduler
- Recovery Mgr
- Cache Mgr

OLAP BACKEND

QUERY PROCESSOR

OLAP ENGINE

DATA WAREHOUSE
- ΔDW
- Globally Consistent Data
Implementation
A hybrid system for transaction & stream processing
- combines main-memory OLTP with streaming constructs (windowing, triggers, dataflow graphs)

Transactions as user-defined stored procedures (Java + SQL)

Three complementary correctness guarantees
- **ACID**, for individual transactions
- **Ordered execution**, for streams and dataflow graphs
- **Exactly-once processing**, for streams (no loss or duplicates due to failures/recovery)
Example: A TPC-DI Dataflow Graph in S-Store

DATE, TIME, STATUS, TYPE → SECURITY LOOKUP → ACCOUNT LOOKUP → UPDATE TRADE DATA (STAGING)

Date → DimSecurity → DimAccount → DimTrade

Time → Type

Status → Type
Example: A TPC-DI Dataflow Graph in S-Store

Transaction Execution (TE) = An instance of a stored procedure executing on an input batch

Example: A TPC-DI Dataflow Graph in S-Store

Transaction Execution (TE) = An instance of a stored procedure executing on an input batch

UPDATE TRADE DATA (STAGING)

DimTrade

TE1

TE2

...
Example: A TPC-DI Dataflow Graph in S-Store

Shared state read or written by TEs
Implementation
Data Migrator

• Provides durable migration into the data warehouse using an ack mechanism that simulates 2PC
• Leverages the BigDAWG polystore middleware (see Session 4)
 – can support a variety of destination warehouses
 – can participate in federated querying
• Supports both “push” and “pull” modes
TPC-DI Experiment: Push vs. Pull Tradeoffs

• How often to migrate? Push or pull?

• Impacts:
 – Maximum ingest latency in S-Store
 – Query execution time in Postgres
 – Staleness of the query results in Postgres

• Result summary: Push in small batches, every 1-5 seconds. Fine-grained ingestion performs well.
Ongoing Work

• **Time-series** data management (ingestion & beyond)
 – New ingestion challenges and opportunities (e.g., synchronization/alignment of time-series, using predictive techniques for dealing with missing/delayed values)
 – Append-based updates, window-based reads
 – Need to support complex analytics operations (forecasting/prediction, pattern matching, anomaly detection, signal processing)
 – Exploit the resources on edge devices