Streaming Data Integration:
Challenges and Opportunities

Nesime Tatbul

==

Systems @ ETH ziricn

Talk Outline

* Integrated data stream processing
* An example project: MaxStream

— Architecture
— Query model

* Conclusions

Data Stream Processing

* Monitoring applications require collecting, processing,
disseminating, and reacting to real-time events from
push-based data sources.

e “Store and Pull” model of traditional databases does
not work well.

/

Query — DBMS — Answer Data — SPE ~——» Answer

N\
Data Query
Base Base

Traditional Database Systems Stream Processing Engines

“Integrated” Data Stream Processing

* Today, integration support for SPEs is needed in
three main forms:
1. across multiple streaming data sources
 example: news feeds, weather sensors, traffic cameras

2. over multiple SPEs

 example: supply-chain management
3. between SPEs and traditional DBMSs

 example: operational business intelligence

#1: Streaming Data Source Integration

* Goal: Integrated querying over multiple, potentially
heterogeneous streaming data sources

* Challenges:

— Schemas of different sources can differ from one another and
from the input schemas of the already running CQs.

— Input sources or the network can introduce imperfections
into the stream.

— Adapters may become a bottleneck.

* Current state of the art:
— Commercial SPEs offer a collection of common adapters and
SDKs for developing custom ones.

— Mapping Data to Queries [Hentschel et al]
— ASPEN project [Ives et al]

2: SPE-SPE Integration

* Goal: Integrated querying over multiple, potentially
heterogeneous SPEs

— to exploit the advantages of distributed operation
— to exploit specialized capabilities and strengths of SPEs

— to provide higher-level monitoring over large-scale
enterprises with loosely-coupled operational units

* Challenges:
— The need for functional integration

— The need to deal with heterogeneity at different levels (e.g.,
qguery models, capabilities, performance, interfaces)

* Current state of the art:
— MaxStream project [Tatbul et al]

3: SPE-DBMS Integration

* Goal: Integrated querying over SPEs and traditional
database systems

* Challenges:
— Bridge the “data vs. operation” gap between the two worlds.

— Find the right language and architecture primitives for the
required level of querying, persistence, and performance.
* Current state of the art:
— Languages [STREAM CQL, StreamSQL]
— Architectures
* SPE-based [typical SPEs such as Coral8, StreamBase]

I”

* DBMS-based [“stream-relational” systems such as
TelegraphCQ/Truviso, DataCell, DejaVu, MaxStream]

MaxStream: A Platform for SPE-SPE and
SPE-DBMS Integration

Client Application

] * Key design ideas:

al

— Uniform query language

Federation Layer

and API

— Relational database

infrastructure as the basis
for the federation layer (in

our case: SAP MaxDB and

al v 2
Wrapper Wrapper Wrapper

v 2l 2l

% SPE | SPE

SAP MaxDB Federator)

— “Just enough” streaming
capability inside the
federation layer

MaxStream vs. Traditional Virtual Integration

Traditional Virtual Integration

Goal: to query across multiple
autonomous & heterogeneous
data sources

Source wrappers send queries
and receive answers

Sources host the data

Mapping between source
schemas and a global schema

Queries are posed against the
global schema

More focus on data locality

MaxStream

Goal: to query across multiple
autonomous & heterogeneous
SPEs (and DBMSs)

SPE wrappers send queries and
data, and receive answers

SPEs host the CQs

Mapping between SPE CQ
models and a global CQ model

CQs are posed and data is fed
against the global CQ model

More focus on functional
heterogeneity

MaxStream Architecture

Client Application

Output Input DDL/DML statements
Events Events in MaxStream’s SQL Dialect

ICDE NTII

\WVorkshop, Z%R(IJ:'

Nesime Tatbul, ETH Zurich

Metadata] SQL Parser MaxStream
L \|¢ Federator
4 a ;
Input Event Query Rewriter
X Tables) \l,
Query Optimizer
4 N\
Output Event ‘]r SQL Dialect
. Tables y Query Executer < Translator
A Input DDL/DML statements \1,1\ A
" Events in SPE’s SQL Dialect !
u“;’ Data Agent I_ Data Agent Data Agent
Ei for SPE \1,1‘ for SPE
3 SPE’s SDK SPE’s SDK
<>
MaxDB ODBC l Iu MaxDB ODBC l

SPE

10

MaxStream Architecture
Two Key Building Blocks

e Streaming inputs through MaxStream
— ISTREAM operator for persistent input events
— Tuple queues for transient input events

e Streaming outputs through MaxStream
— Monitoring Select operator over event tables

* Persistent event tables for persistent output events

* In-memory event tables for transient output events

Streaming Input Events

 The ISTREAM (“Insert STREAM”) Operator

— “Inspired” by the relation-to-stream operator of the same
name in the STREAM Project, that streams new tuples being
inserted into a given relation.

— Example: OrdersTable(Clientld, Orderld, Productld, Quantity)

INSERT INTO STREAM OrdersStream
SELECT ClientId, OrderId, ProductId, Quantity
FROM ISTREAM (OrdersTable) ;

T T+1
rl :> rl
r2 r2
r3 r3
r4
r5

ISTREAM (OrdersTable) at T+1 returns:

<r4, T+1>, <r5, T+1>

Streaming Output Events

* Opposite of streaming input events, but...

— Unlike the SPE interface, the client application interface is not
push-based.

* The Monitoring Select Operator
— Select operation blocks until there is at least one row to return.

— For continuous monitoring, the client program re-issues
Monitoring Select in a loop.

— Monitoring Select operates on “event tables”.

 Example: Detect unusually large order volumes.

SELECT *
FROM /*+ EVENT */ TotalSalesTable
WHERE TotalSales > 500000;

ISTREAM and Monitoring Select in Action

Data Feeder Client

// Continuous Insert into OrdersTable kept in MaxStream

CREATE TABLE OrdersTable;
WHILE (true) { >
INSERT INTO OrdersTable VALUES (...);

sleep(period); OrdersTable

MaxStream

It
// Continuous Insert into OrdersStream kept in the SPE
CREATE STREAM OrdersStream;

INSERT INTO STREAM OrdersStream Monitoring
SELECT ... Select —> ISTREAM
FROM ISTREAM(OrdersTable);
TotalSalesTable
Monitoring Clients V'

// Setting up the Continuous Query to push down to the SPE
INSERT INTO STREAM TotalSalesStream
SELECT SUM(...)

FROM OrdersStream TotalSalesStream OrdersStream
KEEP 1 HOUR: SPE \1,
// Streaming Output Events inserted by the SPE
CREATE TABLE TotalSalesTable;
Ji7 Sel(es sl e e it im [1 e i INSERT INTO STREAM TotalSalesStream
WHILE (t“ie) { SELECT SUM(...)
SELECT i i <€ FROM OrdersStream
FROM /*+EVENT*/ TotalSalesTable KEEP 1 HOUR;
WHERE TotalSales > 500000;

|5

ICDE NTIl Workshop, 2010 Nesime Tatbul, ETH Zurich 14

Hybrid Queries in MaxStream

* Hybrid queries are continuous queries that join
Streams with Tables.

 Two important factors that affect efficiency:
— The streaming data source must be first in the join ordering.

— Hybrid queries can be rewritten to perform the join within
the MaxStream Federator, removing the need for the SPE to
establish connections to external databases.

* One can conveniently use hybrid queries in MaxStream
in two ways:
— To enrich the input stream before it is passed to the SPE
— To enrich the output stream after it is received from the SPE

MaxStream Query Model

* Problem: Heterogeneity of SPE query models
— Syntax heterogeneity
* Language clauses/keywords for common constructs syntactically differ.
— Capability heterogeneity
» Support for certain query types differs.

— Execution model heterogeneity
e Underlying query execution models differ.
» Not exposed to the application developer at the language syntax level.

* First step towards a solution: Create a model to analyze
and predict the query execution semantics of SPEs.

The SECRET Model

 What affects query results produced by an SPE?

— ScopE: Given a query with certain window properties, what
are the potential window intervals?

— Content: Given an input stream, what are the actual contents
for those window intervals?

— REport: Under what conditions, do those window contents
become visible to the query processor for evaluation?

— Tick: What drives an SPE to take action on a given input
stream?

Query Result = F(system, query, input)

Vool

Tick ScopE Content
REport

The SECRET of a Query Plan

SECRET

v v

Tick REport

Vv v ()

SECRET

window

Content

ICDE NTIl Workshop, 2010

query

operator

Nesime Tatbul, ETH Zurich

18

The SECRET of an SPE

e Tick:
— tuple-driven (e.g., Aurora, Borealis, StreamBase,
TelegraphCQ, Truviso)
— time-driven (e.g., STREAM, Oracle CEP)

— batch-driven (e.g., Coral8, [Jain et al, VLDB’08])
* REport:
— window close & non-empty (e.g., StreamBase)

— content change & non-empty (e.g., Coral8)

— window close & content change & non-empty
(e.g., STREAM)

MaxStream: Future Outlook

Query model

— how to extend SECRET (other query types, analysis
of other SPEs, input imperfections)

— how to use SECRET in MaxStream (- SECRET-based
query and SPE capability analyzer)

Capability- and Cost-based query optimization
Transactional stream processing
Distributed operation

Conclusions

Today, integration support for SPEs is needed

in three main forms: across sources, SPE-SPE,
SPE-DBMS.

There are many open research challenges.

MaxStream takes up some of these challenges
for SPE-SPE and SPE-DBMS integration.

More information about MaxStream:

http://www.systems.ethz.ch/research/projects/maxstream/

